The synthesis and structural functionalization of 6-substituted 2,3-dihydroimidazo[2,1-b] [1,3]thiazol-5-ones

Authors

  • L. M. Saliyeva Eastern European National University named after Lesia Ukrainka, Ukraine
  • R. I. Vas’kevich Institute of Organic Chemistry of the NAS of Ukraine, Ukraine
  • N. Yu. Slyvka Eastern European National University named after Lesia Ukrainka, Ukraine
  • M. V. Vovk Institute of Organic Chemistry of the NAS of Ukraine, Ukraine

DOI:

https://doi.org/10.24959/ophcj.18.940

Keywords:

3-аllyl-2-thiohydantoins, cyclization, 2-halogenomethyl-2, 3-dihydroimidazo[2, 1-b][1, 3]thiazol- 5-ones, nucleophilic substitution, [3 2]-cycloaddition, 1, 2, 3-triazoles

Abstract

Aim. To extend the synthetic limits of the reaction of the electrophilic intramolecular cyclization (EIC) on the examples of 5,5-disubstituted and 5-yliden substituted 3-allyl-2-thiohydantoins and the directed structural modification of 2-halogenomethyl-2,3-dihydroimidazo[2,1-b][1,3]thiazole-5-ones obtained.
Results and discussion. It has been found that the cyclization of 5,5-disubstituted and 5-yliden substituted 3-allyl-2-thiohydantoins under the effect of polyphosphoric acid (PPA), bromine and iodine is an effective method for the synthesis of new 2,3-dihydroimidazo[2,1-b][1,3]thiazole-5-ones. The reaction of the nucleophilic substitution of their 2-halogenomethyl representatives was used to obtain a number of sulfur-containing derivatives and azides. The latter were tested in the reaction of [3+2]-cycloaddition with N-phenylmaleinimide and propargyl alcohol.
Experimental part. A series of 2-substituted 2,3-dihydroimidazo[2,1-b][1,3]thiazole-5-ones was synthesized by the reaction of 5,5-disubstituted and 5-yliden substituted 3-allyl-2-thiohydantoins with PPA and halogens with the yields of 66-96 %. A directed modification of the halogenomethyl group of imidazotiazolones produced a series of sulfur-containing derivatives and azides with the yields of 63-93 %. The azides synthesized were used in the [3+2]-cycloaddition reaction with N-phenylmaleinimide and propargyl alcohol leading to 1,2,3-triazoloderivatives with the yields of 51-85 %; their structure was confirmed by the complex spectral analysis.
Conclusions. A convenient method for the synthesis of 2-halogenomethyl-substituted imidazo[2,1-b][1,3] thiazoles, which are effective reagents for the directed structural modification by sulfur- and nitrogen-containing functional groups, has been developed.

Downloads

Download data is not yet available.

