Alkenylimidazoles: methods of synthesis and chemical properties

Authors

  • O. Ya. Mel’nik SHHE «Ivano-Frankivsk National Medical University», Ukraine
  • V. O. Chornous Bukovinian State Medical University, Ukraine
  • A. M. Grozav Bukovinian State Medical University, Ukraine
  • M. V. Vovk Institute of Organic Chemistry of the NAS of Ukraine, Ukraine

DOI:

https://doi.org/10.24959/ophcj.17.920

Keywords:

alkenylimidazoles, synthesis methods, condensation, chemical properties, heterocyclofunctionalization

Abstract

The aim of this review was to summarize and systematize literature on chemistry of alkenylsubstituted imidazoles known as important synthetic substrates and precursors for the synthesis of biologically active substances. Two approaches to the synthesis of these compounds are reviewed: 1) the imidazole ring formation based on functionalized alkenyl compounds; 2) functionalization of imidazole derivatives with the alkenyl moiety. The second approach prevails and includes condensation of methylimidazoles with carbonyl compounds, reactions of formylimidazoles with compounds containing activated methylene groups and phosphorus ylides, as well as reactions of dehydration and dehydrohalogenation of substituted imidazoles. The methods of synthesis of alkenylsubstituted imidazoles have been analyzed in detail; their synthetic potential and limits have been described. Special attention is paid to the authors’ own research on the synthesis of new 4-chloro-5-alkenylsubstituted imidazoles using 5-formylimidazoles as precursors. Analysis of the chemical properties of alkenylsubstituted imidazoles has allowed conducting their strict classification and systematizing their typical transformations. Reactions of cyclocondensation are the first ones to be mentioned, they proceed through the interaction of the alkenyl moiety with another functional group or endocyclic Nitrogen. Other transformations such as heterocyclofunctionalization, oxidation and reduction are based on transformation of the alkenyl moiety. It should be noted that heterocyclization processes are new for chemistry of alkenylimidazoles, they are successfully applied to 5-(2-nitro-alkenyl)- and 5-(2-arylvinyl)substituted derivatives, and due to them it is possible to obtain new promising hybrid structures.

Downloads

Download data is not yet available.

