Synthesis and the antimicrobial activity of precarbene and metalcarbene compounds of the imidazole series

V. Sh. Saberov, M. O. Marichev, M. I. Korotkikh, O. P. Shvaika, R. V. Rodik, A. B. Drapailo, T. M. Pekhtereva, O. Z. Komarovska-Porokhnyavets, V. I. Lubenets, V. P. Novikov


Precarbene and metalcarbene compounds of a series of imidazole have been synthesized to study their antimicrobial activity. Calix[4]arene imidazolium salts 3,4a,b have been obtained from the corresponding chloromethyl derivatives of calix[4]arenes and N-substituted imidazoles in dimethylformamide or tetrahydrofuran, and salt 5 – from p-xylylenediimidazoles and 1-bromoadamantane in o-dichlorobenzene. Monocarbene complexes of palladium 8a-c, copper(I) 8d and biscarbene complexes of nickel 9a and cobalt 9b have been synthesized by the direct interaction of stable carbenes with transition metal salts or by the analogous reactions in situ in tetrahydrofuran. The NMR spectra data of the compounds synthesized are given. The most characteristic signals of the carbenoid carbon atoms are detected in the 13С NMR spectra of complexes 8a-d, 9a in the range of 165-178 ppm. A high antimicrobial activity has been found for carbenoid salts 4a,b, 5 on the test-culture of M. Luteum. It corresponds to the minimal bacteriostatic concentration (MBsC) of 15.6 mkg/mL and the minimal bactericidal concentration (MBcC) of 62.5 mkg/mL for compound 2. The higher activity has been found for carbene complexes of nickel 9a and cobalt 9b on the test-culture of M. luteum (MBsC is 7.8 mkg/mL and MBcC is 15.6 mkg/mL), and the highest 9b on the test-cultures of M. luteum and C. tenuis (the minimal fungistatic concentration is 1.9 mkg/mL and the minimal fungicidal concentration is 3.9 mkg/mL).


calixarenes; precarbene and metalcarbene compounds; antimicrobial activity


Marichev К.A., Glinyanaya N.V., Korotkikh N.І., Shvaika О.P., Kiselyov А.V., Knishevitsky А.V., Pekhtereva Т.М., Dudarenko G.V., Komarovska-Porokhnyavets О.P., Novikov V.P., Lubenets V.І. Zhurnal organichnoi ta farmatsevtichnoi khimii – Journal of organic and pharmaceutical chemistry, 2011, Vol. 9, 3(35), pp.72-79.

Korotkikh N.І., Shvaika О.P., Kiselyov А.V., Knishevitsky А.V., Glinyanaya N.V., Marichev К.A., Novikov V.P., Lubenets V.І., Iskiv О.P., Moskalenko N.I., Komarovska-Porokhnyavets О.P. Visnyk natsionalnogo universitetu „Lvivska polytekhnika” – Herald of National University “Lvivska polytekhnika”, 2008, 622, pp.3-6.

Liu L., Huang Y., Riduan S.N., Gao S., Yang Y., Fan W., Zhang Y. Main-chain imidazolium oligomer material as a selective biomimetic antimicrobial agent (2012) Biomaterials, 33, pp.8625-8631. Cited 4 times. DOI:

Che C.-M., Sun R.W.-Y. Therapeutic applications of gold complexes: lipophilic gold(III) cations and gold(I) complexes for anti-cancer treatment (2011) Chem. Commun., Vol. 47, pp.9554-9560. Cited 37 times. DOI: 10.1039/c1cc10860c

Oehninger L., Rubbiani R., Ott I. N-Heterocyclic carbene metal complexes in medicinal chemistry (2013) Dalton Trans., 42, 3269-3284. Cited 29 times. DOI:10.1039/c2dt32617e

Gasser G., Metzler-Nolte N. The potential of organometallic complexes in medicinal chemistry (2012) Cur. Opinion Chem. Biol., 16, pp.84-91. Cited 45 times. DOI: 10.1016/j.cbpa.2012.01.013

Liu W., Gust R. Metal N-heterocyclic carbene complexes as potential antitumor metallodrugs (2013) Chem. Soc. Rev., 42, 755. Cited 36 times. DOI: 10.1039/c2cs35314h

John A., Ghosh P. Fascinating frontiers of N/O-functionalized N-heterocyclic carbene chemistry: from chemical catalysis to biomedical applications (2010) Dalton Trans., 39, pp.7183-7206. Cited 61 times. DOI: 10.1039/c002475a

Hemmert C., Fabie A., Fabre A., Benoit-Vical F., Gornitzka H. Synthesis, structures, and antimalarial activities of some silver(I), gold(I) and gold(III) complexes involving N-heterocyclic carbene ligands (2013) Eur. J. Med. Chem. 60, 64-75. Cited 3 times. DOI: /j.ejmech.2012.11.038

Weaver J., Gaillard S., Toye C., Macpherson S., Nolan S.P., Riches A. Cytotoxicity of Gold(I) N-Heterocyclic Carbene Complexes Assessed by Using Human Tumor Cell Lines (2011) Chem. Eur. J., 17, pp.6620-6624. Cited 23 times.


Yan J., Chow A.L.-F., Leung C.-H., Sun R.W.-Y., Ma D.-L., Che C.-M. Cyclometalated gold(III) complexes with N-heterocyclic carbene ligands as topoisomerase I poisons (2010) Chem. Commun., 46, pp.3893-3895. Cited 36 times. DOI: 10.1039/c001216e

Синтезовано за методикою: Boyko V.I., Podoprigorina A.A., Yakovenko A.V., Pirozhenko V.V., Kalchenko V.I. Alkylation of narrow rim calix[4]arenes in a DMSO-NaOH medium (2004) J. Incl. Phenom. Macrocycl. Chem., 50, 193-197. Cited 8 times. DOI: 10.1007/s10847-005-5240-4

Nagasaki T., Sisido K., Arimura T., Shinkai S. Novel conformational isomerism of water-soluble calix[4]arenes (1992) Tetrahedron, 48, pp.797-801. Cited 28 times. DOI:

Strobel M., Kita-Tokarczyk K., Taubert A., Vebert C., Heiney P.A., Chami M., Meier W. Self-Assembly of Amphiphilic Calix[4]arenes in Aqueous Solution (2006) Adv. Funct. Mater., 16, 252-259. Cited 40 times. DOI: 10.1002/adfm.200500212

GOST Style Citations


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: Ž. org. farm. hìm.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)