Azolo[1,4]diazepines: the methods of synthesis and structural modification

S. V. Kemskii, A. V. Bolbut, Yu. V. Dmytriv, M. V. Vovk

Abstract


The literature relating to the methods of synthesis and chemical transformations of azolo[1,4]diazepines (pyrazolo-, imidazo-, triazolo-, isoxazolo-, oxazolo-, isothiazolo- and thiazolodiazepines) currently known have been generalized and systematized. Their role as important substances for the design of compounds with a great pharmacological potential has been noted. The methods of synthesis of pyrazolo[3,4-e][1,4]diazepines, pyrazolo[4,3-e][1,4]diazepines and tri- and tetracyclic pyrazolo[1,4]diazepines based on formation of the diazepine ring in most cases due to transformations of multifunctional pyrazole derivatives have been described in detail. A significant emphasis is focused on the structural functionalization of pyrazolo[1,4]diazepines; this functionalization is a powerful tool to design attractive synthetic and biological derivatives. On the examples of 7-hydroxypyrazole[3,4-e][1,4]diazepines the effect of the reaction conditions, electronic and steric parameters, which control the processes of functionalization of the diazepine nucleus with SH-, NH- and C- nucleophilic reagents, is described. The synthetic potential of 7-arylpyrazole[4,3-e][1,4]diazepin-4-ones as key structures for their direct functionalization in position 4 with chloro-, methylthio-, amino- and hydrazino groups is shown. The methods of preparation and some chemical transformations of imidazo[1,4]diazepines, in particular imidazo[4,5-e][1,4]diazepin-8-ones and 5,8-diones, which in recent years attract great attention of researchers, have been analyzed.


Keywords


pyrazolodiazepines; imidazodiazepines; synthesis; cyclocondensation; structural modification

References


Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABA(A) receptor alpha1 subtype / R. M. Mc Kernan, T. W. Rosahl, D. S. Reynolds et al. // Nature Neuroscience. – 2000. – Vol. 3, Issue 6. – Р. 587–592.

Sternbach, L. H. The benzodiazepine story / L. H. Sternbach // J. Med. Chem. – 1979. – Vol. 22, Issue 1. – Р. 1–7. doi : 10.1021/jm00187a001.

Clinical features and management of intoxication due to hallucinogenic drugs / J. B. Leikin, A. J. Krantz, M. Zell–Kanter et al. // Med. Toxicol. Adverse Drug Exp. – 1989. – Vol. 4, Issue 5. – Р. 324–350. doi : 10.1007/bf03259916.

Miller, N. S. Benzodiazepines: reconsidered / N. S. Miller, M. S. Gold // Adv. Alcohol Subst Abuse. – 1990. – Vol. 8, Issue 3–4. – Р. 67–84. doi : 10.1300/j251v08n03_06.

Shorter, E. Benzodiazepines / E. Shorter // A Historical Dictionary of Psychiatry. –New York:OxfordUniversityPress, 2005. – P. 41–42.

King, M. B. Is there still a role for benzodiazepines in general practice? / M. B. King // Br. J. Gen. Pract. – 1992. – Vol. 42, Issue 358. – P. 202–205.

Lemmer, B. The sleep–wake cycle and sleeping pills / B. Lemmer // Physiol. Behav. – 1989. – Vol. 90, Issue 2–3. – Р. 285–293.

DeWald, H. A. Pyrazolodiazepines. 2. 4–Aryl–1,3–dialkyl–6,8–dihydropyrazolo[3,4–e][1,4]diazepin–7(1H)–ones as antianxiety and anticonvulsant agents. / H. A. DeWald, S. Lobbestae, D.E. Butler// J. Med. Chem. – 1977. – Vol. 20, Issue 12. – Р. 1562–1569. doi : 10.1021/jm00222a005

Field anesthesia of free–living mountain gorillas (Gorilla gorilla beringei) from the Virunga Volcano region, Central Africa / J. M. Sleeman, K. Cameron, A. B. Mudakikwa et al. // J. Zoo Wildlife Med. – 2000. – Vol. 31, Issue 1. – Р. 9–14. doi : 10.1638/1042–7260(2000)031[0009:faoflm]2.0.co;2.

Anesthesia of polar bears (Ursus maritimus) with zolazepam–tiletamine, medetomidine–ketamine, and medetomidine–zolazepam–tiletamine / M. R. Cattet, N. A. Caulkett, S. C. Polischuk, M. A. Ramsay // J. Zoo Wildlife Med. – 1999. – Vol. 30, Issue 3. – Р. 354–360.

Fitzgerald, J. E. Carcinogenicity studies in rodents and ripazepam, a minor tranquilizing agent / J. E. Fitzgerald, F. A. dela Iglesia, E. J. McGuire // Fundamental and Applied Toxicol. – 1984. – Vol. 4, Issue 2. – Р. 178–190. doi : 10.1016/0272–0590(84)90118–0.

Synthesis and interaction of 5–(substituted–phenyl)–3–methyl–6,7–dihydropyrazolo[4,3–e][1,4]diazepin–8(7H)–ones with benzodiazepine receptors in rat cerebral cortex / P. G. Baraldi, S. Manfredini, V. Periotto et al. // J. Med. Chem. – 1985. – Vol. 28, Issue 5. – Р. 683–685. doi : 10.1021/jm50001a025.

Renger, B. DirekteN–Arylierung von Amiden: Eine Verbesserung der Goldberg–Reaktion / B. Renger // Synthesis. – 1985. – Issue 09. – Р. 856–860. doi : 10.1055/s–1985–31364.

Katz, R. J. Effects of zometapine, a structurally novel antidepressant, in an animal model of depression / R. J. Katz // Pharmacol. Biochem. Behav. – 1984. – Vol. 21, Issue 4. – Р. 487–490. doi : 10.1016/s0091–3057(84)80027–1.

Hock, F. J. Functional activity in the brain of socially deprivated rats produced by an active avoidance test after razobazam (Hoe 175) treatment: a 2–deoxyglucose study. / F. J. Hock, H. Scheich / Behavioural and Neural Biology. – 1986. – Vol. 46, Issue 3. – Р. 398–409. doi : 10.1016/s0163–1047(86)90401–2.

Pat. WO2007040435 (A1) (2007). Novel 5,6–dihydropyrazolo[3,4–e] [l,4]diazepin–4(H)–one derivatives for the treatment of asthma and chronic obstructive pulmonary disease / K. Henriksson, A. Lisius, P. Sjo, P. Storm; Astra Zeneca Ab. – Declared 2.10.2006; published 12.04.2007.

Pat. US 20070197608 A1. Piperazine as oxitocin agonists / P. Hudson, G. P. W. Pitt, A. R. Batt, M. B. Roe. – Declared 02.09.2004; published 23.08. 2007.

Ujjinamatada, R. K. Design of inhibitors against guanase: Synthesis and biochemical evaluation of analogues of azepinomycin / R. K. Ujjinamatada, A. Bhan, R. S. Hosmane // Bioorg. Med. Chem. Lett. – 2006. – Vol. 16, Issue 21. – Р. 5551–5554. doi : 10.1016/j.bmcl.2006.08.033.

A novel transition state analog inhibitor of guanase based on azepinomycin ring structure: Synthesis and biochemical assessment of enzyme inhibition. / S. Chakraborty, N. H. Shah, J. C. Fishbein, R. S. Hosmane // Bioorg. Med. Chem. Lett. – 2011. – Vol. 21, Issue 2. – Р. 756–759. doi : 10.1016/j.bmcl.2010.11.109.

Analogs of iso–azepinomycin as potential transition–state analog inhibitors of guanase: Synthesis, biochemical screening, and structure–activity correlations of various selectively substituted imidazo[4,5–e][1,4]diazepines / S. Tantravedi,S. Chakraborty, N. H. Shah et al. // Bioorg. Med. Chem. – 2013. – Vol. 21, Issue 17. – Р. 4893–4903. doi : 10.1016/j.bmc.2013.06.069.

Pat. US 3558605 (1971). Pyrazolo[3,4–e][1,4]diazepin–7–(1Н)–one compounds / D. E. Butler, H. A. DeWald; ParkeDavis. – Declared 14.05.1969; published 26.01.1971.