References

  1. Fromtling, R. A. (1988). Overview of medically important antifungal azole derivatives. Clinical Microbiology Reviews, 1 (2), 187–217. doi: 10.1128/CMR.1.2.187
  2. Sharpe, T. R., Cherkofsky, S. C., Hewes, W. E. et al. (1985). Preparation and antiarthritic and analgesic activity of 4,5–diaryl–2–(substituted thio)–1H–imidazoles and their sulfoxides and sulfones. Journal of Medicinall Chemistry, 28 (9), 1188–1194. doi: 10.1021/jm00147a011
  3. Ucucu, U., Karaburun, N. G., Isikdag, I.(2001). Synthesis and analgesic activity of some 1–benzyl–2–substituted–4,5–diphenyl–1H–imidazole derivatives. Il Farmaco, 56 (4), 285–290. doi: 10.1016/S0014–827X(01)01076–X
  4. Graczyk, P. P., Khan, A., Bhatia, G. S. et al. (2005). The neuroprotective action of JNK3 inhibitors based on the 6,7–dihydro–5H–pyrrolo[1,2–a]imidazole scaffold. Bioorganic & Medicinal Chemistry Letters, 15 (21), 4666–4670. doi: 10.1016/j.bmcl.2005.07.076
  5. Laufer, S. A., Zimmermann, W., Ruff, K. J. (2004). Tetrasubstituted imidazole inhibitors of cytokine release: probing substituents in the N–1 position. Journal of Medicinall Chemistry, 47 (25), 6311–6325. doi: 10.1021/jm0496584
  6. Black, J. W., Durant, G. J., Emmett, J. C. (1974). Sulphur–methylene isosterism in the developent of metiamide, a new histamine H2–receptor antagonist. Nature, 248 (5443), 65–67. doi: 10.1038/248065a0
  7. Jin, Z. (2009). Muscarine, imidazole, oxazole and thiazole alkaloids. Natural Product Reports, 26 (3), 382–445. doi: 10.1039/B718045B
  8. Jin, Z. (2006). Imidazole, oxazole and thiazole alkaloids. Natural Product Reports, 23 (3), 464–498. doi: 10.1039/B502166A
  9. Jin, Z. (2005). Muscarine, imidazole, oxazole and thiazole alkaloids. Natural Product Reports, 22 (2), 196–229. doi: 10.1039/B316104H
  10. Cui, B., Zheng, B. L., He, K. et al. (2003). Imidazole alkaloids from lepidium meyenii. Journal of Natural Products, 66 (8), 1101–1103. doi: 10.1021/np030031i
  11. Grimmett, M. R. (1997). Imidazole and benzimidazole synthesis.London: Academic Press., 265.
  12. Katritzki, A. R., Rees, C. W. (1997). Comprehensive heterocyclic chemistry. Elsevier Science Ltd, 5, 994.
  13. Kyrides, L. P., Zienty, F. R., Steahly, G. W. et al. (1947). Substituted imidazoles and 2–imidazolines. The Journal of Organic Chemistry, 12 (4), 557–586. doi: 10.1021/jo01168a015
  14. Cappon, J. J., Witters, K. D., Baart, J. et al. (1994). Synthesis of L–histidine specifically labelled with stable isotopes. Recueil des Travaux Chimique des Pays–Bas. 113 (6), 318–328. doi: 10.1002/recl.19941130603
  15. Olson, G. L., Cheung, H.–C., Chiang, E. et al. (1995). Peptide mimetics of thyrotropin–releasing hormone based on a cyclohexaneframework design, synthesis, and cognition–enhancing properties. Journal of Medicinall Chemistry, 38 (15), 2866–2879. doi: 10.1021/jm00015a009
  16. Kuwano, E., Takeya, R., Eto, M. (1989). Pat. US4812473 A. 1,5–Disubstituted imidazoles as inhibitors of juvenile hormone. declared 24.03.1987; published 14.03.1989.
  17. Arbonés, C., Sánchez, F. J., Marco, M.–P. et al. (1990). Fluorinated analogues of the imidazole insect growth regulator KK–42. Heterocycles, 31 (1), 67–78. doi: 10.3987/COM–89–5125
  18. Shafiee, A., Rastkary, N., Foroumadi, A. (1998). Syntheses of 2–(2–arylethyl)imidazoles. Journal of Heterocyclic Chemistry, 35 (3), 607–610. doi: 10.1002/jhet.5570350319
  19. Henry, D.W., Brown, V. H., Cory, M. et al. (1973). Chemotherapeutic nitroheterocycles. Antischistosomal properties of nitrofurylvinyl and nitrothienylvinyl heterocycles. Journal of Medicinall Chemistry, 16 (11), 1287–1291. doi: 10.1021/jm00269a015
