Synthesis of 1,2-benzoxathiine 2,2-dioxide derivatives using aliphatic aldehydes and assessment of their antimicrobial activity

G. V. Grygoriv, D. O. Lega, V. P. Chernykh, T. P. Osolodchenko, L. A. Shemchuk

Abstract


Nowadays the problem of the antimicrobial resistance promotes the search of new chemical core-structures with the antimicrobial properties.
Aim. To study the interaction of 1,2-benzoxathiin-4(3H)-one 2,2-dioxide with active methylene nitriles and aliphatic aldehydes and assess the antimicrobial activity of the compounds obtained.
Results and discussion. 1,2-Benzoxathiin-4(3H)-one 2,2-dioxide as a structural analog of 1,3-dicarbonyl compounds was used in the three-component interaction with aliphatic aldehydes and active methylene nitriles. In the case of malononitrile the target compounds were formed. When using ethyl cyanoacetate the only isolated product was triethylammonium salt that could be also obtained by the two-component reaction of 1,2-benzoxathiin-4(3H)-one 2,2-dioxide with aliphatic aldehydes. The study of the antimicrobial properties showed the higher activity of the compounds studied than in the reference drugs, especially against gram-positive strains.
Experimental part. The series of 2-amino-4-alkyl-4,6-dihydropyrano[3,2-c][2,1]benzoxathiin-3-carbonitrile 5,5-dioxides and triethylammonium 3-[1-(4-hydroxy-2,2-dioxido-1,2-benzoxathiin-3-yl)alkyl]-1,2-benzoxathiin-4-olate 2,2-dioxides was synthesized. The antimicrobial activity of the compounds obtained was determined by the agar “well” diffusion method.
Conclusions. It has been shown that 1,2-benzoxathiin-4(3H)-one 2,2-dioxide as a structural analog of 1H-2,1-benzothiazin-4-one 2,2-dioxide can be used in similar three- and two-component reactions, but its reactivity is less due to the replacement of the 1-N-R-group with an O-atom. The novel compounds obtained exceeded the antimicrobial activity of the reference drugs, and were more active against gram-positive bacteria in contrast to isosteric derivatives of 1H-2,1-benzothiazin-4-one 2,2-dioxide that were active against gram-negative strains and fungi.


Keywords


1,2-benzoxathiin-4(3H)-one 2,2-dioxide; 2-amino-4H-pyran; three-component interaction; ammonium salt; antimicrobial activity

Full Text:

PDF

References


Vozvrastaiushchaia ugroza razvitiia antimikrobnoi reziztentnosti (2013). WHO Library Cataloguing–in–Publication Data. Available at: http://

www.who.int/patientsafety/implementation/amr/publication/ru/

Antimicrobial resistance surveillance in Europe 2009. Annual Report of the European Antimicrobial Resistance Surveillance Network (2010). Stockholm:

European Centre for Disease Prevention and Control (ECDC). Available at: https://ecdc.europa.eu/sites/portal/files/media/en/publications/

Publications/1011_SUR_annual_EARS_Net_2009.pdf.

Informe Anual de la Red de Monitoreo/Vigilancia de la Resistencia a los Antibióticos (2011). Washington: D.C., Pan American Health Organization.

Available at: http://new.paho.org/hq/index.php?option=com_docman&task=doc_download&gid=14877&Itemid

Polk, R. E., Fox, C., Mahoney, A., Letcavage, J., MacDougall, C. (2007). Measurement of Adult Antibacterial Drug Use in 130 US Hospitals: Comparison

of Defined Daily Dose and Days of Therapy. Clinical Infectious Diseases, 44 (5), 664–670. doi: 10.1086/511640

Birnbaum, D. (2003) Resistance CCoA. Antimicrobial resistance: a deadly burden no country can afford to ignore. Canada Communicable Disease

Report, 29 (18), 157–164.

Okeke, I. N., Klugman, K. P., Bhutta, Z. A., Duse, A. G., Jenkins, P., O’Brien, T. F., Laxminarayan, R. (2005). Antimicrobial resistance in developing

countries. Part II: strategies for containment. The Lancet Infectious Diseases, 5 (9), 568–580. doi: 10.1016/s1473–3099(05)70217–6

Globalnaia strategiia VOZ po sderzhivaniiu ustoichivosti k protivomicrobnym preparatam (2001). Zheneva: VOZ. Available at: http://www.who.

int/drugresistance/WHO_Global_Strategy_Russian.pdf

Lega, D. A., Filimonova, N. I., Geyderikh, O. G., Chernykh, V. P., Shemchuk, L. A. (2016). The use of aliphatic aldehydes in the synthesis of new pyran

annulated derivatives of 1h–2,1–benzothiazin–4–one 2,2–dioxide via domino–type interactions. The antimicrobial activity of the compounds

synthesized. Žurnal Organìčnoï Ta Farmacevtičnoï Hìmìï, 14 (2(54)), 29–40. doi: 10.24959/ophcj.16.889

