The proton-initiated cyclization of N-alkylamides of styrylacetic acids. The synthesis of 5-arylpirrolidine-2-ones

I. Yu. Danyliuk, R. I. Vas’kevich, A. I. Vas’kevich, O. O. Lukianov, M. V. Vovk

Abstract


Aim. To study the effect of the structural parameters of styrylacetic acid amides on the course of the reaction of the electrophilic intramolecular cyclization under the action of polyphosphoric acid and search the rational approaches to obtain N-unsubstituted 5-arylpyrrolidine-2-ones.
Results and discussion. The literature sources related to the main methods of synthesis, as well as the biological activity of 5-arylpyrrolidine-2-ones, have been analyzed and systematized. The regiochemistry of the cyclization of N-unsubstituted and N-alkyl amides of styrylacetic acids has been studied using polyphosphoric acid (PPA).
Experimental part. It has been found that N-unsubstituted styrylacetic acid amides when heating at 100 °C in PPA are cyclized to 5-arylpyrrolidine-2-ones with the yields of 44-58 %. For N-tert-butylamides with donor substituents in the styrenic moiety of the molecule the cyclization under similar conditions is accompanied with elimination of the N-alkyl fragment resulting in N-unsubstituted 5-arylpyrrolidine-2-ones with the yields of 50-95 %. Lactamization of N-benzylamide and N-isopropylamides under the action of PPA proceeds with formation of 1-alkyl-5-arylpyrrolidine-2-ones.
Conclusions. It has been found that the proton-initiated cyclization of N-unsubstituted and N-tert-butylamides of styrylacetic acid with donor substituents in the styrene fragment in polyphosphoric acid when heating at 100 °C is a preparative convenient method for the synthesis of 1-unsubstituted 5-arylpyrrolidine-2-ones. A similar reaction of N-benzyl (isopropyl) amides leads to the preferential formation of 1-alkyl-5-arylpyrrolidine-2-ones.


Keywords


polyphosphoric acid (PPA); styrylacetic acid amides; proton-initiated cyclization; 5-arylpyrrolidine- 2-one; lactams; lactones

References


Pelletier, S. W. (1990). In the Alkaloids: Chemical and Biological Perspectives. Pergamon Press, 1.

Dewick, P. M. (2009). Alkaloids. Medicinal Natural Products: A Biosynthetic Approach, 6, 311–420. doi: 10.1002/9780470742761.ch6

Omura, S., Fujimoto, T., Otoguro, K., Matsuzaki, K., Moriguchi, R., Tanaka, H., Sasaki, Y. (1991). Lactacystin, a novel microbial metabolite, induces neuritogenesis of neuroblastoma cells. The Journal of Antibiotics, 44 (1), 113–116. doi: 10.7164/antibiotics.44.113

Guntern, A., Ioset, J.–R., Queiroz, E. F., Sándor, P., Foggin, C. M., Hostettmann, K. (2003). Heliotropamide, a Novel Oxopyrrolidine–3–carboxamide fromHeliotropiumovalifolium. Journal of Natural Products, 66 (12), 1550–1553. doi: 10.1021/np0302495

Li, J., Liu, S., Niu, S., Zhuang, W., Che, Y. (2009). Pyrrolidinones from the Ascomycete FungusAlbonectria rigidiuscula. Journal of Natural Products, 72 (12), 2184–2187. doi: 10.1021/np900619z

Decker, M., Arneric, S. (1999). Nicotinic acetylcholine receptor–targeted Compounds: A Summary of the development pipeline and therapeutic potential. Neuronal nicotinic receptors: pharmacology and therapeutic opportunities, 395.

Holladay, M. W., Dart, M. J., Lynch, J. K. (1997). Neuronal Nicotinic Acetylcholine Receptors as Targets for Drug Discovery. Journal of Medicinal Chemistry, 40 (26), 4169–4194. doi: 10.1021/jm970377o

Kazmierski, W. M., Andrews, W., Furfine, E., Spaltenstein, A., Wright, L. (2004). Discovery of potent pyrrolidone–based HIV–1 protease inhibitors with enhanced drug–like properties. Bioorganic & Medicinal Chemistry Letters, 14 (22), 5689–5692. doi: 10.1016/j.bmcl.2004.08.039