  20. Henry, D. W., Cory, M. (1976). Pat. US3993643. A N–substituted 2–[2–(5–nitro–2–furyl)vinyl]imidazoles. declared 07.05.1976; published 23.11.1976.
  21. DeBernardis, J. F., Gifford, P., Rizk, M. et al. (1988). Evaluation of the side arm of (naphthylvinyl)pyridinium inhibitors of choline acetyltransferase. Journal of Medicinall Chemistry, 31 (1), 117–121. doi: 10.1021/jm00396a017
  22. Suwiriski, J., Swierczek, K. (1993). Nitroimidazoles XVII. Nucleophilic amination or ring transformation in reactions of l–aryl–4–nitroimidazoles with 4–amino–1,2,4–triazole or hydroxylamine. Tetrahedron, 49 (24), 5339–5350. doi: 10.1016/S0040–4020(01)82383–8
  23. Allsebrook, W. E., Gulland, J. M., Story, L. F. (1942). The constitution of purine nucleosides. Part X. A new synthesis of xanthine and attempted syntheses of xanthine glucosides from glyoxalines. Journal of the Chemical Society, 232–236. doi: 10.1039/JR9420000232
  24. Baddiley, J., Buchanan, J. G., Hardy, F. E. (1959). Chemical studies in the biosynthesis of purine nucleotides. Part 111. The synthesis of 5–amino–l–(β–D–ribofuranosyl)glyoxaline–4–carboxyamide and 4–amino–l–(β–D–ribofuranosyl)glyoxaline–5–carboxyamide. Journal of the Chemical Society, 2893–2901. doi: 10.1039/JR9590002893
  25. Tantravedi, S., Chakraborty, S., Shah, N. H. et al. (2013). Analogs of iso–azepinomycin as potential transition–state analog inhibitors ofguanase: synthesis, biochemical screening, and structure–activity correlations ofvarious selectively substituted imidazo[4,5–e][1,4]diazepines. Bioorganic & Medicinal Chemistry Letters, 21 (17), 4893–4903. doi: 10.1016/j.bmc.2013.06.069
  26. Giraldi, P. N., Mariotti, V., De Carneri, I.(1968). Antiprotozoans. Synthesis and biological activity of some styrylimidazole derivatives. Journal of Medicinall Chemistry, 11 (1), 66–70. doi: 10.1021/jm00307a014
  27. Chan, E., Putt, S. R., Showalter, H. D. H. et al. (1982). Total synthesis of (8R)–3–(2–deoxy–β–D–erythro–pentofuranosyl)–3,6,7,8–tetrahydroimidazo[4,5–d][1,3]diazepin–8–ol (pentostatin), the potent inhibitor of adenosine deaminase. The Journal of Organic Chemistry, 47 (18), 3457–3464. doi: 10.1021/jo00139a015
  28. Asato, G., Berkelhammer, G. (1972). Nitroheterocyclic antimicrobial agents. 1–Methyl–2–nitro–5–imidazolyl derivatives. Journal of Medicinall Chemistry, 15 (10), 1086–1088. doi: 10.1021/jm00280a030
  29. Cavalleri, B., Ballotta, R., Lancini, G.C. (1972). Synthesis of 1–alkyl–2–nitroimidazole–5–carboxaldehydes. Journal of Heterocyclic Chemistr, 9 (5), 979–984. doi: 10.1002/jhet.5570090502
  30. Cavalleri, B., Ballotta, R., Arioli, V. et al. (1973). New 5–substituted 1–alkyl–2–nitroimidazoles. Journal of Medicinall Chemistry, 16 (5), 557–560. doi: 10.1021/jm00263a035
  31. Cavalleri, B., Volpe, G., Arioli, V. (1977). Synthesis and biological activity of some vinyl–substituted 2–nitroimidazoles. Journal of Medicinall Chemistry, 20 (5), 656–660. doi: 10.1021/jm00215a007
  32. Burnett, F. N., Hosmane, R. S. (2002). Synthesis of a novel ring–expanded purine analogue containing a5:8–fused imidazo[4,5–e][1,2,4]triazocine ring system amidstopportunistic rearrangements and ring transformations. Tetrahedron, 58 (47), 9567–9578. doi: 10.1016/S0040–4020(02)01252–8
  33. Hosmane, R.S. Bhan, A. , Rauser, M. E. (1985). Facile conversion of 4(5)–nitro–5(4)–methylimidazoles into4(5)–nitro–5(4)–cyanoimidazoles. The Journal of Organic Chemistry, 50 (26), 5892–5895. doi: 10.1021/jo9824910
