The synthesis of isoxazole-containing arylcyclopentenyl sulfones by the ring-closing metathesis reaction

O. V. Pavliuk, Yu. V. Bezugly, V. I. Kashkovsky

Abstract


The synthesis of new isoxazole-containing arylcyclopentenyl sulfones is presented by the ring-closing metathesis reaction (RCM).
Aim. To develop the preparative methods for the synthesis of new potential biologically active 3-aryl-5-[1-(aryl-4-sulfonyl)-cyclopent-3-enyl]isoxazoles obtained by RCM.
Results and discussion. A number of new sulfones with an active methylene group was obtained by the interaction of bromo derivatives of isoxazoles with sodium salts of sulfinic acids. By alkylation of the active methylene group with allyl bromide a number of new diallyl derivatives was synthesized. The target isoxazolecontaining arylcyclopentenyl sulfones were synthesized from the diallyl derivatives obtained using the ruthenium-carbene catalyst.
Experimental part. The synthesis of the starting and target compounds was performed under classical preparative conditions; the methods of column chromatography; elemental analysis; LCMS; 1H and 13C NMRspectroscopy were used.
Conclusions. The synthetic sequence for preparation of new isooxazole-containing aryl cyclopentenyl sulfones has been developed using RCM at the final stage.


Keywords


3-aryl-5-(arylsulfonylmethyl) isoxazole; alkylation; diallyl derivatives; metathesis; ruthenium; arylsulfonylcyclopentenyl isoxazoles

References


Giomi, D., Cordero, F. M., Machetti, F., Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K. (2008). Isoxazoles. In: Compr. Heterocycl. Chem. III, 4, 367.

Tkachenko, V. V., Chebanov, V. A. (2016). Khimiia geterotcyklicheskikh soedinenii, 52 (11), 866–887.

Kumar, A. K., Jayaroopa, P. (2013). Synthesis and Pharmacological Properties of 5–Aminoalkyl– and 3–Aminoalkylisoxazoles and Related Derivatives.

International Journal of Pharmaceutical, Chemical and Biological Sciences, 3 (2), 294–304.

Kano, H., Adachi, I., Kido, R., Hirose, K. (1967). Isoxazoles. XVIII. Synthesis and Pharmacological Properties of 5–Aminoalkyl– and 3–Aminoalkylisoxazoles

and Related Derivatives. Journal of Medicinal Chemistry, 10 (3), 411–418. doi: 10.1021/jm00315a028

Selvam, C., Jachak, S. M., Thilagavathi, R., Chakraborti, A. K. (2005). Design, synthesis, biological evaluation and molecular docking of curcumin

analogues as antioxidant, cyclooxygenase inhibitory and anti–inflammatory agents. Bioorganic & Medicinal Chemistry Letters, 15 (7), 1793–1797. doi: 10.1016/j.bmcl.2005.02.039

Bauer, V. J., Safir, S. R. (1972). Certain isoxazolylpyridines and isothiozolilpyridines. Pat. US3598829 (A); declared 21.03.1966; published 10.08.1972.

Solanki, P. V., Uppelli, S. B., Padaki, S. A., Anekal, D., Dahale, S. B., Bembalkarb, S. R., Mathad, V. T. (2015). A Facile Approach for the Synthesis of Highly Pure Immunomodulator Drugs– Leflunomide and Teriflunomide: A Robust Strategy to Control Impurities. World Journal of Pharmaceutical Sciences, 13 (11), 2265–2272.

Talley, J. J., Brown, D. L., Carter, J. S., Graneto, M. J., Koboldt, C. M., Masferrer, J. L., Seibert, K. (2000). 4–[5–Methyl–3–phenylisoxazol–4–yl]– benzenesulfonamide, Valdecoxib: A Potent and Selective Inhibitor of COX–2. Journal of Medicinal Chemistry, 43 (5), 775–777. doi: 10.1021/jm990577v

Nasr, T., Bondock, S., Eid, S. (2015). Design, synthesis, antimicrobial evaluation and molecular docking studies of some new 2,3–dihydrothiazoles and 4– thiazolidinones containing sulfisoxazole. Journal of Enzyme Inhibition and Medicinal Chemistry, 31 (2), 236–246. doi: 10.3109/14756366.2015.1016514

Hutchings R. H., Jones J. H., Chao J., Enyedy I. J., Marcotte D. (2014). Novel compounds for modulation of ror–gamma activity. Pat. WO 2014028669 A1; declared 15.08.2012; published 20.02.2014.