Sherrill, R. G., Andrews, C. W., Bock, W. J., Davis–Ward, R. G., Furfine, E. S., Hazen, R. J., Wright, L. L. (2005). Optimization of pyrrolidinone based

HIV protease inhibitors. Bioorganic & Medicinal Chemistry Letters, 15 (1), 81–84. doi: 10.1016/j.bmcl.2004.10.029

Enz, A., Feuerbach, D., Frederiksen, M. U., Gentsch, C., Hurth, K., Müller, W., Roy, B. L. (2009). Gamma–lactams—A novel scaffold for highly potent and selective α7 nicotinic acetylcholine receptor agonists. Bioorganic & Medicinal Chemistry Letters, 19 (5), 1287–1291. doi: 10.1016/j.bmcl.2009.01.073

Bocchi, V., Gardini, G. P., Pinza M. (1971). Synthesis and activity of substituted 5–aryl–2–pyrrolidinones (DL). Farmaco, 26, 429–434.

Avetisian, S. A., Kocharov, S. L., Azarian, L. V., Dzhagatcpanian, I. A., Meliken, G. G. (1998). Khimiko–farmatcevticheskii zhurnal, 32 (2), 3–6.

Kiseleva, I. I., Zobacheva, M. M., Perekalin, V. V. (1974). Zhurnal organicheskoi khimii, 10, 2224–2225.

Struble, J., Linz, R. (1972). Neue Derivate des 2–Pyrrolidinons. Pat. DE 2136571; declared 22.07.1971; published 27.01.1972.

Kozlowski, J. A., Yu, W., Wong, M. K. C. (2010). Compounds for the treatment of inflammatory disorders. Pat. WO 2010054279 A1; declared 18.12.2008; published 30.03.2010.

Yan, L., Hale, J. J., Lynch, C. L., Budhu, R., Gentry, A., Mills, S. G., Mandala, S. M. (2004). Design and synthesis of conformationally constrained 3–(N–alkylamino)propylphosphonic acids as potent agonists of sphingosine–1–phosphate (S1P) receptors. Bioorganic & Medicinal Chemistry Letters, 14 (19), 4861–4866. doi: 10.1016/j.bmcl.2004.07.049

Yan, L., Budhu, R., Huo, P., Lynch, C. L., Hale, J. J., Mills, S. G., Mandala, S. M. (2006). 2–Aryl(pyrrolidin–4–yl)acetic acids are potent agonists of sphingosine–1–phosphate (S1P) receptors. Bioorganic & Medicinal Chemistry Letters, 16 (13), 3564–3568. doi: 10.1016/j.bmcl.2006.03.090

Newhouse, B., Allen, S., Fauber, B., Anderson, A. S., Eary, C. T., Hansen, J. D., Burgess, L. E. (2004). Racemic and chiral lactams as potent, selective and functionally active CCR4 antagonists. Bioorganic & Medicinal Chemistry Letters, 14 (22), 5537–5542. doi: 10.1016/j.bmcl.2004.09.001

Xu, J., Lin, S., Myers, R. W., Addona, G., Berger, J. P., Campbell, B., Parmee, E. R. (2017). Novel, highly potent systemic glucokinase activators for the treatment of Type 2 Diabetes Mellitus. Bioorganic & Medicinal Chemistry Letters, 27 (9), 2069–2073. doi: 10.1016/j.bmcl.2016.10.085

Shultz, M., Chen, H.–T., Cho, Y. S., Jiang, L., Fan, J., Liu, G., Majumdar, D., Li, J. (2009). Hydroxamate–based inhibitor of deacetylases. Pat. WO 2009118305 A1; declared 24.03.2009; published 01.10.2009.