  34. Burnett, F. N., Hosmane, R. S. (1997). Imidazo[4,5–e][1,2,4]triazocine: a novel 5:8–fused ring system riddled with rearrangements. Heterocyclic Communications, 45 (5), 857–861. doi: 10.3987/COM–97–7783
  35. Ross, W. J., Todd, A. (1973). Antiparasitic nitroimidazoles. 7. Some 4– and5–styrylnitroimidazoles. Journal of Medicinall Chemistry, 16 (7), 863–865. doi: 10.1021/jm00265a030
  36. Burnett, F. N., Hosmane, R. S. (1995). Synthetic approaches to 5:8–fused heterocyclic systems. A novel rearrangement during the synthesis of imidazo[4,5–e][1,2,4]triazocine ring system. Nucleosides & Nucleotides, 14 (3–5), 325–328. doi: 10.1080/15257779508012373
  37. Siddiqui, S., Hosmane, R. S. (2000). Synthetic analogue of stilbene containing an imidazole nucleus. Molecules, 5 (6), 856–863. doi: 10.3390/50600856
  38. Alcalde, E. , Roca, T. , Fayet, J. P. et al. (1991). Aza–analogs of stilbene with a dipolar character. (E)–1–alkyl–(2–(azolyl–2–idene)etylidene)–dihydropyridines and (E)–2–(2–(1–alkyl–3–pyridinium)vinyl)azolate inner salts. Chemistry Letters, 20 (12), 2151–2154. doi: 10.1246/cl.1991.2151
  39. Alcalde, E., Roca, T. (1992). Heterocyclic betaines. 14. (E)–l–Alkyl–[2–(imidazol–2–ylidene)ethylidene]dihydropyridines with a betaine character. An improved protocol for a Knoevenagel–type condensation for synthesis of(E)–l–alkyl–[2–(1H–imidazol–2–yl)vinyl]pyridinium salts. European Journal of Organic Chemistry, 57 (18), 4834–4838. doi: 10.1021/jo00044a015
  40. Fichera, M., Fortuna, C.G., Impallomeni, G. et al. (2002). Studies on the interactions of the new 2,6–bis[2–(heteroaryl)vinyl]–1–methylpyridinium cations with the decamer d(CGTACGTACG)2. The Journal of Organic Chemistry, 2002 (1), 145–150. doi: 10.1002/1099–0690(20021)2002
  41. Adamo, M. F. A., Duffy, E. F. , Konda, V. R. et al. (2007). An improved synthesis of 3–methyl–4–nitro–5–heteroarylethenylisoxazoles. Heterocycles, 71 (5), 1173 – 1181. doi: 10.3987/COM–07–11023
  42. Karjalainen, A. J., Kangas, L. V. M., Kurkela, K. O. A. (1992). Pat. US5098923 A. Aromatase inhibiting 4(5)–imidazoles. declared 27.09.1990; published 24.03.1992.
  43. McNab, H., Thornley, C. (1997). New synthetic routes to pyrrolo–[1,2–a]– and –[1,2–c]–imidazol–5–ones by flash vacuum pyrolysis. Journal of the Chemical Society, Perkin Transactions 1, 15, 2203–2209. doi: 10.1039/A701751K
  44. Crozet, M. D., Suspеne, C., Kaafarani, M. et al. (2004). Synthesis of a new imidazo[4,5–b]pyridin–5–one via a vicarious nucleophilic substitution of hydrogen Heterocyclic Communications, 63 (7), 1629–1635. doi: 10.3987/COM–04–10069
  45. Keenan, R. M., Weinstock, J., Finkelstein, J. A. et al. (1993). Potent nonpeptfde angiotensin II receptor antagoqists. 2. 1–(Carboxybenzyl)imidazole–5–acrylic acids. Journal of Medicinal Chemistry, 36, 1880–1892. doi: 10.1021/jm00065a011
  46. Karjalainen, A., Kalapudas, A., Sodervall, M. et al. (2000). Synthesis of new potent and selective aromatase inhibitors based on long–chained diarylalkylimidazole and diarylalkyltriazole molecule skeletons. European Journal Pharmaceutical Sciences, 11 (7), 109–131. doi: 10.1016/S0928–0987(00)00074–9
  47. Ono, M., Hori, M., Haratake, M. et al. (2007). Structure–activity relationship of chalcones and related derivatives as ligands for detecting of β–amyloid plaques in the brain. Bioorganic & Medicinal Chemistry, 15, 6388–6396. doi: 10.1016/j.bmc.2007.06.055