Pat. US 3660425 (1972). Certain 5–amino–4–aroylpyrazoles / D. E. Butler, H. A. DeWald; ParkeDavis. – Declared 30.03.1970; published 2.05.1972.

DeWald, H. A. Pyrazolodiazepines. III. 4–Aryl–1,6,7,8–tetrahydro–1,3–dialkylpyrazolo[3,4–e][1,4]diazepines as antidepressant agents / H. A. DeWald, S. Lobbestael // J. Med. Chem. – 1981. – Vol. 24, Issue 8. – Р. 982–987. doi : 10.1021/jm00140a013.

DeWald, H. A. The synthesis of 4–(o–fluorophenyl)–6,8–dihydro–3,8–dimethyl–pyrazolo[3,4–e][1,4]diazepin–7(1H)one, a metabolite of zolazepam / H. A. DeWald // J. Het. Chem. – 1974. – Vol. 11, Issue 6. – Р. 1061–1062. doi : 10.1002/jhet.5570110637.

Конденсовані піримідинові системи. 9. Синтез похідних піразоло[3,4–e][1,4]діазепіну на основі продуктів гідролітичного розщеплення 5–заміщених 1,2–дигідро–4Н–піразоло[3,4–d]піримідин–4–онів/ А. В. Больбут, А. А. Ліщинський, І. М. Мельничук, М. В. Вовк // Журн. орг. та фарм. хімії. – 2010. – Vol. 8, № 1. – Р. 54–57.

Bol’but, A. V. Synthesis of New Di–, Tetra–, and Hexahydropyrazolo[3,4–e][1,4]diazepsne Derivatives / A. V. Bol’but, S. V. Kemskii, M. V. Vovk // Rus. J. Org. Chem. – 2012. – Vol. 48, Issue 7. – Р. 991–1002. doi : 10.1134/s1070428012070172.

Конденсовані піримідинові системи. 8. Гідролітичне розщеплення 5–алкіл–1,5–дигідро–4Н–піразоло[3,4–d]піримідин–4–онів як зручний метод синтезу N–алкіламідів 5–аміно–4–піразолкарбонових кислот / А. В. Больбут, А. А. Ліщинський, І. М. Мельничук, М. В. Вовк // Журн. орг. фарм. хімії. – 2007. – Vol. 5, № 3. – Р. 64–66.

Больбут, А. В. 5–Амино–N–(2,2–диалкоксиэтил)пиразоло–4–карбоксамиды в синтезе 7–сульфанил–5,6,7,8–тетра–1Н–пиразоло[3,4–е][1,4]диазепин–4–онов / А. В. Больбут, С. В. Кемский, М. В. Вовк // Журн. орган. химии. – 2014. – Т. 50, № 5. – С. 697–702.

Кемський, С. В. Синтез 7–карбоксиалкілтіо–5,6,7,8–тетрагідро–1Н–піразоло[3,4–e][1,4]діазепін–4–онів / С. В. Кемський, А. В. Больбут, М. В. Вовк // Журн. орган. фарм. хімії. – 2014. – Т. 12, № 2. – С. 27–31.

Синтез 4–оксо–1,4,5,6,7,8–гексагидро–1Н–пиразоло[3,4–е][1,4]диазепин–7–карбонитрилов, –карбоксамидов и –карбоновых кислот / С. В. Кемский, А. В. Больбут, В. В. Пироженко, М. В. Вовк // Журн. орган. химии. – 2014. – Т. 50, № 11. – С. 1652–1656.

7–N–Ацилфункціоналізовані похідні піразоло[3,4–e][1,4]діазепін–4–онів / С. В. Кемський, А. В. Больбут, Ю. С. Бойко та ін. // Укр. хим. журн. – 2015. – Т. 81, № 2. – С. 124–128.

Кемский, С. В. Синтез 4–гидразино–1,6–дигидропиразоло[3,4–е][1,4]диазепинов и их гидролитическая рециклизация в 5–амино–4–(1,2,4–триазин–3–ил)–1Н–пиразолы / С. В. Кемский, А. В. Больбут, М. В. Вовк // Журн. орган. химии. – 2015. – Т. 51, № 10. – С. 1510–1516.

4–Амінозаміщені 1,6–дигідропіразоло[3,4–е][1,4]діазепіни : синтез, ЯМР–спектральне та квантово–хімічне дослідження / С. В. Кемський, Ю. С. Бойко, А. В. Больбут та ін. // Журн. орган. фарм. хімії. – 2016. – Т. 1, № 3. – С. 43–51.

Синтез новой гетероциклической системы – пиразоло[3’,4’:5,6][1,4]диазепино[7,1–b]хиназолина / С. В. Кемский, Е. В. Гринишин, А. В. Больбут, М. В. Вовк // Журн. орган. химии.– 2016. – Т. 52, № 4. – С. 619–620.

Pyrazolodiazepines. 1,3–(and 2,3)–dialkyl–4,6–dshydropyrazolo[3,4–e][1,4]diazepin–7(1H)ones as Antianxiety and Anticonvulsant Agents / H. A. DeWald, I. C. Nordin, Y. J. L’Italien et al. // J. Med. Chem. – 1973. – Vol. 16, Issue 12. – Р. 1346–1354. doi : 10.1021/jm00270a007.

Synthesis and Reactivity of Fyro[2,3–e]pyrrolo[1.2–a][1.4]diazepin–9–one / О. Migliara, А. Flugy, V. Novara, M. Gagliano // Farmaco. – 1992. – Vol. 47. – P. 111–120.

Discovery of potent, selective, bioavailable phosphodiesterase 2 (PDE2) inhibitors active in an osteoarthritis pain model. Part I : Transformation of selective pyrazolodiazepinone phosphodiesterase 4 (PDE4) inhibitors into selective PDE2 inhibitors / M. S. Plummer, J. Cornicelli, H. Roark et al. // Bioorg. Med. Chem. Lett. – 2013. – Vol. 23, Issue 11. – P. 3438–3442. doi : 10.1016/j.bmcl.2013.03.072.

Discovery of potent selective bioavailable phosphodiesterase 2 (PDE2) inhibitors active in an osteoarthritis pain model. Part II: Optimization studies and demonstration of in vivo efficacy / M. S. Plummer, J. Cornicelli, H. Roark et al. // Bioorg. Med. Chem. Lett. – 2013. – Vol. 23, Issue 11. – P. 3443–3447. doi : 10.1016/j.bmcl.2013.03.082.

Pat. WO 2012168817 (A1) (2012). Pyrazolo[3,4–d]pyrimidine compounds and their use as pde2 inhibitors and/or Cyp3a4 inhibitors / C. J. Helal, T. A. Chappie, J. M. Humphrey; Pfizer Inc. – Declared 7.06.2011; published 24.05.2012.

Synthesis and structure–activity relationships of pyrazolodiazepine derivatives as human P2X7 receptor antagonists / J.–Y. Lee, W. J. Cho, H. Ko, Y.–C. Kim // Bioorg. Med. Chem. Lett. – 2009. – Vol. 19, Issue 21. – P. 6053–6058. doi : 10.1016/j.bmcl.2009.09.053.

Lee, J.–Y. Combinatorial Library Synthesis and Biological Evaluation of Pyrazolo[4,3–e][1,4]diazepine as a Potential Privileged Structure / J.–Y. Lee, Y.–C. Kim // Chem. Med. Chem. – 2009. – Vol. 4, Issue 5. – P. 733–737. doi : 10.1002/cmdc.200800453.

Discovery and structure–activity relationships of pyrazolodiazepine derivatives as the first small molecule agonists of the Drosophila sex peptide receptor / J.–H. Kim, P.–H. Jeong, J.–Y. Lee et al. // Bioorg. Med. Chem. Lett. – 2015. – Vol. 23, Issue 8. – P. 1808–1812. doi : 10.1016/j.bmc.2015.02.035.

Mahdi, O., Synthese de cyclodipeptides de β–amino asides pyrazoliques / O. Mahdi, J.–P. Lavergne, P. Viallefont et al. // Bull. Soc. Chim. Belg. – 1995 – Vol. 104, Issue 1. – P. 31–38.