Guo, Z., Orth, P., Wong, S.–C., Lavey, B. J., Shih, N.–Y., Niu, X., Kozlowski, J. A. (2009). Discovery of novel spirocyclopropyl hydroxamate and carboxylate compounds as TACE inhibitors. Bioorganic & Medicinal Chemistry Letters, 19 (1), 54–57. doi: 10.1016/j.bmcl.2008.11.034

Nilsson, B. M., Vargas, H. M., Ringdahl, B., & Hacksell, U. (1992). Phenyl–substituted analogs of oxotremorine as muscarinic antagonists. Journal of Medicinal Chemistry, 35 (2), 285–294. doi: 10.1021/jm00080a013

Rosenmund, K. W., Engels, P. (1951). Über die Darstellung von in 5–Stellung phenylierten Butyrolactamen. Archiv Der Pharmazie, 284 (5–6), 209–216. doi: 10.1002/ardp.19512840503

Reppe, W., Mitarbeitern. (1955). Äthinylierung. Justus Liebigs Annalen Der Chemie, 596 (1), 1–4. doi: 10.1002/jlac.19555960102

Shono, T., Kise, N., Kunimi, N., Nomura, R. (1991). Electroreductive Coupling of Aromatic Imines with Electrophiles in the Presence of Chlorotrimethylsilane. Chemistry Letters, 20 (12), 2191–2194. doi: 10.1246/cl.1991.2191

Zhou, Y.–Y., Wang, L.–J., Li, J., Sun, X.–L., Tang, Y. (2012). Side–Arm–Promoted Highly Enantioselective Ring–Opening Reactions and Kinetic Resolution of Donor–Acceptor Cyclopropanes with Amines. Journal of the American Chemical Society, 134 (22), 9066–9069. doi: 10.1021/ja302691r

Rajender Reddy, L., Prasad, K., Prashad, M. (2012). A Protocol for an Asymmetric Synthesis of γ–Amino Acids. The Journal of Organic Chemistry, 77 (14), 6296–6301. doi: 10.1021/jo301177

Guijarro, D., Pablo, Ó., Yus, M. (2013). Synthesis of γ–, δ–, and ε–Lactams by Asymmetric Transfer Hydrogenation of N–(tert–Butylsulfinyl)iminoesters. The Journal of Organic Chemistry, 78 (8), 3647–3654. doi: 10.1021/jo400164y

Emmett, M. R., Grover, H. K., Kerr, M. A. (2012). Tandem Ring–Opening Decarboxylation of Cyclopropane Hemimalonates with Sodium Azide: A Short Route to γ–Aminobutyric Acid Esters. The Journal of Organic Chemistry, 77 (15), 6634–6637. doi: 10.1021/jo3010606

Benati, L., Leardini, R., Minozzi, M., Nanni, D., Spagnolo, P., Strazzari, S., Zanardi, G. (2002). Intramolecular Cyclization of Acyl Radicals onto the Azido Group: A New Radical Approach to Cyclized Lactams†. Organic Letters, 4 (18), 3079–3081. doi: 10.1021/ol026366t

Ivanov, K. L., Villemson, E. V., Budynina, E. M., Ivanova, O. A., Trushkov, I. V., Melnikov, M. Y. (2015). Ring Opening of Donor–Acceptor Cyclopropanes with the Azide Ion: A Tool for Construction of N–Heterocycles. Chemistry – A European Journal, 21 (13), 4975–4987. doi: 10.1002/chem.201405551

Bertozzi, S., Salvadori, P. (1996). Synthesis of 3–Phenyl and 5–Phenyl–2–pyrrolidinone via Rhodium Catalysed Carbonylation of Allylamines. Synthetic Communications, 26 (16), 2959–2965. doi: 10.1080/00397919608004599

Armanino, N., Carreira, E. M. (2013). Ruthenium–Catalyzed Intramolecular Hydrocarbamoylation of Allylic Formamides: Convenient Access to Chiral Pyrrolidones. Journal of the American Chemical Society, 135 (18), 6814–6817. doi: 10.1021/ja4026787

Shu, C., Liu, M.–Q., Wang, S.–S., Li, L., Ye, L.–W. (2013). Gold–Catalyzed Oxidative Cyclization of Chiral Homopropargyl Amides: Synthesis of Enantioenriched γ–Lactams. The Journal of Organic Chemistry, 78 (7), 3292–3299. doi: 10.1021/jo400127x

Miller, R. D., Goelitz, P. (1981). An efficient and general synthesis of 5–substituted pyrrolidinones. The Journal of Organic Chemistry, 46 (8), 1616–1618. doi: 10.1021/jo00321a017

Das, B. G., Nallagonda, R., Dey, D., & Ghorai, P. (2015). Synthesis of Air– and Moisture–Stable, Storable Chiral Oxorhenium Complexes and Their Application as Catalysts for the Enantioselective Imine Reduction. Chemistry – A European Journal, 21 (36), 12601–12605. doi: 10.1002/chem.201501914