Schanz, H.–J., Jafarpour, L., Stevens, E. D., Nolan, S. P. (1999). Coordinatively Unsaturated 16–Electron Ruthenium Allenylidene Complexes: Synthetic, Structural, and Catalytic Studies. Organometallics, 18 (24), 5187–5190. doi: 10.1021/om9906316

Pavliuk, O. V., Holovatiuk, V. M., Bezugly, Y. V., Kashkovsky, V. I. (2015). Synthesis of new sulfonylamide derivatives of isoxazole via ring–closing metathesis. Reports of the National Academy of Sciences of Ukraine, (3), 127–134. doi: 10.15407/dopovidi2015.03.127

Klimova, V. A. (1975) Osnovnye mikrometody analiza organicheskikh soedinenii. Moscow: Khimiia, 624.


GOST Style Citations


1. Isoxazoles. In : Compr. Heterocycl. Chem. III / D. Giomi, F. M. Cordero, F. Machetti et al. – Elsevier : Oxford, 2008. – Vol. 4. – 367 p.

2. Ткаченко, В. В. Реакции 3(5)–аминоизоксазолов с применением классических методов активации, микроволнового и ультразвукового
излучения / В. В. Ткаченко, В. А. Чебанов // Химия гетероцикл. соед. – 2016. – Т. 52 (11). – С. 866–887.

3. Kumar, A. K. Isoxazoles : Molecules with potential medicinal properties / A. K. Kumar, P. Jayaroopa // Intern. J. of Pharmac., Chem. and Biological
Sci. – 2013. – Vol. 3, Issue 2. – P. 294–304.

4. Isoxazoles. XVIII. Synthesis and Pharmacological Properties of 5–Aminoalkyl– and 3–Aminoalkylisoxazoles and Related Derivatives / H. Kano,
I. Adachi, R. Kido, K. Hirose // J. Med. Chem. – 1967. – Vol. 10, Issue 3. – P. 411–418. doi: 10.1021/jm00315a028

5. Design, synthesis, biological evaluation and molecular docking of curcumin analogues as antioxidant, cyclooxygenase inhibitory and anti–inflammatory
agents / C. Selvam, S. M. Jachak, R. Tilagavathi, A. K. Chakraborti // Bioorg. Med. Chem. Lett. – 2005. – Vol. 15, Issue 7. – P. 1793–1797.
doi: 10.1016/j.bmcl.2005.02.039

6. Certain isoxazolylpyridines and isothiozolilpyridines. Pat. US3598829 (A) / Bauer V. J., Safir S. R. – declared 21.03.1966 ; published 10.08.1972.

7. A Facile Approach for the Synthesis of Highly Pure Immunomodulator Drugs–Leflunomide and Teriflunomide : A Robust Strategy to Control
Impurities / P. V. Solanki, S. B. Uppelli, S. A. Padaki et al. // World J. of Pharmac. Sci. –2015. – Vol. 13, Issue 11. – P. 2265–2272.

8. 4–[5–Methyl–3–phenylisoxazol–4–yl]–benzenesulfonamide, valdecoxib : a potent and selective inhibitor of COX–2 / J. J. Talley, D. L. Brown, J. S.
Carter et al. // J. Med. Chem. – 2000. – Vol. 43, Issue 5. – P. 775–777. doi: 10.1021/jm990577v

9. Nasr, T. Design, synthesis, antimicrobial evaluation and molecular docking studies of some new 2,3–dihydrothiazoles and 4–thiazolidinonescontaining
sulfisoxazole / T. Nasr, S. Bondock, S. Eid // J. of Enzyme Inhibition and Med. Chem. – 2015. – Vol. 31, Issue 2. – P 236–246. doi:
10.3109/14756366.2015.1016514

10. Novel compounds for modulation of ror–gamma activity. Pat. WO 2014028669 A1 / Hutchings R. H., Jones J. H., Chao J., Enyedy I. J., Marcotte D. – declared 15.08.2012 ; published 20.02.2014.

11. Coordinatively Unsaturated 16–Electron Ruthenium Allenylidene Complexes : Synthetic, Structural, and Catalytic Studies. / H. J. Schanz, L. Jafarpour,
E. D. Stevens, S. P. Nolan // Organometallics. – 1999. – Vol. 18, Issue 24. – P. 5187–5190. doi: 10.1021/om9906316

12. Синтез новых сульфониламидных производных изоксазола реакцией метатезиса с закрытием цикла / А. В. Павлюк, В. Н. Головатюк, Ю. В. Безуглый, В. И. Кашковский // Reports of the National Academy of Sci. of Ukraine. – 2015. – № 3. – С. 127–134. doi: 10.15407/dopovidi2015.03.127

13. Климова, В. А. Основные микрометоды анализа органических соединений / В. А. Климова. – М. : Химия, 1975. – 624 с.





DOI: https://doi.org/10.24959/ophcj.18.934

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: Ž. org. farm. hìm.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)