Synthese de cyclodipeptides a sept chainons a partir de β–amino asides pyrazoliques / O. Mahdi, J.–P. Lavergne, P. Viallefont et al. // Bull. Soc. Chim. Fr. – 1995. – Vol. 132, Issue 7. – P. 675–680.

Synthesis of novel pyrazolopyrrolopyrazines, potential analogs of sildenafil / M. Kopp, J.–C. Lancelot, P. Dallemagne,S. Rault// J. Heterocycl. Chem. – 2001. – Vol. 38, Issue 5. – P. 1045–1050. doi : 10.1002/jhet.5570380506.

Synthesis and Evaluation of Polycyclic Pyrazolo[3,4–d]pyrimidines as PDE1 and PDE5 cGMP Phosphodiesterase Inhibitors / Y. Xia,S. Chackalamannil, M. Czarniecki et al. // J. Med. Chem. – 1997. – Vol. 40, Issue 26. – P. 4372–4377. doi : 10.1021/jm970495b.

Huppatz, J. L. Systemic fungicides. The synthesis of certain pyrazole analogues of carboxin / J. L. Huppatz // Aust. J. Chem. – 1983. – Vol. 36, Issue 1. – P. 135–147. doi : 10.1071/ch9830135.

The synthesis of pyrazolo[4,3–e][1,4]diazepines / V. Sprio,S. Caronna, O. Migliara et al. // Farmaco – 1989 – Vol. 44, Issue 9 – P. 809–818.

Raeppel, S. L. Design and synthesis of constrained analogs of LCRF–0004 as potent RON tyrosine kinase inhibitors / S. L. Raeppel, E. Therrien, F. Raeppel // Bioorg. Med. Chem. Lett. – 2015. – Vol. 25, Issue 17. – P. 3706–3710. doi : 10.1016/j.bmcl.2015.06.034.

Identification of a novel series of potent RON receptor tyrosine kinase inhibitors / S. L. Raeppel, F. Gaudette, M. Mannion et al. // Bioorg. Med. Chem. Lett. – 2010. – Vol. 20, Issue 9. – P. 2745–2749. doi : 10.1016/j.bmcl.2010.03.073.

Рat. WO 2007/107005 (A1) (2007). Inhibitors of protein tyrosine kinase activity / O. M. Saavedra, S. W. Claridge, L. Zhan et al; Methylgene Inc. – Declared 22.03.2007; published 27.09.2007.

Reddy, N. R. A new entry to pyrazolo[4,3–e][1,4]diazepines. Facile synthesis of pyrazolo[4,3–e][1,4]diazepin–5,8–diones, 5,6,8–triones and pyrazolo[4,3–e]pyrrolo–[1,2–a][1,4]diazepin–5,10–diones / N. R. Reddy, G. M. Reddy, P. P. Reddy // J. Heterocycl. Chem. – 2005. – Vol. 42, Issue 4. – P. 675–678. doi : 10.1002/jhet.5570420429.

A Practical Approach of Continuous Processing to High Energetic Nitration Reactions in Microreactors / G. Panke, T. Schwalbe, W. Stirner et al. // Synthesis. – 2003. – Issue 18. – P. 2827–2830. doi : 10.1055/s–2003–42491.

Synthesis of pyrazolo[3,4–b][1,4]diazepines and pyrazolo[3,4–b]pyrazines / A. Colombo, J. Frigola, J. Parés, B. Andaluz // J. Heterocyclic Chem. – 1989. – Vol. 26, Issue 9. – P. 949–655.

Взаимодействие 1,5,6,8–тетрагидро[3,4–е][1,4]диазепин–4,7–дионов с некоторими електрофильными реагентами / С. В. Кемский, А. В. Больбут, С. В. Шишкина и др. // Журн. орган. химии. – 2016. – Т. 52, № 8. – С. 1170–1175.

Research on nitrogen heterocyclic compounds. XV. Synthesis of 1H,4H–pyrazolo[4,3–f]pyrrolo[1,2–a][1,4]diazepine derivatives / S. Massa, G. Stefancich, M. Artico, F. Corelli // J. Heterocycl. Chem. – 1984. – Vol. 21, Issue 6. – P. 1877–1880. doi : 10.1002/jhet.5570210658.

New Four–Component Ugi–Type Reaction. Synthesis of Heterocyclic Structures Containing a Pyrrolo[1,2–a][1,4]diazepine Fragment / A. P. Ilyn, A. S. Trifilenkov, J. A. Kuzovkova et al. // J. Org. Chem. – 2005. – Vol. 70, Issue 4. – P. 1478–1481. doi : 10.1021/jo048204b.

Furan ring opening–pyrrole ring closure: a new synthetic route to aryl(heteroaryl)annulated pyrrolo[1,2–a][1,4]diazepines / A. V. Butin, T. A. Nevolina, V. A. Shcherbinin et al. // Org. Biomol. Chem. – 2010. – Vol. 8, Issue 14. – P. 3316. doi : 10.1039/c002994g.

Tumkevicius, S. Synthesis of 3,4–diamino–1H–pyrazolo[3,4–d]pyrimidines /S. Tumkyavichyus// Chem. Heterocycl. Comp. – 1996. – Vol. 32, Issue 6. – P. 716–720. doi : 10.1007/bf01164873.

Masevicius, V. Synthesis of a novel heterocyclic system–pyrazolo[5,4,3–de]pyrimido[4,5–e][1,4]diazepine / V. Masevicius, R. Juskenas, S. Tumkevicius // Chem. Heterocycl. Comp. – 2007. – Vol. 43, Issue 12. – P. 1593–1594. doi : 10.1007/s10593–007–0247–y.

Masevicius, V. Synthesis of novel pyrazolo[3,4–d]pyrimidines perifused with 1,4–diazepine, 1,4–thiazepine, and 1,2,4–triazepine rings / V. Masevicius, R. Juskenas, S. Tumkevicius // J. Heterocycl. Chem. – 2011. – Vol. 49, Issue 2. – P. 315–320. doi : 10.1002/jhet.724.

Synthesis of pyrazole analogues of isoaptazepine / S. Massa, M. Artico, A. Mai, A. Mancuso // J. Heterocycl. Chem. – 1992. – Vol. 29, Issue 7. – P. 1851–1854. doi : 10.1002/jhet.5570290729.

Coggins, A. J. One step protecting group–free synthesis of azepinomycin in water. / A. J. Coggins, D. A. Tocher, M. W. Powner // Org. Biomol. Chem. – 2015. – Vol. 13, Issue 11. – P. 3378–3381. doi : 10.1039/c5ob00210a.

Investigations into specificity of azepinomycin for inhibition of guanase: Discrimination between the natural heterocyclic inhibitor and its synthetic nucleoside analogues / S. Chakraborty, N. H. Shah, J. C. Fishbein, R. S. Hosmane // Bioorg. Med. Chem. Lett. – 2012. – Vol. 22, Issue 23. – P. 7214–7218. doi : 10.1016/j.bmcl.2012.09.053.

Fujii, T. Alternative syntheses of azepinomycin / T. Fujii, T. Saito, T. Fujisawa // Heterocycles. – 1988. – Vol. 27, Issue 5. – P. 1163. doi : 10.3987/com–88–4519.

Fujii, T. Purines. LXIII. Syntheses of Azepinomycin, an Antitumor Antibiotic from Streptomyces Species, and Its 3–β–D–Ribofuranodise and Their 8–Imino Analogues / T. Fujii, T. Saito, T. Fujisawa // Chem. Pharm. Bull. – 1994. – Vol. 42, Issue 6. – P. 1231–1237. doi : 10.1248/cpb.42.1231.

Fujii, T. Purines. VIII. An Improved procedure for the Synthesis of 9–Alkyladenines / T. Fujii // Chem. Pharm. Bull. – 1972. – Vol. 20, Issue 6. – P. 1334–1337. doi : 10.1248/cpb.20.1334.