Rajender Reddy, L., Prasad, K., Prashad, M. (2012). A Protocol for an Asymmetric Synthesis of γ–Amino Acids. The Journal of Organic Chemistry, 77 (14), 6296–6301. doi: 10.1021/jo301177f

Shono, T., Kise, N., Kunimi, N., Nomura, R. (1991). Electroreductive Coupling of Aromatic Imines with Electrophiles in the Presence of Chlorotrimethylsilane. Chemistry Letters, 20 (12), 2191–2194. doi: 10.1246/cl.1991.2191

Kise, N., Hamada, Y., Sakurai, T. (2017). Electroreductive coupling of aromatic ketones, aldehydes, and aldimines with α,β–unsaturated esters: Synthesis of 5–aryl substituted γ–butyrolactones and lactams. Tetrahedron, 73 (8), 1143–1156. doi: 10.1016/j.tet.2017.01.013

Cheemala, M. N., Knochel, P. (2007). New P,N–Ferrocenyl Ligands for the Asymmetric Ir–Catalyzed Hydrogenation of Imines. Organic Letters, 9 (16), 3089–3092. doi: 10.1021/ol071168t

Krongauz, E. S., Rusanov, A. L., Renard, T. L. (1970). Uspekhi khimii, 39 (9), 1591–1630.

Wittekind, R. R., Weissman, C. (1972). Synthesis of the 1,8–diazaspiro[4.5] decane system. Journal of Heterocyclic Chemistry, 9 (1), 111–113. doi: 10.1002/jhet.5570090118

Hill, R. (1957). Notes – Synthesis of Spirolactams from Nitrocycloalkanes. The Journal of Organic Chemistry, 22 (7), 830–832. doi: 10.1021/jo01358a606

Vaskevich, R. I., Vaskevich, A. I., Daniliuk, I. Yu., Vovk, M. V. (2013). Zhurnal organicheskoi khimii, 49 (8), 1175–1181.

Imada, Y., Shibata, O., Murahashi, S.–I. (1993). Aza– and oxacarbonylations of allyl phosphates catalyzed by rhodium carbonyl cluster. Selective synthesis of β, γ–unsaturated amides, esters, and acids. Journal of Organometallic Chemistry, 451 (1–2), 183–194. doi: 10.1016/0022–328x(93)83025–q

Yi, P., Zhuangyu, Z., Hongwen, H. (1995). Vinylation of Benzylic Quaternary Ammonium Salts Catalyzed by Palladium. Synthesis, 1995 (03), 245–247. doi: 10.1055/s–1995–3911

Bernardim, B., Burtoloso, A. C. B. (2014). A two–step synthesis of the bioprotective agent JP4–039 from N–Boc–l–leucinal. Tetrahedron, 70 (20),

–3296. doi: 10.1016/j.tet.2013.10.059

Qiu, G., Mamboury, M., Wang, Q., Zhu, J. (2016). Ketenimines from Isocyanides and Allyl Carbonates: Palladium–Catalyzed Synthesis of β,γ–Unsaturated Amides and Tetrazoles. Angewandte Chemie International Edition, 55 (49), 15377–15381. doi: 10.1002/anie.201609034

Rigo, B., Fasseur, D., Cherepy, N., Couturier, D. (1989). Decarboxylation of pyroglutamic acids with P2O5/CH3SO3H : A general synthesis of 5–aryl–2–pyrrolidinones. Tetrahedron Letters, 30 (50), 7057–7060. doi: 10.1016/s0040–4039(01)93422–7

Yang, Y.–F., Li, L.–H., He, Y.–T., Luo, J.–Y., Liang, Y.–M. (2014). Gold(I)–catalyzed rearrangement of alkynylaziridine indoles for the synthesis of spiro–tetrahydro–β–carbolines. Tetrahedron, 70 (3), 702–707. doi: 10.1016/j.tet.2013.11.084

Machrouhi, F., Namy, J.–L. (1998). A new coupling reaction between β–lactones and electrophiles mediated by a system. Tetrahedron, 54 (37), 11111–11122. doi: 10.1016/s0040–4020(98)00651–6