  48. Nakayama, M., Haratake, M., Ono, M. (2009). Pat. EP2030635 A1. Composition for diagnosing amyloid–related disease. declared 22.05.2007; published 04.03.2009.
  49. Shioiri, N., Mikami, T., Morimoto, S. et al. (2000). Pat. US6071943 A. Іmidazole derivative and medicinecomprising the same as activeingredient. declared 30.11.98; published 06.06.00.
  50. Omar, A. M., Mahran, M. A., Ghatge, M. S. et al. (2015). Identification of a novel class of covalent modifiersof hemoglobin as potential antisickling agents. Organic & Biomolecular Chemistry, 13 (22), 6353–6370. doi: 10.1039/c5ob00367a
  51. Selvakumar, N., Kumar, G. S., Azhagan, A. M. et al. (2007). Synthesis, SAR and antibacterial studies on novel chalcone oxazolidinone hybrids. European Journal of Medicinal Chemistry, 42 (4), 538–543. doi: 10.1016/j.ejmech.2006.10.013
  52. Chornous, V. A., Melnik, O. Ya., Hrozav, A. N. et al. (2014). Zhurnal orhanichnoi ta farmatcevtychnoi khimii – Journal of Organic and Pharmaceutical Chemistry, 12 (3), 28–32.
  53. Chornous, V. A., Grozav, A. N., Melnik, O. Ya. et al. (2015). Polyfunctional imidazoles: X. Synthesis of 4–chloro–5–(2–nitroalkenyl)–1H–imidazoles and their reaction with 5–methyl–2,4–dihydro–3H–pyrazol–3–one. Russian Journal Organic Chemistry, 51 (4), 251–257. doi: 10.1134/S1070428015040132
  54. Chornous, V. A., Melnik, O. Ya., Kutsyk, R. V., Vovk, M. V. (2014). Nauk. visnyk Chernivetskoho universytetu, 683. „Khimiia”. Chernivtsi: Chernivetskyi natsionalnyi universytet, 90–96.
  55. Chornous, V. A., Melnik, O. Ya., Hliebov, O.M. et al. (2016). Zhurnal orhanichnoi ta farmatcevtychnoi khimii – Journal of Organic and Pharmaceutical Chemistry, 14 (1), 46–52.
  56. Melnik, O. Ya., Melnik, D. A., Chornous, V. A., Melnichenko, N. V., Vovk, M. V. (2016). Visnyk Lvivskoho universytetu. Seriia khimichna, 57 (2), 280–285.
  57. Kokosa, J. M., Szafasz, R. A., Tagupa, E. (1983). Practical multigram synthesis for 4(5)–vinylimidazole. The Journal of Organic Chemistry, 43 (20), 3605–3607. doi: 10.1021/jo00168a062
  58. Cheng, J.–F., Chen, M., Liu, B., Hou, Z. et al. (2006). Design and synthesis of heterocyclic malonyl–CoA decarboxylase inhibitors. Bioorganic & Medicinal Chemistry Letters, 16, 695–700. doi: 10.1016/j.bmcl.2005.10.020
  59. Ohta, M., Suzuki, T., Koide, T. et al. (1996). Novel 5–hydroxytryptamine (5–HT3) receptor antagonists. I. Synthesis and structure–activity relationships of conformationally restricted fused imidazole derivatives. Chemical and Pharmaceutical Bulletin, 44 (5), 991–999. doi: 10.1248/cpb.44.991
  60. Wolf, U. (1981). 7H–Imidazo[1.2–a]– und –[1.5–a]azepin–7–one. Zeitschrift fur Naturforschung B: Chemical Sciences, 36 (3), 383 – 385. doi: 10.1515/znb–1981–0321
  61. Pizzirani, D., Roberti, M., Grimaudo, S. et al. (2009). Identification of biphenyl–based hybrid molecules able to decrease the intracellular level of bcl–2protein in bcl–2 overexpressing leukemia cells. Journal of Medicinal Chemistry, 52 (21), 6936–6940. doi: 10.1021/jm900907s
  62. Dombrovskyy, V.A., Hracheva, E.V., Prokof’ev, E.P. (1989). Khimiko–Farmatsevticheskii Zhurnal, 23 (12), 1496–1498.
  63. Leclaire, J., Mazari, M., Zhang, Y. et al. (2013). Bare histidine–serine models: implication and impact of hydrogen bondingon nucleophilicity. Chemistry A European Journal, 19 (34), 11301–11309. doi: 10.1002/chem.201301275
  64. Karjalainen, A. J., Kurkela, K. O. A. (1987). Pat. USRE32400 E. Substituted imidazole derivatives and their use as anti–thrombosis agents. declared 30.07.1985; published 14.04.1987.
