The molecular design of biologically active derivatives of N-phenylanthranilic acid

O. M. Svechnikova, S. V. Kolisnyk, O. F. Vinnyk, T. A. Kostina, T. V. Zhukova

Abstract


Most QSAR methods are based on determination of dependence of different types of biological activity of compounds on their physicochemical parameters, which determination is experimentally quite difficult, while those compounds that are calculated theoretically often have systematic deviations.
Aim. To determine the increments of substituents in isostructural series of hydrazides and thiosemicarbazides of substituted N-phenylanthranilic acids for their anti-inflammatory activity by the empirical method on the de nova model.
Results and discussion. The study was conducted for 18 thiosemicarbazide (batch 1) and 15 hydrazides (batch 2) of substituted N-phenylanthranilic acid. The increments calculated show that introduction of substituents in the anthranilic moiety of the thiosemicarbazide molecule increases the anti-inflammatory activity. The increments of substituents in the non-anthranilic fragment of the molecule have different signs and values, depending on the nature and position of the radical. Introduction of substituents (Cl-, NO2-) into the para-position of the anthranilic fragment of the molecule of N-phenylantranilic acid hydrazide increases the anti-inflammatory activity, while introduction of various substituents into the non-anthranilic fragment of the molecule causes both an increase and a decrease in lg P.
Experimental part. The study of the anti-inflammatory activity was performed on the “formalin edema” model in rats using the oncometric method. The substances were administered orally in the form of a fine suspension stabilized by the emulsifier Tween-80 in the doses of 50 mg/kg of the animal body weight. The reference drug indomethacin was administered in the dose of 50 mg/kg.
Conclusions. The increments of substituents in isostructural series of hydrazides and thiosemicarbazides of substituted N-phenylanthranilic acids have been determined by the empirical method. The dependence of the increments on the nature and position of substituents in molecules has been analyzed.


Keywords


substituted N-phenylanthranilic acids; anti-inflammatory activity

References


Free, S. M., Wilson, J. W. (1964). A Mathematical Contribution to Structure–Activity Studies. Journal of Medicinal Chemistry, 7 (4), 395–399. doi:

1021/jm00334a001

Craig, R. H. (1972). Structure–antibacterial activity relationships of 2–phenyl–quinoline–4–carbynols. J. Pharm. Sci., 61 (4), 423–428.

Smithfield, W. R., Purcell, W. D. (1967). Relation between chemical structure and pharmaceutical activity of pyperidinsulfamoil substituted thiosemicarbazide.

J. Pharm. Sci., 56 (6), 557–579.

Bulatova, Z. M., Lymarev, P. S., Osmonalieva, T. T. et al. (2012). Vestnik KazNU. Seriia Biologicheskaia, 1(53), 27–29.

Ivanov, V. V., Sleta, L. A., Tolstaia, A. A. (2003). Zhurnal organicheskoi i farmatcevticheskoi khimii, 2, (4 (8)), 66–68.

Drozhzhyna, N. A. (2004). Vestnik Rossiiskogo universiteta druzhby narodov. Seriia: Meditcina, 2 (26), 96–101.

Gazaliev, A. M., Zhurigenov, M. Zh., Fazylov, S. D. (1992) Novye fosforproizvodnye efedrinovykh alkaloidov. Almaty: Gylym, 176.

Navdeep, S. S. (2012). Review on Computational Methods in Developing Quantitative Structure–Activity Relationships (QSAR). Journal of Drug

Design and Discovery, 3 (3), 815–836.

Rudenko, V. M. (2012). Matematychna statystyka. Kyiv: Tsentr uchbovoi lіteratury, 304.

Mokhort, N. A., Riabukha, T. K. (1971). Patologicheskaia fiziologiia i eksperimentalnaia terapiia, 15 (2), 100–102.

Derzhavna farmakopeia Ukrainy. (2001). Kharkiv: RIREH, 1, 556.


GOST Style Citations


1. Free, S. M. A mathematical contribution to structure – activity studies / S. M. Free, J. M. Wilson // J. Med. Chem. – 1964. – Vol. 7, Issue 4. –
P. 395–399. doi: 10.1021/jm00334a001

2. Craig, R. H. Structure–antibacterial activity relationships of 2–phenyl–quinoline–4–carbynols / R. H. Craig // J. Pharm. Sci. – 1972. – Vol. 61, Issue 4. – P. 423–428.

3. Smithfield, W. R. Relation between chemical structure and pharmaceutical activity of pyperidinsulfamoil substituted thiosemicarbazide / W. R. Smithfield,
W. D. Purcell // J. Pharm. Sci. – 1967. – Vol. 56, Issue 6. – P. 557–579.

4. Компьютерный прогноз биологической активности комплекса на основе пиридоксина, глицина и железа / З. М. Булатова, П. С. Лымарев, Т. Т. Осмоналиева и др. // Вестник КазНУ. Серия Биология. – 2012. – № 1 (53). – С. 27–29.

5. Иванов, В. В. Дискриминантный анализ биологически активных производных эстрадиола / В. В. Иванов, Л. А. Слета, А. А. Толстая //
Журн. орг. та фарм. химії. – 2003. – Т. 2, Вып. 4 (8). – С. 66–68.

6. Дрожжина, Н. А. Математическое прогнозирование показателей токсичности и гигиенических нормативов пестицидов ряда фенилмочевины для оценки их экологической безопасности / Н. А. Дрожжина // Вестник Рос. университета дружбы народов. Серия : Медицина. – 2004. – № 2 (26). – С. 96–101.

7. Газалиев, А. М. Новые фосфорпроизводные эфедриновых алкалоидов / А. М. Газалиев, М. Ж. Журигенов, С. Д. Фазылов. – Алматы : Гылым, 1992. – 176 с.

8. Navdeep, S. S. A Review on Computational Methods in Developing Quantitative Structure–Activity Relationships (QSAR) / S. S. Navdeep // J. of
Drug Design and Discovery. – 2012. – Vol. 3, Issue 3. – P. 815–836.

9. Руденко, В. М. Математична статистика : навч. посіб. / В. М. Руденко. – К. : Центр учбової літератури, 2012. – 304 с.

10. Мохорт, Н. А. Новый метод измерения объема лапы крыс / Н. А. Мохорт, Т. К. Рябуха // Патол. физиол. и эксперимент. терапия. – 1971. –
Т. 15, № 2. – С. 100–102.

11. Державна фармакопея України / Державне підприємство «Науково–експертний фармакопейний центр». – 1–е вид. – Х. : РІРЕГ, 2001. – 556 с.





DOI: https://doi.org/10.24959/ophcj.18.937

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: Ž. org. farm. hìm.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)