Su, Y., Tu, Y.–Q., Gu, P. (2014). Preparation of Enantioenriched γ–Substituted Lactones via Asymmetric Transfer Hydrogenation of β–Azidocyclopropane Carboxylates Using the Ru–TsDPEN Complex. Organic Letters, 16 (16), 4204–4207. doi: 10.1021/ol501895k

Rodrigo, S. K., Guan, H. (2012). Quick Installation of a 1,4–Difunctionality via Regioselective Nickel–Catalyzed Reductive Coupling of Ynoates and Aldehydes. The Journal of Organic Chemistry, 77 (18), 8303–8309. doi: 10.1021/jo301790q


GOST Style Citations


1. Pelletier, S. W. In the Alkaloids : Chemical and Biological Perspectives / Pelletier, S. W. – Pergamon Press, 1990. – 1 p.

2. Dewick, P. M. Alkaloids / P. M. Dewick // Medicinal Natural Products : A Biosynthetic Approach. – 2009. – Vol. 6. – P. 311–420. doi: 10.1002/9780470742761.ch6

3. Lactacystin, a novel microbial metabolite, induces neuritogenesis of neuroblastoma cells / S. Omura, T. Fujimoto, K. Otoguro et al. // J. Antibiot. – 1991. – Vol. 44, Issue 1. – P. 113–116. doi: 10.7164/antibiotics.44.113

4. Heliotropamide, a novel oxopyrrolidine–3–carboxamide from Heliotropium ovalifolium / A. Guntern, J.–R. Ioset, E. F. Queiroz et al. // J. Nat. Prod. – 2003. – Vol. 66, Issue 12. – P. 1550–1553. doi: 10.1021/np0302495

5. Pyrrolidinones from the ascomycete fungus Albonectria rigidiuscula / J. Li, S. Liu, S. Niu et al. // J. Nat. Prod. – 2009. – Vol. 72, Issue 12. – P. 2184–2187. doi: 10.1021/np900619z

6. Decker, M. Nicotinic acetylcholine receptor–targeted Compounds : A Summary of the development pipeline and therapeutic potential / M. Decker, S. Arneric // Neuronal nicotinic receptors : pharmacology and therapeutic opportunities. – 1999. – 395 p.

7. Holladay, M. W. Neuronal nicotinic acetylcholine receptors as targets for drug discovery / M. W. Holladay, M. J. Dart, J. K. Lynch // J. Med. Chem. – 1997. – Vol. 40, Issue 26. – P. 4169–4194. doi: 10.1021/jm970377o

8. Discovery of potent pyrrolidone–based HIV–1 protease inhibitors with enhanced drug–like properties / W. M. Kazmierski, W. Andrews, E. Furfine et al. // Bioorg. Med. Chem. Lett. – 2004. – Vol. 14, Issue 22. – P. 5689–5692. doi: 10.1016/j.bmcl.2004.08.039

9. Optimization of pyrrolidinone based HIV protease inhibitors / R. G Sherrill, C. W Andrews, W. J. Bock et al. // Bioorg. Med. Chem. Lett. – 2005. – Vol. 15, Issue 1. – P. 81–84. doi: 10.1016/j.bmcl.2004.10.029

10. Gamma–lactams–A novel scaffold for highly potent and selective α7 nicotinic acetylcholine receptor agonists / A. Enz, D. Feuerbach, M. U. Frederiksen et al. // Bioorg. Med. Chem. Lett. – 2009. – Vol. 19, Issue 5. – P. 1287–1291. doi: 10.1016/j.bmcl.2009.01.073

11. Bocchi, V. Synthesis and activity of substituted 5–aryl–2–pyrrolidinones (DL) / V. Bocchi, G. P. Gardini, M. Pinza // Farmaco. – 1971. – Vol. 26. – P. 429–434.

12. Синтез и психотропная активность новых производных 2–пирролидона / С. А. Аветисян, С. Л. Кочаров, Л. В. Азарян и др. // Хим. фарм. журн. – 1998. – Т. 32, № 2. – С. 3–6.

13. Киселева, И. И. Синтез новых производных 2–пирролидонов и 4–аминобутановых кислот / И. И. Киселева, М. М. Зобачева, В. В. Перекалин // Журн. орг. хим. – 1974. – Т. 10, № 10. – С. 2224–2225.