Lega, D. A., Filimonova, N. I., Zupanets, I. A., Shebeko, S. K., Chernykh, V. P., Shemchuk, L. A. (2016). The synthesis, anti–inflammatory, analgesic

and antimicrobial activities of ethyl 2–amino–4–alkyl–4,6–dihydropyrano[3,2c][2,1]benzothiazin–3–carboxylate 5,5–dioxides and triethylammonium

–[(4–hydroxy–1–ethyl–2,2–dioxido–1h–2,1–benzothiazin–3–yl)alkyl]–1–. Žurnal Organìčnoï Ta Farmacevtičnoï Hìmìï, 14 (4(56)), 3–11.

doi: 10.24959/ophcj.16.900

Schwender, Ch. F., Sunday, Br. R. (1978). Pat. 1977/4116961 US, U.S. Cl. 260/293.57, 260/327 S, 260/456 P. 1,2–Benzoxathiin–2,2–dioxides. Warner–

Lambert Company. № 771,502; declared 24.02.1977 ; published 26.09.1978.

Fravolini, A., Cecchetti, V., Fringuelli, R., Schiaffella, F. (1984). New Heterocyclic Ring System. XIV. 7,11–Dithiaoxasteroids Analogues. Heterocycles,

(10), 2293. doi: 10.3987/r–1984–10–2293

Tietze L. F. (1996). Domino Reactions in Organic Synthesis. Chemical Reviews, 96, 115–136.

Chandralekha, E., Thangamani, A., Valliappan, R. (2013). Efficient atom–economical solvent–free one–pot multicomponent synthesis of 2–amino–

H–benzo[b]pyrans catalyzed by solid base SiO2–OK as a reusable catalyst. Research on Chemical Intermediates, 41 (4), 1951–1966.

doi: 10.1007/s11164–013–1322–x

Litvinov, Y. M., Shestopalov, A. M. (2011). Synthesis, Structure, Chemical Reactivity, and Practical Significance of 2–Amino–4H–pyrans. Advances

in Heterocyclic Chemistry, 175–260. doi: 10.1016/b978–0–12–386011–8.00003–4

Lega, D. A., Gorobets, N. Y., Chernykh, V. P., Shishkina, S. V., Shemchuk, L. A. (2016). Peculiarities of 2–amino–3–R–4–aryl–4H–pyranes multicomponent

synthesis derived from 1H–2,1–benzothiazin–4(3H)–one 2,2–dioxide. RSC Advances, 6 (19), 16087–16099. doi: 10.1039/c5ra24566d

Coyle, M. B. (2005). Manual of Antimicrobial Susceptibility Testing. American Society for Microbiology. Washington: American Society for Microbiology,

Performance Standards for Antimicrobial Susceptibility Testing; Twenty–Second Informational Supplement. Document M100–S22 (2012). CLSI,

Wayne, PA, 32 (3).

McFarland, J. (1907). The nephelometer:an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic

index and for vaccines. JAMA: The Journal of the American Medical Association, XLIX (14), 1176. doi: 10.1001/jama.1907.25320140022001f


GOST Style Citations


1. Возрастающая угроза развития антимикробной резистентности : возможные меры // WHO Library Cataloguing–in–Publication Data. –
2013. – Режим доступа : http://www.who.int/patientsafety/implementation/amr/publication/ru/

2. Antimicrobial resistance surveillance in Europe 2009. Annual Report of the European Antimicrobial Resistance Surveillance Network. – Stockholm
: European Centre for Disease Prevention and Control (ECDC), 2010. – Available at : https://ecdc.europa.eu/sites/portal/files/media/en/
publications/Publications/1011_SUR_annual_EARS_Net_2009.pdf.

3. Informe Anual de la Red de Monitoreo/Vigilancia de la Resistencia a los Antibióticos. – Washington : D. C., Pan American Health Organization,
2011. – Available at : http://new.paho.org/hq/index.php?option=com_docman&task=doc_download&gid=14877&Itemid

4. Measurement of adult antibacterial drug use in 130 US hospitals: comparison of defined daily dose and days of therapy / R. Polk, C. Fox, A. Mahoney
et al. // Clin. Infectious Dis. – 2007. – Vol. 44, Issue 5. – P. 664–670. doi: 10.1086/511640

5. Birnbaum, D. Resistance CCoA. Antimicrobial resistance: a deadly burden no country can afford to ignore / D. Birnbaum // Canada Communicable
Dis. Report. – 2003. – Vol. 29, Issue 18. – P. 157–164.