Fujii, T. Purines. II An Alternative Synthesis of 1–Alkoxy–9–alkyladenine Salts / T. Fujii, C. C. Wu, T. Itaya // Chem. Pharm. Bull. – 1971. – Vol. 19, Issue 7. – P. 1368–1373. doi : 10.1248/cpb.19.1368.

Bridson, P. K. Synthesis of Deoxyazepinomycin / P. K. Bridson // Heterocycles. – 1994. – Vol. 38, Issue 5. – P. 1007. doi : 10.3987/com–93–6637.

Ivanov, E. I. Novel synthesis of 4,5,7,8–tetrahydro–6H–imidazo[4,5–e]–[1,4]diazepine–5,8–dione. A cyclic xanthine homolog / E. I. Ivanov, G. D. Kalayanov // Chem. Heterocycl. Comp. – 1992. – Vol. 28, Issue 4. – P. 428–429. doi : 10.1007/bf00767004.

Богатский, А. В. Синтез 1,4,7–триметил–4,5,7,8–тетрагидроимидазо[4,5–e][1,4]диазепин–5,8(6Н)–дионов – циклического гомолога кофеина / А. В. Богатский, Э. И. Иванов // Укр. хим. журн. – 1980. – Т. 46, № 10. – P. 1074–1075.

Ivanov, I. E. Novel synthesis and reactions of 1,4,7–trimethyl–4,5,7,8–tetrahydro–6H–imidazo[4,5–e][1,4]diazepine–5,8–dione–a cyclic caffeine analog / E. I. Ivanov // Chem. Heterocycl. Comp. – 1998. – Vol. 34, Issue 6. – P. 719–722. doi : 10.1007/bf02252283.

Иванов, Э. И. Синтез и свойства производных 1,4,7–триметил–4,5,7,8–тетрагидроимидазоло[4,5–e][1,4]диазепин–5,8–диона / Э. И. Иванов, А. В. Богатский, К. С. Захаров // Докл. Акад. Наук. – 1980. – Т. 255, № 3. – P. 591–595.

Bridson, P. K Cyclic homologs of xanthines. I. Imidazo[4,5–e][1,4]diazepine–5,8–diones / P. K. Bridson, T. P. Weirich / J. Heterocyclic Chem. – 1988. – Vol. 25, Issue 4. – P. 1179–1182. doi : 10.1002/jhet.5570250426.

Daly, J. W. Imidazodiazepinediones: A New Class of Adenosine Receptor Antagonists / J. W. Daly,I.Hide, P. K. Bridson // J. Med. Chem. – 1990. – Vol. 33, Issue 10. – P. 2818–2821. doi : 10.1021/jm00172a022.

Aoyagi, M. Nucleosides and Nucleotides. 130. The Synthesis of Imidazo[4, 5–e][1, 4]Diazepine Nucleosides From N¹–Substituted Inosines / M. Aoyagi, N. Minakawa, A. Matsuda // Nucleosides, Nucleotides and Nucleic Acids. – 1994. – Vol. 13, Issue 6–7. – P. 1535–1549. doi : 10.1080/15257779408012169.

Нosmane, R. S. Models for “Fat” Nucleosides and Nucleotides: Syntheses of “Fat” Xanthine (fX), “Fat” Guanine (fG), and “Fat” Hypoxanthene (fHx) Analogues of the imidazo[4,5–e][1,4]diazepine system / R. S.Hosmane, A. Bhan, M. E. Rauser // Heterocycles. – 1986. – Vol. 24, Issue 10. – P. 2743. doi : 10.3987/r–1986–10–2743.

Нosmane, R. S. The synthesis of ring–expanded analogues of xanthine containing the imidazo[4,5–e][1,4]diazepine ring system / R. S.Hosmane, A. Bhan // J. Heterocycl. Chem. – 1990. – Vol. 27, Issue 7. – P. 2189–2196. doi : 10.1002/jhet.5570270759.

Нosmane, R. S. The Synthesis and Biophysical Investigations of Novel Ring–Expanded Nucleosides, Nucleotides, and Homopolymers Containing the 5:7–Fused Heterocyclic Ring System Imidazo[4,5–e][l,4]diazepine / R. S. Нosmane, A. Bhan, R. L. Karpel // J. Org. Chem. – 1990. – Vol. 55, Issue 23. – P. 5882–5890. doi : 10.1021/jo00310a021.

Ivanov, E. I. Methylation of the cyclic homolog of xanthine / E. I. Ivanov // Chem Heterocycl. Compd. – 1998. – Vol. 34, Issue 5. – P. 620–622. doi : 10.1007/bf02290949.

Синтез и некоторые структурные характеристики гомологов кофеина и изо–кофеина / Э. И. Иванов, Ю. Е. Шапиро, Г. Д. Калаянов и др. // Химия гетероцикл. соедин. – 1992. – № 3. – P. 385–388.

Иванов Э. И. Синтез галогензамещенных имидазоло[4,5–e][1,4]диазепин–5,8–дионов циклических гомологов метилированных ксантинов / Э. И. Иванов, Г. Д. Калаянов, И. М. Ярощенко // Химия гетероцикл. соедин. – 1992. – № 7. – P. 955–958.

Синтез и молекулярная структура 1,4–диметил–4,5,7,8–тетрагидро–6Н–имидазоло[4,5–e][1,4]диазепин–5,8–дитиона / Э. И. Иванов, Г. Д. Калаянов, Л. В. Грищук и др. // Журн. сруктурной химии. – 1993. – Т. 3, № 3. – P. 86–90.

Rajappan, V. Synthesis and guanase inhibition studies of a novel ring–expanded purine analogue containing a 5:7–fused, planar, aromatic heterocyclic ring system / V. Rajappan, R. S. Hosmane // Bioorg. Med. Chem. Lett. – 1998. – Vol. 8, Issue 24. – P. 3649–3652. doi : 10.1016/s0960–894x(98)00672–6.

Rajappan, V. P. Analogues of Azepinomycin as Inhibitors of Guanase / V.P. Rajappan, R. S. Hosmane // Nucleosides, Nucleotides and Nucleic Acids. – 1998. – Vol. 17, Issue 7. – P. 1141–1151. doi : 10.1080/07328319808004227.

Rajappan, V. P. Pentafluorophenol: ASuperiorReagent for Condensations in Heterocyclic Chemistry / V. P. Rajappan, R. S. Hosmane // Synthetic Communications. – 1998. – Vol. 28, Issue 4. – P. 753–764. doi : 10.1080/00397919808005949.

Synthesis of Imidazo[4,5–e][1,4]diazepine and Imidazo[4,5–e][1,4]–oxazepine Derivatives Using Caffeidine, a Hydrolysis Product of Caffeine / T. Ohsaki, T. Kuriki, T. Ueda et al. // Chem. Pharm. Bull. – 1986. – Vol. 34, Issue 9. – P. 3573–3587. doi : 10.1248/cpb.34.3573.

Bhan, A. Reactions of ring–expanded xanthines containing the imidazo[4,5–e][1,4]diazepine ring system / A. Bhan, R. S. Hosmane // J. of Heterocyclic Chem. – 1993. – Vol. 30, Issue 5. – P. 1453–1462. doi : 10.1002/jhet.5570300544.

Bhan, A. Novel inhibitors of guanase / A. Bhan, R. S. Hosmane // Tetrahedron Lett. – 1994. – Vol. 37, Issue 37. – P. 6831–6834. doi : 10.1016/0040–4039(94)85016–x.

Bhan, A. Analogues of Azepinomycin as Inhibitors of Guanase / A. Bhan, R. S. Hosmane // Nucleosides, Nucleotides and Nucleic Acids. – 1995. – Vol. 14, Issue 3–5. – P. 455–458. doi : 10.1080/15257779508012405.

A Unique Diaminomalonate Derivatve useful for Building Novel Heterocycles / A. Bhan, R. S. Hosmane, H. Zhang, N. S. Hosmane // Synthetic Communications. – 1995. – Vol. 25, Issue 18. – P. 2723–2737. doi : 10.1080/00397919508011820.

Иванов, Э. И. Cинтез 1,2,3–триазоло[3,4–e][1,4]диазепина / Э. И. Иванов, Г. Д. Калаянов, И. М. Ярошщенко // Журн. орган. химии. – 1989. – Vol. 25, № 9. – Р. 1975–1979.