14. Neue Derivate des 2–Pyrrolidinons. Pat. DE 2136571 / Struble J., Linz R. – declared 22.07.1971 ; published 27.01.1972.

15. Compounds for the treatment of inflammatory disorders. Pat. WO 2010054279 A1 / Kozlowski J. A., Yu, W., Wong M. K. C. – declared 18.12.2008 ; published 30.03.2010.

16. Design and synthesis of conformationally constrained 3–(N–alkylamino)propylphosphonic acids as potent agonists of sphingosine–1–phosphate (S1P) receptors / L. Yan, J. J. Hale, C. L. Lynch et al. // Bioorg. Med. Chem. Lett. – 2004. – Vol. 14, Issue 19. – P. 4861–4866. doi: 10.1016/j.
bmcl.2004.07.049

17. 2–Aryl(pyrrolidin–4–yl)acetic acids are potent agonists of sphingosine–1–phosphate (S1P) receptors / L. Yan, R. Budhu, P. Huo et al. // Bioorg. Med. Chem. Lett. – 2006. – Vol. 16, Issue 13. – P. 3564–3568. doi: 10.1016/j.bmcl.2006.03.090

18. Racemic and chiral lactams as potent, selective and functionally active CCR4 antagonists / B. Newhouse, S. Allen, B. Fauber et al. // Bioorg. Med. Chem. Lett. – 2004. – Vol. 14, Issue 22. – P. 5537–5542. doi: 10.1016/j.bmcl.2004.09.001

19. Novel, highly potent systemic glucokinase activators for the treatment of type 2 Diabetes Mellitus / J. Xu, S. Lin, R. W. Myers et al. // Bioorg. Med. Chem. Lett. – 2017. – Vol. 27, Issue 9. – P. 2069–2073. doi: 10.1016/j.bmcl.2016.10.085

20. Hydroxamate–based inhibitor of deacetylases. Pat. WO 2009118305 A1 / Shultz M., Chen H.–T., Cho Y. S., Jiang L., Fan J., Liu G., Majumdar D., Li J. – declared 24.03.2009 ; published 01.10.2009.

21. Discovery of novel spirocyclopropyl hydroxamate and carboxylate compounds as TACE inhibitors / Z. Guo, P. Orth, S.–C. Wong et al. // Bioorg. Med. Chem. Lett. – 2009. – Vol. 19, Issue 1. – P. 54–57. doi: 10.1016/j.bmcl.2008.11.034

22. Phenyl–substituted analogs of oxotremorine as muscarinic antagonists / B. M. Nilsson, H. M. Vargas, B. Ringdahl, U. Hacksell // J. Med. Chem. – 1992. – Vol. 35, Issue 2. – P. 285–294. doi: 10.1021/jm00080a013

23. Rosenmund, K. W. Über die darstellung von in 5–stellung phenylierten butyrolactamen / K. W. Rosenmund, P. Engels // Arch. Pharm. – 1951. – Vol. 284, Issue 5–6. – P. 209–216. doi: 10.1002/ardp.19512840503

24. Reppe, W. Äthinylierung / W. Reppe // Justus Liebifs Ann. Chem. – 1955. – Vol. 596, Issue 1. – P. 1–4. doi: 10.1002/jlac.19555960102

25. Electroreductive coupling of aromatic imines with electrophiles in the presence of chlorotrimethylsilane / T. Shono, N. Kise, N. Kunimi, R. Nomnra // Chem. Lett. – 1991. – Vol. 20, Issue 12. – P. 2191–2194. doi: 10.1246/cl.1991.2191

26. Side–arm–promoted highly enantioselective ring–opening reactions and kinetic resolution of donor–acceptor cyclopropanes with amines / Y.–Y. Zhou, L.–J. Wang, J. Li et al. // J. Am. Chem. Soc. – 2012. – Vol. 134, Issue 22. – P. 9066–9069. doi: 10.1021/ja302691r

27. Reddy, L. R. A protocol for an asymmetric synthesis of γ–amino acids / L. R. Reddy, K. Prasad, M. Prashad // J. Org. Chem. – 2012. – Vol. 77, Issue 14. – P. 6296–6301. doi: 10.1021/jo301177f