References

  1. Dangi, R. R., Hussain, N., Talesara, G. L. (2010). Synthesis characterization and biological evaluation of some alkoxyphthalimide derivatives of 3–(4–substituted phenyl)–6,6–diphenyl–3,3a–dihydro–2H–imidazo[2,1–b]pyrazolo[3,4–d][1,3]thiazol–7(6H)–one. Medicinal Chemistry Research,
  2. (9), 1490–1498. doi: 10.1007/s00044–010–9392–4
  3. Gürsoy, E., Güzeldemirci, N. U. (2007). Synthesis and primary cytotoxicity evaluation of new imidazo[2,1–b]thiazole derivatives. European Journal of Medicinal Chemistry, 42 (3), 320–326. doi: 10.1016/j.ejmech.2006.10.012
  4. Andreani, A., Rambaldi, M., Locatelli, A., Bossa, R., Galatulas, I., Ninci, M. (1992). Synthesis and cardiotonic activity of 2,5–dimethyoxyphenylimidazo[2,1–b]thiazoles. European Journal of Medicinal Chemistry, 27 (4), 431–433. doi: 10.1016/0223–5234(92)90159–x
  5. Andreani, A. (1999). 6–Thienyl and 6–phenylimidazo[2,1–b]thiazoles as inhibitors of mitochondrial NADH dehydrogenase. European Journal of Medicinal Chemistry, 34 (10), 883–889. doi: 10.1016/s0223–5234(99)00203–2
  6. Laroche, C., Gilbreath, B., Kerwin, S. M. (2014). Exploring the synthetic utility of 1–alkynylimidazoles: regiocontrolled cyclization to diverse imidazoazines and imidazoazoles. Tetrahedron, 70 (30), 4534–4539. doi: 10.1016/j.tet.2014.04.099
  7. Moser, W., Schindler, C., Keiser, J. (2017). Efficacy of recommended drugs against soil transmitted helminths: systematic review and network meta–analysis. British Medicinal Journal, 357, 1–10. doi: 10.1136/bmj.j4307.
  8. Ulusoy, N., Kiraz, M., Küçükbasmac, Ö. (2002). New 6–(4–Bromophenyl)–imidazo[2,1–b]thiazole Derivatives: Synthesis and Antimicrobial Activity. Monatshefte Fur Chemie / Chemical Monthly, 133 (10), 1305–1315. doi: 10.1007/s007060200108
  9. Dorn, H., Welfle, H. (1967). Potentielle Cytostatica, X. Mono– und bicyclische Systeme aus Senfölen sowie Rhodan–wasserstoffsäure und Bis–[2–chlor–äthyl]–amin. Chemische Berichte, 100 (10), 3246–3259. doi: 10.1002/cber.19671001014
  10. Tsuge, O., Kanemasa, S., Hamamoto, T. (1982). A novel Tetravalent sulfur compound, 1,3,6–triphenylimidazo[ 1,2–c]thiaivzole; synthesis and peripheral cycloaddition reaction. Chemistry Letters, 11 (9), 1491–1494. doi: 10.1246/cl.1982.1491
  11. Tsuge, O., Kanemasa, S., Hamamoto, T. (1983). Stereospecific reversible cycloaddition reactions of a biperifunctional compound, 1,3,6–triphenylimidazo[1,2–c]thiaivzole. Chemistry Letters, 12 (1), 85–88. doi: 10.1246/cl.1983.85
  12. Kanemasa, S., Tsuge, O., Hamamoto, T. (1984). Synthesis and Cycloaddition Reaction of a Nitrogen–bridged Tetravalent Sulfer Compound 1,3,6–Triphenylimidazo[1,2–c]thiazole. Heterocycles, 21 (2), 573. doi: 10.3987/s–1984–02–0573
  13. Ikeda, K., Hata, S.–I., Tanaka, Y., Yamamoto, T. (2000). Preparation of imidazo[2,1–b]thiazoles and thiazolo[3,2–a]–benzimidazoles using s–ethenylsulfilimines. Organic Preparations and Procedures International, 32 (4), 401–405. doi: 10.1080/00304940009355945
  14. Stalling, T., Pauly, J., Schmidtmann, M., Martens, J. (2013). Multicomponent Synthesis of Bicyclic Thiazolidinethiones and Oxazolidinones in Water. European Journal of Organic Chemistry, 2014 (4), 833–843. doi: 10.1002/ejoc.201301213
  15. Klika, K. D., Bernát, J., Imrich, J., Chomča, I., Sillanpää, R., Pihlaja, K. (2001). Unexpected Formation of a Spiro Acridine and Fused Ring System from the Reaction between anN–Acridinylmethyl–Substituted Thiourea and Bromoacetonitrile under Basic Conditions. The Journal of Organic