Dannhardt, G. Hypertensiv wirksame 5–(β–Aminoethyl)aminoisoxazole : Synthese und Prüfung von Isoxazolopyrazinen und Isoxazolodiazepinen / G. Dannhardt, P. Dominiak, S. Laufer // Arch. Pharm. (Weinheim Ger.). – 1991. – Vol. 324, Issue 3. – P. 141–148. doi : 10.1002/ardp.19913240303.

Synthesis of Isothiazolo[4,3–e][1,4]diazepines / R. Nesi, D. Giomi, L. Quartara, S. Papaleo // Gazz. Chim. Ital. – 1990. – Vol. 120. – P. 725–730.

–Phenyl–5–carbomethoxymethylene–5H–isoxazolo[4,5–e][1,4] diazepine–6,8(4H,7H)dione : A New Seven Membered Binuclear System / R. Nesi, D. Giomi, L. Quartara et al. // Heterocyles. – 1987. – Vol. 26, Issue 9. – Р. 2419. doi : 10.3987/r–1987–09–2419.

Synthesis of a Multifunctional Oxazolo[5,4–e][1,4]diazepine Skeleton / G. Kolavi, I. Im, Y. C. Kim, H. Ko // Bull. Korean Chem. Soc. – 2011. – Vol. 32, Issue 3. – Р. 1041–1044. doi : 10.5012/bkcs.2011.32.3.1041.

Synthetic studies in the 1,2–dithiole series. IV. The methylation of 4–Benzamido–1,2–dithiole–3–thione / R. F. C. Brown,I.D. Rae, J. S. Shannon et al. // Australian J. Chem. – 1966. – Vol. 19, Issue 3. – Р. 503. doi : 10.1071/ch9660503.

Synthesis of Isoselenazolo– or Isothiazolo[4,3–e][1,4]diazepines / T. Ueda, Y. Kato, J. Sakakibara, M. Murata // Chem. Pharm. Bull. – 1988. – Vol. 36, Issue 8. – Р. 2902–2908. doi : 10.1248/cpb.36.2902.

Ried, W. Neue Ringsysteme aus heterocyclischen 5–substituierten Tetrazolderivaten / W. Ried, S. Becker // Liebigs Ann. Chem. – 1989. – Vol. 1989, Issue 1. – Р. 83–85. doi : 10.1002/jlac.198919890116.

Shafiee, A. Syntheses of 7–phenyl–5H–thiazolo[5,4–e]pyrrolo[1,2–a][1,4]diazepin–10(9H)–one, 7–phenyl–5H–thiazolo[5,4–e][1,2,3,4]tetrazolo [5,1–c]pyrrolo[1,2–a][1,4]diazepine and 7–phenyl–5H–thiazolo[5,4–e][1,3,4] triazolo[5,1–c]pyrrolo[1,2–a][1,4]diazepines / A. Shafiee, M. Shekarchi // J. Het. Chem. – 2002. – Vol. 39, Issue 1. – Р. 213–216. doi : 10.1002/jhet.5570390130.


GOST Style Citations


1.   Mc Kernan, R. M., Rosahl, T. W., Reynolds, D. S., Sur, C. et al. (2000). Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABA(A) receptor alpha1 subtype. Nature Neuroscience, 3 (6), 587–592.

2.   Sternbach, L. H. (1979). The benzodiazepine story. Journal of Medicinal Chemistry, 22 (1), 1–7. doi: 10.1021/jm00187a001.

3.   Leikin, J. B., Krantz, A. J., Zell–Kanter, M., Barkin, R. L., Hryhorczuk, D. O. (1989). Clinical Features and Management of Intoxication Due to Hallucinogenic Drugs. Medical Toxicology and Adverse Drug Experience, 4 (5), 324–350. doi: 10.1007/bf03259916.

4.   Miller, N. S., Gold, M. S. (1990). Benzodiazepines: Advances in Alcohol & Substance Abuse, 8 (3–4), 67–84. doi: 10.1300/j251v08n03_06.

5.   Shorter, E. (2005). Benzodiazepines. In A Historical Dictionary of Psychiatry (pp. 41–42).New York:OxfordUniversity Press.

6.   King, M. B. (1992). Is there still a role for benzodiazepines in general practice? British Journal of General Practice, 42, 202–205.

7.   Lemmer, B. (1989). The sleep–wake cycle and sleeping pills. Physiology & Behavior, 90, 285–293.

8.   DeWald, H. A., Lobbestael, S., Butler, D. E. (1977). Pyrazolodiazepines. 2. 4–Aryl–1,3–dialkyl–6,8–dihydropyrazolo[3,4–e][1,4]diazepin–7(1H)–ones as antianxiety and anticonvulsant agents. Journal of Medicinal Chemistry, 20 (12), 1562–1569. doi: 10.1021/jm00222a005.

9.   Sleeman, J. M., Cameron, K., Mudakikva, A. B., Nizeyi, J. B. et al. (2000). Field anesthesia of free–living mountain gorillas (Gorilla gorilla beringei) from the Virunga Volcano region, Central Africa. Journal of Zoo and Wildlife Medicine, 31(1), 9–14. doi: 10.1638/1042–7260(2000)031[0009:faoflm]2.0.co;2.

10. Cattet, M. R., Caulkett, N. A., Polischuk, S. C., Ramsay, M. A. Cattet, M. R. (1999). Anesthesia of polar bears (Ursus maritimus) with zolazepam–tiletamine, medetomidine–ketamine, and medetomidine–zolazepam–tiletamine. Journal of Zoo and Wildlife Medicine, 30 (3), 354–360.

11. Fitzgerald, J. (1984). Carcinogenicity studies in rodents with ripazepam, a minor tranquilizing agent. Fundamental and Applied Toxicology, 4 (2), 178–190. doi: 10.1016/0272–0590(84)90118–0.

12. Baraldi, P. G., Manfredini, S., Periotto, V., Simoni, D., Guarneri, M., Borea, P. A. (1985). Synthesis and Interaction of 5–(Substituted–phenyl)–3–methy1–6,7–dihydropyrazolo[4,3–e][1,4]diazepin–8(7H)–ones with Benzodiazepine Receptors in Rat Cerebral Cortex. Journal of Medicinal Chemistry, 28 (5), 683–685. doi:10.1021/jm50001a025.

13. Renger, B. (1985). Direkte N –Arylierung von Amiden: Eine Verbesserung der Goldberg–Reaktion. Synthesis, 1985 (09), 856–860. doi: 10.1055/s–1985–31364.

14. Katz, R. J. (1984). Effects of zometapine, A structurally novel antidepressant, in an animal model of depression. Pharmacology Biochemistry and Behavior, 21(4), 487–490. doi: 10.1016/s0091–3057(84)80027–1.

15. Hock, F. J., Scheich, H. (1986). Functional activity in the brain of socially deprivated rats produced by an active avoidance test after razobazam (Hoe 175) treatment: A 2–deoxyglucose study. Behavioral and Neural Biology, 46 (3), 398–409. doi: 10.1016/s0163–1047(86)90401–2.

16. Henriksson, K.,. Lisisu, A., Sjo, P., Storm, P. (2007). Pat. WO 2007040435 (A1)(2007). Novel 5,6–dihydropyrazolo[3,4–e] [l,4]diazepin–4(H)–one derivatives for the treatment of asthma and chronic obstructive pulmonary disease. Declared 2.10.2006; published 12.04.2007.

17. Hudson, P., Pitt, G. P. W., Batt, A. R., Roe, M. B. (2007). Pat. US 20070197608 (A1). Piperazine as oxitocin agonists. Declared 02.09.2004; published 23.08. 2007.

18. Ujjinamatada, R. K., Bhan, A., Hosmane, R. S. (2006). Design of inhibitors against guanase: Synthesis and biochemical evaluation of analogues of azepinomycin. Bioorganic & Medicinal Chemistry Letters, 16 (21), 5551–5554. doi: 10.1016/j.bmcl.2006.08.033.