28. Guijarro, D. Synthesis of γ–, δ–, and ε–lactams by asymmetric transfer hydrogenation of N–(tert–butylsulfinyl)iminoesters / D. Guijarro, O. Pablo, M. Yus // J. Org. Chem. – 2013. – Vol. 78, Issue 8. – P. 3647–3654. doi: 10.1021/jo400164y

29. Emmett, M. R. Tandem ring–opening decarboxylation of cyclopropane hemimalonates with sodium azide : a short route to γ–aminobutyric acid esters / M. R. Emmett, H. K. Grover, M. A. Kerr // J. Org. Chem. – 2012. – Vol. 77, Issue 15. – P. 6634–6637. doi: 10.1021/jo3010606

30. Intramolecular cyclization of acyl radical onto the azido group: a new radical approach to cyclized lactams / L. Benati, R. Leardini, M. Minozzi et al. // Org. Lett. – 2002. – Vol. 4, Issue 18. – P. 3079–3081. doi: 10.1021/ol026366t

31. Ring of donor–acceptor cyclopropanes with the azide ion: a tool for construction of N–heterocycles / K. L. Ivanov, E. V. Villemson, E. M. Budynina et al. // Chem. Eur. J. – 2015. – Vol. 21, Issue 13. – P. 4975–4987. doi: 10.1002/chem.201405551

32. Bertozzi, S. Synthesis of 3–phenyl– and 5–phenyl–2–pyrrolidinone via rhodium catalysed carbonylation of allylamines / S. Bertozzi, P. Salvadory // Synt. Commun. – 1996. – Vol. 26, Issue 16. – P. 2959–2965. doi: 10.1080/00397919608004599

33. Armanino, N. Ruthenium–catalyzed intramolecular hydrocarbamoylation of allylic formamides: convenient access to chiral pyrrolidones / N. Armanino, E. M. Carreira // J. Am. Chem. Soc. – 2013. – Vol. 135, Issue 18. – P. 6814–6817. doi: 10.1021/ja4026787

34. Gold–catalyzed oxidative cyclization of chiral homopropargyl amides: synthesis of enantioenriched γ–lactams / C. Shu, M.–Q. Liu, S.–S. Wang et al. // J. Org. Chem. – 2013. – Vol. 78, Issue 7. – P. 3292–3299. doi: 10.1021/jo400127x

35. Miller, R. D. An efficient and general synthesis of 5–substituted pyrrolidinones / R. D. Miller, P. Goelitz // J. Org. Chem. – 1981. – Vol. 46, Issue 8. – P. 1616–1618. doi: 10.1021/jo00321a017

36. Synthesis of air– and moisture–stable, storable chiral oxorhenium complexes and their application as catalysts for the enantioselective imine reduction / B. G. Das, R. Nallagonda, D. Dey, P. Ghorai // Chem. Eur. J. – 2015. – Vol. 21, Issue 36. – P. 12601–12605. doi: 10.1002/chem.201501914

37. Reddy, L. R. A protocol for an asymmetric synthesis of γ–amino acids / L. R. Reddy, K. Prasad, M. Prashad // J. Org. Chem. – 2012. – Vol. 77, Issue 14. – P. 6296–6301. doi: 10.1021/jo301177f

38. Electroreductive coupling of aromatic imines with electrophiles in the presence of chlorotrimethylsilane / T. Shono, N. Kise, N. Kunimi, R. Nomura // Chem. Lett. – 1991. – Vol. 20, Issue 12. – P. 2191–2194. doi: 10.1246/cl.1991.2191

39. Kise, N. Electroreductive coupling of aromatic ketones, aldehydes, and aldimines with α,β–unsaturated esters : Synthesis of 5–aryl substituted γ–butyrolactones and lactams / N. Kise, Y. Hamada, T. Sakurai // Tetrahedron. – 2017. – Vol. 73, Issue 8. – P. 1143–1156. doi: 10.1016/j.tet.2017.01.013

40. Cheemala, M. N. New P,N–ferrocenyl ligands for the asymmetric Ir–catalyzed hydrogenation of imines / M. N. Cheemala, P. Knochel // Org. Lett. – 2007. – Vol. 9, Issue 16. – P. 3089–3092. doi: 10.1021/ol071168t

41. Кронгауз, Е. С. Полифосфорная кислота в реакциях циклизации и полициклизации / Е. С. Кронгауз, А. Л. Русанов, Т. Л. Ренард // Успехи химии. – 1970. – Т. 39, № 9. – С. 1591–1630.