  16. Chemistry, 66 (12), 4416–4418. doi: 10.1021/jo001695p
  17. Klika, K. D., Pihlaja, K., Imrich, J., Vilková, M., Bernát, J. (2006). Unusual structures derived fromN–acridin–9–yl methyl N–acridin–9–yl thiourea based on the propensity of N–10 to retain H. Journal of Heterocyclic Chemistry, 43 (3), 739–743. doi: 10.1002/jhet.5570430331
  18. Saliieva, L. M., Slyvka, N. Yu., Vaskevich, R. I. et al. (2016). Ukrainskyi khimichnyi zhurnal, 82 (5), 64–70.
  19. Saliieva, L. M., Slyvka, N. Yu., Vaskevich, А. I. et al. (2016). Zhurnal orhanichnoi ta farmatsevtychnoi khimii, 14 (4), 58–62.
  20. Magd El–Din, A. A., Roaiah, H. F., Elsharabasy, S. A., Hassan, A. Y. (2007). A Novel Synthesis of Some New Imidazothiazole and Glycocyamidine Derivatives and Studies on Their Antimicrobial Activities. Phosphorus, Sulfur, and Silicon and the Related Elements, 182 (3), 529–536. doi: 10.1080/10426500601013224
  21. Diachenko, I. V., Vaskevich, R. I., Vaskevich, A. I. et. al. (2016). Zhurnal organicheskoi khimii, 52(5), 745–752.
  22. Irie, T., Fujii, I., Sawa, M. (2012). Design and combinatorial synthesis of a novel kinase–focused library using click chemistry–based fragment assembly. Bioorganic & Medicinal Chemistry Letters, 22 (1), 591–596. doi: 10.1016/j.bmcl.2011.10.076
  23. Tiew, K.–C., Dou, D., Teramoto, T., Lai, H., Alliston, K. R., Lushington, G. H., Groutas, W. C. (2012). Inhibition of Dengue virus and West Nile virus proteases by click chemistry–derived benz[d]isothiazol–3(2H)–one derivatives. Bioorganic & Medicinal Chemistry, 20 (3), 1213–1221. doi: 10.1016/j.bmc.2011.12.047
  24. Pramitha, P., Bahulayan, D. (2012). Stereoselective synthesis of bio–hybrid amphiphiles of coumarin derivatives by Ugi–Mannich triazole randomization using copper catalyzed alkyne azide click chemistry. Bioorganic & Medicinal Chemistry Letters, 22 (7), 2598–2603. doi: 10.1016/j. bmcl.2012.01.111
  25. Dürüst, Y., Karakuş, H., Kaiser, M., Tasdemir, D. (2012). Synthesis and anti–protozoal activity of novel dihydropyrrolo[3,4–d][1,2,3]triazoles. European Journal of Medicinal Chemistry, 48, 296–304. doi: 10.1016/j.ejmech.2011.12.028
  26. Yoshino, H., Sato, H., Shiraishi, T., Tachibana, K., Emura, T., Honma, A., Kawata, H. (2010). Design and synthesis of an androgen receptor pure antagonist (CH5137291) for the treatment of castration–resistant prostate cancer. Bioorganic & Medicinal Chemistry, 18 (23), 8150–8157. doi: 10.1016/j.bmc.2010.10.023
  27. Garst, M. E., Dolby, L. J., Esdandiari, S., Avey, A. A., Mac Kenzie, V. R., Muchmore D. C. (2007). Synthesis of Imidazole–2–thiones via Thiohydantoins. Pat. WO 2007/041048 A3; declared 22.09.2006; published 12.04.2007.
  28. Khodair, A. I., Gesson, J.–P. (1998). Sulfur glycosylation reactions involving 3–allyl–2–thiohydantoin nucleoside bases as potential antiviral and antitumor agents. Phosphorus, Sulfur, and Silicon and the Related Elements, 142 (1), 167–190. doi: 10.1080/10426509808029674

Published

2018-06-08

How to Cite

(1)
Saliyeva, L. M.; Vas’kevich, R. I.; Slyvka, N. Y.; Vovk, M. V. The Synthesis and Structural Functionalization of 6-Substituted 2,3-dihydroimidazo[2,1-B] [1,3]thiazol-5-Ones. J. Org. Pharm. Chem. 2018, 16, 31-41.

Issue

Section

Original Researches