6. Antimicrobial resistance in developing countries. Part II : strategies for containment / I. N. Okeke, K. P. Klugman, Z. A. Bhutta et al. // Lancet
Infectious Dis. – 2005. – Vol. 5, Issue 9. – P. 568–580. doi: 10.1016/S1473–3099(05)70217–6

7. Глобальная стратегия ВОЗ по сдерживанию устойчивости к противомикробным препаратам. – Женева : ВОЗ, 2001. – Режим доступа :
http://www.who.int/drugresistance/WHO_Global_Strategy_Russian.pdf

8. The use of aliphatic aldehydes in the synthesis of new pyran annulated derivatives of 1H–2,1–benzothiazin–4–one 2,2–dioxide via domino–type
interactions. The antimicrobial activity of the compounds synthesized / D. A. Lega, N. I. Filimonova, O. G. Geyderikh et al. // ЖОФХ. – 2016. – Vol. 14,
Issue 2 (52). – P. 29–40. doi: 10.24959/ophcj.16.889

9. The synthesis, anti–inflammatory, analgesic and antimicrobial activities of ethyl 2–amino–4–alkyl–4,6–dihydropyrano[3,2–c][2,1]benzothiazin–3–
carboxylate 5,5–dioxides and triethylammonium 3–[(4–hydroxy–1–ethyl–2,2–dioxido–1H–2,1–benzothiazin–3–yl)alkyl]–1–ethyl–1H–2,1–benzothiazin–
5–olat 2,2–dioxides / D. A. Lega, N. I. Filimonova, I. A. Zupanets et al. // ЖОФХ. – 2016. – Vol. 14, Issue 4 (56). – P. 3–11. doi: 10.24959/ophcj.16.900

10. Pat. 1977/4116961 US, U. S. Cl. 260/293.57, 260/327 S, 260/456 P. 1,2–Benzoxathiin–2,2–dioxides / Schwender Ch. F., Sunday Br. R. ; Warner–
Lambert Company. – № 771,502 ; declared 24.02.1977 ; published 26.09.1978.

11. New Heterocyclic Ring System. XIV. 7,11–Dithiaoxasteroids Analogues / V. Cecchetti, A. Fravolini, R. Fringuelli, F. Schiaffella // Heterocycles. –
1984. – Vol. 22, Issue 10. – 2293 p. doi: 10.3987/r–1984–10–2293

12. Tietze, L. F. Domino Reactions in Organic Synthesis / Lutz F. Tietze // Chem. Rev. – 1996. – Vol. 96. – P. 115–136.

13. Chandralekha, E. Efficient atom–economical solvent–free one–pot multicomponent synthesis of 2–amino–4H–benzo[b]pyrans catalyzed by solid
base SiO2–OK as a reusable catalyst / E. Chandralekha, A. Thangamani, R. Valliappan // Res. on Chem. Intermediates. – 2015. – Vol. 41, Issue 4. –
P. 1951–1966. doi: 10.1007/s11164–013–1322–x

14. Litvinov, Y. M. Synthesis, Structure, Chemical Reactivity, and Practical Significance of 2–Amino–4H–pyrans / Y. M. Litvinov, A. M. Shestopalov //
Advances in Heterocyclic Chem. – 2011. – P. 175–260. doi: 10.1016/b978–0–12–386011–8.00003–4

15. Peculiarities of 2–amino–3–R–4–aryl–4H–pyranes multicomponent synthesis derived from 1H–2,1–benzothiazin–4(3H)–one 2,2–dioxide / D. A. Lega,
N. Y. Gorobets, V. P. Chernykh et al. // RSC Advances. – 2016. – Vol. 6, Issue 19. – P. 16087–16099. doi: 10.1039/c5ra24566d

16. Coyle, M. B. Manual of Antimicrobial Susceptibility Testing. American Society for Microbiology / M. B. Coyle. – Washington : American Society
for Microbiology, 2005. – 236 p.

17. Performance Standards for Antimicrobial Susceptibility Testing ; Twenty–Second Informational Supplement. Document M100–S22 // CLSI,
Wayne, PA. – 2012. – Vol. 32, Issue 3.

18. McFarland, J. Nephelometer : An Instrument for Estimating the Number of Bacteria in Suspensions Used for Calculating the Opsonic Index and
for Vaccines / J. McFarland // J. of the Am. Med. Association. – 1907. – Vol. XLIX, Issue 14. – 1176 p. doi: 10.1001/jama.1907.25320140022001f





DOI: https://doi.org/10.24959/ophcj.17.927

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: Ž. org. farm. hìm.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)