19. Chakraborty, S., Shah, N. H., Fishbein, J. C., Hosmane, R. S. (2011). A novel transition state analog inhibitor of guanase based on azepinomycin ring structure: Synthesis and biochemical assessment of enzyme inhibition. Bioorganic & Medicinal Chemistry Letters, 21 (2), 756–759. doi: 10.1016/j.bmcl.2010.11.109.

20. Tantravedi, S., Chakraborty, S., Shah, N. H., Fishbein, J. C., Hosmane, R. S. (2013). Analogs of iso–azepinomycin as potential transition–state analog inhibitors of guanase: Synthesis, biochemical screening, and structure–activity correlations of various selectively substituted imidazo[4,5–e][1,4]diazepines. Bioorganic & Medicinal Chemistry, 21 (17), 4893–4903. doi: 10.1016/j.bmc.2013.06.069.

21. Butler, D. E., DeWald, H. A. (1971). Pat. US 3558605. Pyrazolo[3,4–e][1,4]diazepin–7–(1H)–one compounds. Declared 14.05.1969; published 26.01.1971.

22. Butler, D. E., DeWald, H. A. (1972). Pat. US 3660425. Certain 5–amino–4–aroylpyrazoles. Declared 30.03.1970; published 2.05.1972.

23. DeWald, H. A., Lobbestael, S., Poschel, B. P. H. (1981). Pyrazolodiazepines. III. 4–Aryl–1,6,7,8–tetrahydro–1,3–dialkylpyrazolo[3,4–e][1,4]diazepines as antidepressant agents. Journal of Medicinal Chemistry, 24 (8), 982–987. doi: 10.1021/jm00140a013.

24. Dewald, H. A. (1974). The synthesis of 4–(o–fluorophenyl)–6,8–dihydro–3,8–dimethyl–pyrazolo[3,4–e][1,4]diazepin–7(IH)one, a metabolite of zolazepam. Journal of Heterocyclic Chemistry, 11 (6), 1061–1062. doi: 10.1002/jhet.5570110637.

25. Bolbut, A. V., Lishchynskyi, A. A., Melnychuk, I.M., Vovk, M. V. (2010). Journal of Organic and Pharmaceutical Chemistry, 8 (1), 54–57.

26. Bolbut, A. V., Kemskii, S. V., Vovk, M. V. (2012). Synthesis of new Di–, Tetra–, and hexahydropyrazolo[3,4–e][1,4]diazepine derivatives. Russian Journal of Organic Chemistry, 48 (7), 991–1002. doi: 10.1134/s1070428012070172.

27. Bolbut, A. V., Lishchynskyi, A. A, Vovk, M. V. (2007). Journal of Organic and Pharmaceutical Chemistry, 5 (3), 64–66.

28. Bolbut, A. V., Kemskyi, S. V., Vovk, M. V. (2014). Russian Journal Organic Chemistry, 50, 685–690.

29. Kemskii, S. V., Bolbut, A. V., Vovk, M. V. (2014). Journal of Organic and Pharmaceutical Chemistry, 2014, 12 (2), 27–31.

30. Kemsksii, S. V., Bolbut, A. V., Vovk, M. V. (2015). Ukrainskii Khimicheskii Zhurnal, 81 (2), 124–128.

31. Kemsksii, S. V., Bolbut, A. V.,Pirozhenko, V. V., Vovk, M. V. (2014). Russian Journal Organic Chemistry, 50, 1639–1643.

32. Kemskii, S. V., Bolbut, A. V., Vovk, M. V. (2015). Russian Journal Organic Chemistry, 51, 1481–1487.

33. Kemskii, S. V., Boiko, Yu. S., Bolbut, A. V., Vovk, M. V., Suikov, S. Yu., Kirilchuk, A. A. (2016). Journal of Organic and Pharmaceutical Chemistry, 14 (3), 43–51.

34. Kemskii, S. V.,Grinishin, E. V.,  Bolbut, A. V., Vovk, M. V. (2016). Russian Journal Organic Chemistry, 521, 607–609.

35. DeWald, H. A., Nordin, I.C., L’Italien, Y. J., Parcell, R. F. (1973). Pyrazolodiazepines. 1,3–(and 2,3–) Dialkyl–4,6–dihydro–8–arylpyrazolo[4,3–e][1,4]diazepin–5–ones as antianxiety agents. Journal of Medicinal Chemistry, 16 (12), 1346–1354. doi: 10.1021/jm00270a007.

36. Migliara, O., Flugy, A., Novara, V., Gagliano, M. (1992). Synthesis and Reactivity of Fyro[2,3–e]pyrrolo[1.2–a][1.4]diazepin–9–one. Farmaco, 47, 111–120.

37. Plummer, M. S., Cornicelli, J., Roark, H., Skalitzky, D. J., Stankovic, C. J., Bove, S., Lightle, S. (2013). Discovery of potent, selective, bioavailable phosphodiesterase 2 (PDE2) inhibitors active in an osteoarthritis pain model, Part I: Transformation of selective pyrazolodiazepinone phosphodiesterase 4 (PDE4) inhibitors into selective PDE2 inhibitors. Bioorganic & Medicinal Chemistry Letters, 23 (11), 3438–3442. doi: 10.1016/j.bmcl.2013.03.072.

38. Plummer, M. S., Cornicelli, J., Roark, H., Skalitzky, D. J., Stankovic, C. J., Bove, S., Lightle, S. (2013). Discovery of potent selective bioavailable phosphodiesterase 2 (PDE2) inhibitors active in an osteoarthritis pain model. Part II: Optimization studies and demonstration of in vivo efficacy. Bioorganic & Medicinal Chemistry Letters, 23 (11), 3443–3447. doi: 10.1016/j.bmcl.2013.03.082.

39. Helal, C. J., Chappie, T. A, Humphrey, J. M. (2012). Pat. WO 2012168817 (A1). Pyrazolo[3,4–d]pyrimidine compounds and their use as pde2 inhibitors and/or Cyp3a4 inhibitors. Declared 7.06.2011; published 24.05.2012.

40. Lee, J.–Y., Yu, J., Cho, W. J., Ko, H., Kim, Y.–C. (2009). Synthesis and structure–activity relationships of pyrazolodiazepine derivatives as human P2X7 receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 19 (21), 6053–6058. doi: 10.1016/j.bmcl.2009.09.053.

41. Lee, J.–Y., Kim, Y.–C. (2009). Combinatorial Library Synthesis and Biological Evaluation of Pyrazolo[4,3–e][1,4]diazepine as a Potential Privileged Structure. ChemMedChem, 4 (5), 733–737. doi: 10.1002/cmdc.200800453.

42. Kim, J., Jeong, P., Lee, J.–Y., Lee, J., Kim, Y.–J., Kim, Y.–C. (2015). Discovery and structure–activity relationships of pyrazolodiazepine derivatives as the first small molecule agonists of the Drosophila sex peptide receptor. Bioorganic & Medicinal Chemistry, 23 (8), 1808–1816. doi: 10.1016/j.bmc.2015.02.035.

43. Mahdi, O., Lavergne, J.–P., Viallefont, P. et al. (1995). Synthese de cyclodipeptides de β–amino asides pyrazoliques. Bulletin des Sociétés Chimiques Belges, 104, 31–38.

44. Mahdi, O., Lavergne, J.–P., Viallefont, P., Akssira, M. et al. (1995). Synthese de cyclodipeptides a sept chainons a partir de β–amino asides pyrazoliques.  Bulletin de la Société Chimique de France, 132, 675–680.

45. Kopp, M., Lancelot, J.–C., Dallemagne, P., Rault, S. (2001). Synthesis of novel pyrazolopyrrolopyrazines, potential analogs of sildenafil. Journal of Heterocyclic Chemistry, 38 (5), 1045–1050. doi: 10.1002/jhet.5570380506.

46. Xia, Y., Chackalamannil, S., Czarniecki, M., Tsai, H., Vaccaro, H., Cleven, R., Zhang, H. (1997). Synthesis and Evaluation of Polycyclic Pyrazolo[3,4–d ]pyrimidines as PDE1 and PDE5 cGMP Phosphodiesterase Inhibitors. Journal of Medicinal Chemistry, 40 (26), 4372–4377. doi: 10.1021/jm970495b.