  65. Hack, S., Wörlein, B., Höfner, G. et al. (2011). Development of imidazole alkanoic acids as mGAT3 selective GABA uptakeinhibitors. European Journal of Medicinal Chemistry, 46 (5), 1483–1498. doi: 10.1016/j.ejmech.2011.01.042
  66. Amino, Y., Eto, H., Eguchi, C. (1989). Synthesis of 1,5–disubstituted imidazoles including an imidazole analogue of prostaglandin from 4(5)–hydroxymethylimidazole. Chemical and Pharmaceutical Bulletin, 37 (6), 1481–1487. doi: 10.1248/cpb.37.1481
  67. Deredas, D., Skowron, M., Salomon, E. et al. (2007). Stereocontrolled synthesis of enantiomeric imidazolopiperidinosesand imidazoloazepanoses using Wittig/dihydroxylation reactions. Tetrahedron, 63 (13), 2915–2922. doi: 10.1016/j.tet.2007.01.016
  68. Lawson, J. K. (1953). 2–Vinylimidazole and 1–methyl–2–vinylimidazole. Journal of the American Chemical Society, 75 (14), 3398–3400. doi: 10.1021/ja01110a029
  69. Karjalainen, A. J., Pelkonen, R. O. (1995). Pat. US5439928 A. Aromatase inhibiting 4(5)–imidazoles. declared 19.05.1993; published 08.08.1995.
  70. Sartori, G., Lancini, G. C., Cavalleri B. (1978). Synthesis of 5–substituted 1–methyl–2–nitro–1H–imidazoles (2–l4C. Journal of Labelled Compounds and Radiopharmaceuticals, 15 (S1), 673–680. doi: 10.1002/jlcr.2580150180
  71. Pat. EP2095819 A1 (2008). N–Benzyl imidazole derivatives and their use as aldosterone synthase inhibitors. declared 28.02.2008; published 02.09.2009.
  72. Rendy, R., Zhang, Y., McElrea, A. et al. (2008). Superacid–catalyzed reactions of cinnamic acids and the role ofsuperelectrophiles. The Journal of Organic Chemistry, 69 (7), 2340–2347. doi: 10.1021/jo030327t
  73. Clark, B. A. J., Despinoy, X. L. M., McNab, H. et al. (1999). Pyrolytic cyclisation reactions of 3–azolylpropenyl alcohols; unexpectedly facile thermal decomposition of 5H–pyrrolo–[2,1–a]isoindole. Journal of the Chemical Society, Perkin Transactions 1, 15, 2049–2051. doi: 10.1039/A904884G
  74. Pollak, A., Polanc, S., Stanovnik, B. et al. (1972). Uber ringoffnungen einiger azolo– und azinoazine. Monatshefte fur Chemie, 103 (6), 1591–1603. doi: 10.1007/BF00904613
  75. Pollak, A., Stanovnik, B., Tišler, M. (1971). Pyridazines. XLVI. Ring opening of some azolo andazino pyridazines. Synthetic Communications, 1 (4), 289–293. doi: 10.1080/00397917108082711
  76. Rothenberg, V. A. S., Dauplaise, D. L., Punier, H. P. (1983). Ein einfacher weg zu 2–vinylimidazolen. Angewandte Chemie, 95 (7), 573–574. doi: 10.1002/ange.19830950727
  77. Arshad, N., Hashim, J., Kappe, C. O. (2009). Palladium(0)–catalyzed, copper(I)–mediated coupling of cyclic thioamides with alkenylboronic acids, organostannanes, and siloxanes. The Journal of Organic Chemistry, 74 (14), 5118–5121. doi: 10.1021/jo900848s
  78. Rothenberg, A. S., Panzer, H. P., Schmitt, J. L. et al. (1983). Pat. US4410706. Preparation of Z–vinylimidazoles by dehydrogenation of Z–ethylimidazoles and Z–ethylimidazolines. declared 19.05.1982; published 18.10.1983.
  79. Chen, Y., Dias, H. V. R., Lovely, C.J. (2003). Synthesis of fused bicyclic imidazoles by ring–closing metathesis. Tetrahedron Letters, 44 (7), 1379–1382. doi:10.1016/S0040–4039(02)02864–2
  80. Benhida, R., Lezama, R., Fourrey, J.–L. (1998). First total Synthesis of fungerin an antifungal alkaloid from Fusarium sp. Tetrahedron Letteres, 39 (33), 5963–5964. doi: 10.1016/S0040–4039(98)01203–9
  81. Haapalinna, A., Huhtala, P., Karjalainen, A. (2004). Pat. EP1261588 B1. Imidazole compounds as alpha 2–adrenoceptors antagonists. declared 12.01.2001; published 20.10.2004.