42. Wittekind, R. R. Synthesis of the 1,8–diazaspiro[4.5]decane system / R. R. Wittekind, C. Weissman // J. Heterocyclic Chem. – 1972. – Vol. 9, Issue 1. – P. 111–113. doi: 10.1002/jhet.5570090118

43. Hill, R. K. Synthesis of spirolactams from nitrocycloalkanes / R. K. Hill // J. Org. Chem. – 1957. – Vol. 22, Issue 7. – P. 830–832. doi: 10.1021/jo01358a606

44. Электрофильная внутримолекулярная циклизация функциональных производных непредельных соединений V*. Циклизация анилидов стирилуксусных кислот в полифосфорной кислоте / Р. И. Васькевич, А. И. Васькевич, И. Ю. Данилюк, М. В. Вовк // Журн. орг. химии. – 2013. – Т. 49, № 8. – С. 1192–1198.

45. Imada, Y. Aza– and oxacarbonylations of allyl phosphates catalyzed by rhodium carbonyl cluster. Selective synthesis of β,γ–unsaturated amides, esters, and acids / Y. Imada, O. Shibata, S.–I. Murahashi // J. Organomet. Chem. – 1993. – Vol. 451, Issue 1–2. – P. 183–194. doi: 10.1016/0022–328X(93)83025–Q

46. Yi, P. Vinylation of benzylic quaternary ammonium salts catalyzed by palladium / P. Yi, Z. Zhuangyu, H. Hongwen // Synthesis. – 1995. – Vol. 1995, Issue 03. – P. 245–247. doi: 10.1055/s–1995–3911

47. Bernardin, B. A two–step synthesis of bioprotective agent JP4–039 from N–Boc–L–leucinal / B. Bernardim, A. C. B. Burtoloso // Tetrahedron. – 2014. – Vol. 70, Issue 20. – P. 3291–3296. doi: 10.1016/j.tet.2013.10.059

48. Ketenimines from isocyanides and allyl carbonates : palladium–catalyzed synthesis of β,γ–unsaturated amides and tetrazoles // G. Qiu, M. Mamboury, Q. Wang, J. Zhu // Angew. Chem. Int. Ed. – 2016. – Vol. 55, Issue 49. – P. 15377–15381. doi: 10.1002/anie.201609034

49. Decarboxylation of pyroglutamic acids with P2O5/CH3SO3H : a general synthesis of 5–aryl–2–pyrrolidinones / B. Rigo, D. Fasseur, N. Cherepy, D. Couturier // Tetrahedron Lett. – 1989. – Vol. 30, Issue 50. – P. 7057–7060. doi: 10.1016/S0040–4039(01)93422–7

50. Gold(I)–catalyzed rearrangement of alkynylaziridine indoles for the synthesis of spiro–tetrahydro–β–carbolines / Y.–F. Yang, L.–H. Li, Y.–T. He et al. // Tetrahedron. – 2014. – Vol. 70, Issue 3. – P. 702–707. doi: 10.1016/j.tet.2013.11.084

51. Machrouhi, F. A new coupling reaction between β–lactones and electrophiles mediated by a SmI2NiI2 catalytic system / F. Machrouhi, J.–L. Namy // Tetrahedron. – 1998. – Vol. 54, Issue 37. – P. 11111–11122. doi: 10.1016/S0040–4020(98)00651–6

52. Su, Y. Preparation of enantioenriched γ–substituted lactones via asymmetric transfer hydrogenation of β–azidocyclopropane carboxylates using the Ru–TsDPEN complex / Y. Su, Y.–Q. Tu, P. Gu // Org. Lett. – 2014. – Vol. 16, Issue 16. – P. 4204–4207. doi: 10.1021/ol501895k

53. Rodrigo, S. K. Quick installation of a 1,4–difunctionality via regioselective Nickel–catalyzed reductive coupling of ynoates and aldehydes / K. S. Rodrigo, H. Guan // J. Org. Chem. – 2012. – Vol. 77, Issue 18. – P. 8303–8309. doi: 10.1021/jo301790q





DOI: https://doi.org/10.24959/ophcj.18.933

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: Ž. org. farm. hìm.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)