47. Huppatz, J. (1983). Systemic fungicides. The synthesis of certain pyrazole analogues of carboxin. Australian Journal of Chemistry, 36 (1), 135. doi: 10.1071/ch9830135.

48. Sprio, V., Caronna, S., Migliara, O., Pertuso, S., Matera, M. (1989). The synthesis of pyrazolo[4,3–e][1,4]diazepines. Farmaco, 44, 809–818.

49. Raeppel, S. L., Therrien, E., Raeppel, F. (2015). Design and synthesis of constrained analogs of LCRF–0004 as potent RON tyrosine kinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 25 (17), 3706–3710. doi: 10.1016/j.bmcl.2015.06.034.

50. Raeppel, S., Gaudette, F., Mannion, M., Claridge, S., Saavedra, O., Isakovic, L., Vaisburg, A. (2010). Identification of a novel series of potent RON receptor tyrosine kinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 20 (9), 2745–2749. doi: 10.1016/j.bmcl.2010.03.073.

51. Saavedra, O. M., Claridge, S. W., Zhan, L., Raeppel, F. (2007). Рat WO 2007/107005 (A1). Inhibitors of protein tyrosine kinase activity. Declared 22.03.2007; published 27.09.2007.

52. Reddy, N. R., Reddy, G. M., Reddy, P. P. (2005). A new entry to pyrazolo[4,3–e][1,4]diazepines. Facile synthesis of pyrazolo [4,3–e][1,4]diazepin–5,8–diones, 5,6,8–triones and pyrazolo[4,3–e]pyrrolo–[1,2–a][1,4]diazepin–5,10–diones. Journal of Heterocyclic Chemistry, 42 (4), 675–678. doi: 10.1002/jhet.5570420429.

53. Taghavi–Moghadam, S., Panke, G., Schwalbe, T., Stirner, W., Wille, G. (2003). A Practical Approach of Continuous Processing to High Energetic Nitration Reactions in Microreactors. Synthesis, (18), 2827–2830. doi: 10.1055/s–2003–42491.

54. Colombo, A., Frigola, J., Parés, J., Andaluz, B. J. (1989). Synthesis of pyrazolo[3,4–b][1,4]diazepines and pyrazolo. Heterocyclic Chemistry, 26, 949–655.

55. Kemskii, S. V., Bolbut, A. V.,Shishkina, S.V., Melnik, D. A., Vovk, M. V. (2016). Russian Journal Organic Chemistry, 52, 1162–1167.

56. Massa, S., Stefancich, G., Artico, M., Corelli, F. (1984). Research on nitrogen heterocyclic compounds. XV. Synthesis of 1 H ,4 H –pyrazolo[4,3 f ]pyrrolo[1,2– a ][1,4]diazepine derivatives. Journal of Heterocyclic Chemistry, 21 (6), 1877–1880. doi: 10.1002/jhet.5570210658.

57. Ilyn, A. P., Trifilenkov, A. S., Kuzovkova, J. A., Kutepov, S. A., Nikitin, A. V., Ivachtchenko, A. V. (2005). New Four–Component Ugi–Type Reaction. Synthesis of Heterocyclic Structures Containing a Pyrrolo[1,2–a][1,4]diazepine Fragment. The Journal of Organic Chemistry, 70 (4), 1478–1481. doi: 10.1021/jo048204b.

58. Butin, A. V., Nevolina, T. A., Shcherbinin, V. A., Trushkov, I. V., Cheshkov, D. A., Krapivin, G. D. (2010). Furan ring opening–pyrrole ring closure: a new synthetic route to aryl(heteroaryl)–annulated pyrrolo[1,2–a][1,4]diazepines. Organic & Biomolecular Chemistry, 8 (14), 3316. doi: 10.1039/c002994g.

59. Tumkyavichyus, S. (1996). Synthesis of 3,4–diamino–1H–pyrazolo[3,4–d]pyrimidines. Chemistry of Heterocyclic Compounds, 32 (6), 716–720. doi: 10.1007/bf01164873.

60. Masevicius, V., Juskenas, R., Tumkevicius, S. (2007). Synthesis of a novel heterocyclic system–pyrazolo[5,4,3–de]pyrimido–[4,5–e][1,4]diazepine. Chemistry of Heterocyclic Compounds, 43 (12), 1593–1594. doi: 10.1007/s10593–007–0247–y.

61. Masevicius, V., Juskenas, R., Tumkevicius, S. (2011). Synthesis of novel pyrazolo[3,4–d]pyrimidines peri–fused with 1,4–diazepine, 1,4–thiazepine, and 1,2,4–triazepine rings. Journal of Heterocyclic Chemistry, 49 (2), 315–320. doi: 10.1002/jhet.724.

62. Massa, S., Artico, M., Mai, A., Mancuso, A., Corelli, F. (1992). Synthesis of pyrazole analogues of isoaptazepine. Journal of Heterocyclic Chemistry, 29 (7), 1851–1854. doi: 10.1002/jhet.5570290729.

63. Coggins, A. J., Tocher, D. A., Powner, M. W. (2015). One–step protecting–group–free synthesis of azepinomycin in water. Org. Biomol. Chem., 13 (11), 3378–3381. doi: 10.1039/c5ob00210a.

64. Chakraborty, S., Shah, N. H., Fishbein, J. C., Hosmane, R. S. (2012). Investigations into specificity of azepinomycin for inhibition of guanase: Discrimination between the natural heterocyclic inhibitor and its synthetic nucleoside analogues. Bioorganic & Medicinal Chemistry Letters, 22 (23), 7214–7218. doi: 10.1016/j.bmcl.2012.09.053.

65. Fujii, T., Saito, T., Fujisawa, T. (1988). Alternative Syntheses of Azepinomycin. HETEROCYCLES, 27 (5), 1163. doi: 10.3987/com–88–4519.

66. Fujii, T., Saito, T., Fujisawa, T. (1994). Purines. LXIII. Syntheses of Azepinomycin, an Antitumor Antibiotic from Streptomyces Species, and Its 3–.BETA.–D–Ribofuranoside and Their 8–Imino Analogues. Chemical & Pharmaceutical Bulletin, 42 (6), 1231–1237. doi: 10.1248/cpb.42.1231.

67. Fujii, T., Sakurai, S., Uematsu, T. (1972). Purines. VIII. An Improved Procedure for the Synthesis of 9–Alkyladenines. Chemical & Pharmaceutical Bulletin, 20 (6), 1334–1337. doi: 10.1248/cpb.20.1334

68. Fujii, T., Wu, C. C., Itaya, T. (1971). Purines. II. An Alternative Synthesis of 1–Alkoxy–9–alkyladenine Salts. Chemical & Pharmaceutical Bulletin, 19 (7), 1368–1373. doi: 10.1248/cpb.19.1368

69. K. Bridson, P. (1994). Synthesis of Deoxyazepinomycin. Heterocycles, 38 (5), 1007. doi: 10.3987/com–93–6637.

70. Ivanov, I., Kalayanov, G. D. (1992). Novel synthesis of 4,5,7,8–tetrahydro–6H–imidazo[4,5–e]–[1,4]diazepine–5,8–dione. A cyclic xanthine homolog. Chemistry of Heterocyclic Compounds, 28 (4), 428–429. doi: 10.1007/bf00767004.

71. Bohatskii, A. V., Ivanov, E. I. (1980). Ukrainskii Khimicheskii Zhurnal, 46 (10), 1074–1075.

72. Ivanov, É. I. (1998). Novel synthesis and reactions of 1,4,7–trimethyl–4,5,7,8–tetrahydro–6h–imidazo[4,5–e][1,4]diazepine–5,8–dione–a cyclic caffeine analog. Chemistry of Heterocyclic Compounds, 34 (6), 719–722. doi: 10.1007/bf02252283.

73. Ivanov, E. I., Bogatskii, A. V., Zakharov, K. S. (1980). Doklady Akademii Nauk, 255 (3), 591–595.

74. Bridson, P. K., Weirich, T. P. (1988). Cyclic homologs of xanthines. I. Imidazo[4,5– e ][1,4]diazepine–5,8–diones . Journal of Heterocyclic Chemistry, 25 (4), 1179–1182. doi: 10.1002/jhet.5570250426.