  82. Karjalainen, A., Huhtala, P., Savola, J.–M. (2001). Pat. US6313311 B1. Imidazole derivatives having affinity for alpha2 receptors. declared 02.10.1996; published 06.11.2001.
  83. Lovely, C. J,. Du, H., Sivappa R. (2007). Preparation and Diels–Alder chemistry of 4–vinylimidazoles. The Journal of Organic Chemistry, 72 (10), 3741–3749. doi: 10.1021/jo0626008
  84. Gorugantula, S. P., Carrero–Martınez, G. M., Dantale, S. W. et al. (2010). Palladium–catalyzed reductive N–heterocyclization of alkenyl–substituted nitroarenes as a viable method for the preparation of bicyclic pyrrolo–fused heteroaromatic compounds. Tetrahedron, 66 (10), 1800–1805. doi: 10.1016/j.tet.2010.01.029
  85. Li, A., Gilbert, T. M., Klumpp, D. A. (2008). Preparation of aza–polycyclic aromaticcompounds via superelectrophilic cyclizations. The Journal of Organic Chemistry, 73 (9), 3654–3657. doi: 10.1021/jo8003474
  86. Chornous, V. A., Melnik, O. Ya., Melnik, D. A. et al. (2015). Polyfunctional imidazoles: XI. Reaction of 1–aryl–4–chloro–5–(2–nitrovinyl)–1H–imidazoles with nonstabilized azomethine ylides. Synthesis of (1–aryl–4–chloro–1H–imidazol–5–yl)–substituted nitropyrrolidines and nitropyrrolizines. Russian Journal Organic Chemistry, 51 (10), 1423–1429. doi: 10.1134/S1070428015100115
  87. Chornous, V. O., Melnik, O. Ya., Melnik, D. O. et al. (2016). Ukrainskii Khimicheskii Zhurnal, 82 (5), 44–52.
  88. Melnik, O. Ya., Chornous, V. A., Vovk, M. V. (2015). Polyfunctional imidazoles: IX. Synthesis of 1–aryl–5–(2–aryl–3,4–dihydro–2H–pyrrol–4–yl)–4–chloro–1H–imidazoles. Russian Journal Organic Chemistry, 51 (2), 240–244. doi: 10.1134/S1070428015020189
  89. Baker, D. C., Putt, S. R., Showalter, H. D. H. (1983). Studies related to the total synthesis of pentostatin. Approaches to the synthesis of (8R)–3,6,7,8–tetrahydroimidazo–[4,5–d][l,3]diazepin–8–ol and N–3 alkyl congeners. Journal of Heterocyclic Chemistry, 20 (3), 629–634. doi: 10.1002/jhet.5570200324
  90. Baker, D.C., Putt, S.R. (1979). A total synthesis of pentostatin, the potent inhibitor of adenosine deaminase. Journal of American Chemical Society, 101(20), 6127–6128. doi: 10.1021/ja00514a048
  91. Keller, M., Trankle, C., She, X. et al. (2015). M2 Subtype preferring dibenzodiazepinone–type muscarinic receptor ligands: Effect of chemical homo–dimerization on orthosteric (and allosteric) binding. Bioorganic & Medicinal Chemistry, 23 (14), 3970–3990. doi: 10.1016/j.bmc.2015.01.015
  92. Aulaskari, P., Ahlgren, M., Vainiotalo, P. (2000). Preparation of 1–substituted–5–[(2–oxo–2–phenyl)ethyl]imidazoles. Journal of Heterocyclic Chemistry, 37 (1), 87–93. doi: 10.1002/jhet.5570370114
  93. Aulaskari, P., Pohjalab, E., Vainiotalo, P. (1997). Synthesis of 1–substituted–5–[(2–nitro–2–phenyl)–ethyl]imidazoles. Synthetic Communications, 27 (15), 2627–2635. doi: 10.1080/00397919708004132
  94. Le, P. Q., Nguyen, T. S., May, J. A. (2012). A general method for the enantioselective synthesis of α‑chiral heterocycles. Organic Letters, 14 (23), 6104–6107. doi: 10.1021/ol3030605
  95. Guerin, D. J., Miller, S. J. (2002). Asymmetric azidation–cycloaddition with open–chain peptide–based catalysts. A sequential enantioselective route to triazoles. Journal of American Chemical Society, 124 (10), 2134–2136. doi: 10.1021/ja0177814

Published

2017-09-15

How to Cite

(1)
Mel’nik, O. Y.; Chornous, V. O.; Grozav, A. M.; Vovk, M. V. Alkenylimidazoles: Methods of Synthesis and Chemical Properties. J. Org. Pharm. Chem. 2017, 15, 3-28.

Issue

Section

Original Researches