Synthesis and in silico screening of novel 2-methylquinoline-4-ones bound with the pyrazol-5-ones moiety

V. O. Zubkov, N. I. Ruschak, O. L. Kamenetska, I. S. Gritsenko


The 1,3-dicarbonyl derivatives of 2-methyl-1,4-dihydroquinoline-4-one have been synthesized by alkylation of methylene active compounds with 3-dimethylaminomethyl-2-methyl-1,4-dihydroquinoline-4-one. These compounds are the convenient starting material for creating the new chemical libraries in the series of 3-heteryl substituted 2-methyl-1,4-dihydroquinoline-4-ones. In this work the examples of the synthesis of new quinolone-pyrazolone systems are presented. Their condensation with hydrazine hydrate resulted in the new derivatives of 2-methyl-3-[(5-oxo-4,5-dihydro-1H-pyrazol-4-yl)methyl]-1,4-dihydroquinolin-4-ones. The estimation of novelty of the compounds obtained in such chemical databases as PubChem, ChemBl, Spresi has shown that these substances are not present in these sources, and the chemical scaffold – quinolone bound via the methylene bridge with azoles is new. Determination of 2D similarity of the compounds synthesized by standard molecular descriptors with the biologically active structures in the ChemBl_20 database has shown the uniqueness of a new quinolone scaffold and the potential anti-inflammatory activity for compounds of this series. The molecular similarity has been determined using the ChemAxon software (JKlustor, Instant JChem).


2-methyl-1,4-dihydroquinoline-4-onе; pyrazol-5-one; Mannich base; molecular similarity

Full Text:



Mugnaini C., Pasquini S., Corelli F. Current Medicinal Chemistry, 2009, Vol.16(14), pp.1746-1767. Cited 41 times. doi: 10.2174/092986709788186156.

Heeb S., Matthew P. Fletcher, Siri Ram Chhabra, Stephen P. Diggle, Williams P., Miguel Cámara. FEMS Microbiology Reviews, 2011, March 35(2), pp.247-274. Cited 77 times. doi: 10.1111/j.1574-6976.2010.00247.x

Tomé A. M., Filipe A. Drug Safety, 2011, Vol. 34, Issue 6, pp.465-488. Cited 33 times. doi: 10.2165/11587280-000000000-00000.

Zubkov V. А., Gritsenko I. S., Taran S. G., Podolsky I. N., Kamenetskaya O. L. Zhurnal Organichnoi ta Farmatsevtichnoi Khimii – Journal of Organic and Pharmaceutical Chemistry, 2005, Vol. 3, No.2, pp.23-27.

Zubkov V. O., Tsapko T. O., Gritsenko I. S., Rushchak N. I. Zhurnal Organichnoi ta Farmatsevtichnoi Khimii – Journal of Organic and Pharmaceutical Chemistry, 2011, Vol. 9, No.4, pp.38-41.

Eicher T. Hauptmann S. The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications, 2-nd Completely Revised and Enlarged Edition. Weinheim: Wiley VCH, 2003, 572 p.

Bolton E., Wang Y., Thiessen P.A., Bryant S.H., Annual Reports in Computational Chemistry, 2008, Vol. 4, pp.217-240.

Bento A. P., Gaulton A., Hersey A., Bellis L. J., Chambers J., Davies M., Kruger F. A., Light Y., Mak L., McGlinchey S., Nowotka M., Papadatos G., Santos R., Overington J. P. Nucleic Acids Research, 2014, Vol. 42, pp.1083-1090. Cited 54 times. doi: 10.1093/nar/gkt1031.

Roth, Dana L. Journal of Chemical information and Modeling, 2005, Vol. 45(5), pp.1470-1473. Cited 5 times. doi:10.1021/ci050274b.

El-Sabbagh O. I. El-Sadek M. E. Lashine S. M. Yassin S. H. El-Nabtity S. M. Medicinal Chemistry Research, 2009, Vol. 18, pp.782-797. Cited 12 times. doi: 10.1007/s00044-009-9203-y.

Zhongwen Wang, Jun Ren, Zhengming Li, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 2000, Vol. 30, Issue 4, pp.763-769. Cited 6 times. doi: 10.1080/00397910008087378.

Saoud A. M. Metwally, Maisa I. Abdel Moneim, Yasser A. Elossely, Radwa I. Awad, Khaled Abou-Hadeed. Chemistry of Heterocyclic Compounds, 2010, Vol. 46, Issue 4, pp.426-437. Cited 3 times. doi: 10.1007/s10593-010-0527-9.

GOST Style Citations


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: Ž. org. farm. hìm.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)