75. Daly, J. W., Hide, I., Bridson, P. K. (1990). Imidazodiazepinediones: a new class of adenosine receptor antagonists. Journal of Medicinal Chemistry, 33 (10), 2818–2821. doi: 10.1021/jm00172a022.

76. Aoyagi, M., Minakawa, N., Matsuda, A. (1994). Nucleosides and Nucleotides. 130The Synthesis of Imidazo[4, 5– e ][1, 4] Diazepine Nucleosides From N 1 –Substituted Inosines . Nucleosides and Nucleotides, 13 (6–7), 1535–1549. doi: 10.1080/15257779408012169.

77. Hosmane, R. S., Bhan, A., Rauser, M. E. (1986). Models for “Fat” Nucleosides and Nucleotides: Syntheses of “Fat” Xanthine (fX), “Fat” Guanine (fG), and “Fat” Hypoxanthene (fHx) Analogues of the imidazo[4,5–e][1,4]diazepine System. Heterocycles, 24 (10), 2743. doi: 10.3987/r–1986–10–2743.

78. Hosmane, R. S., Bhan, A. (1990). The synthesis of ring–expanded analogues of xanthine containing the imidazo[4,5–e][1,4]diazepine ring system. Journal of Heterocyclic Chemistry, 27 (7), 2189–2196. doi: 10.1002/jhet.5570270759.

79. Hosmane, R. S., Bhan, A., Karpel, R. L., Siriwardane, U., Hosmane, N. S. (1990). The synthesis and biophysical investigations of novel ring–expanded nucleosides, nucleotides, and homopolymers containing the 5:7–fused heterocyclic ring system, imidazo[4,5–e][1,4]diazepine. The Journal of Organic Chemistry, 55 (23), 5882–5890. doi: 10.1021/jo00310a021.

80. Ivanov, É. I. (1998). Methylation of the cyclic homolog of xanthine. Chemistry of Heterocyclic Compounds, 34 (5), 620–622. doi: 10.1007/bf02290949.

81. Ivanov, E. I., Shapiro, Yu. E., Kalaianov, G. D., Gorbatiuk, V. Ya. (1992). Chemistry of Heterocyclic Compounds, 28 (3), 385–388.

82. Ivanov, E. I., Kalaianov, G. D., Yaroshenko, I.M. (1992). Chemistry of Heterocyclic Compounds, 28 (7), 955–958.

83. Ivanov, E. I., Kalayanov, G. D., Grishchuk, L. B., Dvorkin, A. A. (1993). Journal of Structural Chemistry, 3, 86–90.

84. Rajappan, V., Hosmane, R. S. (1998). Synthesis and guanase inhibition studies of a novel ring–expanded purine analogue containing a 5:7–fused, planar, aromatic heterocyclic ring system. Bioorganic & Medicinal Chemistry Letters, 8 (24), 3649–3652. doi: 10.1016/s0960–894x(98)00672–6.

85. Rajappan, V. P., Hosmane, R. S. (1998). Analogues of Azepinomycin as Inhibitors of Guanase. Nucleosides and Nucleotides, 17 (7), 1141–1151. doi: 10.1080/07328319808004227.

86. Rajappan, V. P., Hosmane, R. S. (1998). Pentafluorophenol: A SuperiorReagent for Condensations in Heterocyclic Chemistry. Synthetic Communications, 28 (4), 753–764. doi: 10.1080/00397919808005949.

87. Ohsaki, T., Kuriki, T., Ueda, T., Sakakibara, J., Asano, M. (1986). Synthesis of imidazo(4,5–e)(1,4)diazepine and imidazo(4,5–e)(1,4)oxazepine derivatives using caffeidine, a hydrolysis product of caffeine. Chemical & Pharmaceutical Bulletin, 34 (9), 3573–3587. doi: 10.1248/cpb.34.3573.

88. Bhan, A., Hosmane, R. S. (1993). Reactions of ring–expanded xanthines containing the imidazo[4,5–e][1,4]diazepine ring system. Journal of Heterocyclic Chemistry, 30 (5), 1453–1462. doi: 10.1002/jhet.5570300544

89. Bhan, A., Hosmane, R. S. (1994). Novel inhibitors of guanase. Tetrahedron Letters, 35 (37), 6831–6834. doi: 10.1016/0040–4039(94)85016–x.

90. Bhan, A., Hosmane, R. (1995). Analogues of Azepinomycin: Inhibitors of Guanase. Nucleosides, Nucleotides and Nucleic Acids, 14 (3), 455–458. doi: 10.1080/15257779508012405.

91. Bhan, A., Hosmane, R. S., Zhang, H., Hosmane, N. S. (1995). A Unique Diaminomalonate Derivatve useful for Building Novel Heterocycles. Synthetic Communications, 25 (18), 2723–2737. doi: 10.1080/00397919508011820.

92. Ivanov, E. I., Kalayanov, G. D., Yaroshenko, I. M. (1989). Zhurnal Organicheskoi Khimii, 25, 1975–1979.

93. Dannhardt, G., Dominiak, P., Laufer, S. (1991). Hypertensiv wirksame 5–(β–Aminoethyl)aminoisoxazole: Synthese und Prüfung von Isoxazolopyrazinen und Isoxazolodiazepinen. Archiv Der Pharmazie, 324 (3), 141–148. doi: 10.1002/ardp.19913240303.

94. Nesi, R., Giomi, D., Quartara, L., Papaleo, S. (1990). Synthesis of Isothiazolo[4,3–e][1,4]diazepines. Gazzetta Chimica Italiana, 120, 725–730.

95. Nesi, R., Giomi, D., Quartara, L., Papaleo, S., Tedeschi, P. (1987). 3–Phenyl–5–carbomethoxymethylene–5H–isoxazolo[4,5–e][1,4]diazepine–6,8(4H,7H)–dione: A New Seven Membered Binuclear System. Heterocycles, 26 (9), 2419. doi: 10.3987/r–1987–09–2419.

96. Kolavi, G., Im, I.–S., Kim, Y.–C., Ko, H.–J. (2011). Synthesis of a Multifunctional Oxazolo[5,4–e][1,4]diazepine Skeleton. Bulletin of the Korean Chemical Society, 32 (3), 1041–1044. doi: 10.5012/bkcs.2011.32.3.1041.

97. Brown, R., Rae, I., Shannon, J., Sternhell, S., Swan, J. (1966). Synthetic studies in the 1,2–dithiole series. IV. The methylation of 4–Benzamido–1,2–dithiole–3–thione. Australian Journal of Chemistry, 19 (3), 503. doi: 10.1071/ch9660503.

98. Ueda, T., Kato, Y., Sakakibara, J., Murata, M. (1988). Synthesis of isoselenazolo– or isothiazolo(4,3–e)(1,4)diazepines. Chemical & Pharmaceutical Bulletin, 36 (8), 2902–2908. doi: 10.1248/cpb.36.2902.

99. Ried, W., Becker, S. (1989). Neue Ringsysteme aus heterocyclischen 5–substituierten Tetrazolderivaten. Liebigs Annalen Der Chemie, 1989 (1), 83–85. doi: 10.1002/jlac.198919890116.

100.     Shafiee, A., Shekarchi, M. (2002). Syntheses of 7–phenyl–5h–thiazolo[5,4–e]pyrrolo[1,2–a][1,4]diazepin–10(9h)one,7–phenyl–5h–thiazolo[5,4–e][1,2,3,4]tetrazolo[5,1–c]–pyrrolo[1,2–a][1,4]diazepine and 7–phenyl–5h–thiazolo[5,4–e]–[1,3,4] triazolo [5,1–c]pyrrolo [1,2–a] [1,4] diazepines. Journal of Heterocyclic Chemistry, 39 (1), 213–216. doi: 10.1002/jhet.5570390130.





DOI: https://doi.org/10.24959/ophcj.17.911

Abbreviated key title: Ž. org. farm. hìm.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)