Molecular docking and assessment of thiacalix[4]arene and sulfonylcalix[4]arene as a platform for designing glutathione S-transferase inhibitors

Yu. V. Shulga, O. L. Kobzar, I. M. Mischenko, V. Yu. Tanchuk, V. V. Sychoveev, V. I. Kalchenko, A. I. Vovk

Abstract


It is known that overexpression of isozymes of glutathione S-transferase family is one of the causes for the resistance of cancer cells to the action of drugs. Therefore, inhibitors of these enzymes can be considered as potential drugs.
Aim. To assess in silico calix[4]arene, thiacalix[4]arene, and sulfonyl alkyl[4]arene as a molecular platform for designing inhibitors of glutathione S-transferase.
Results and discussion. Docking models of complexes of glutathione S-transferase with α-hydroxymethylphosphonate derivatives of calix[4]arene, thiacalix[4]arene, and sulfonylcalix[4]arene were calculated and analyzed. The binding models obtained by AutoDock 4.2 program were assessed by the molecular dynamics simulations. It has been shown that sulfonyl groups of the sulfonylcalix[4]arene macrocycle can be involved in additional stabilization of the enzyme-inhibitor complex. In addition, the affinity of the inhibitors to the enzyme depends on the stereoisomeric α-hydroxymethylphosphonate residues located at the upper rim of the macrocycle.
Experimental part. Molecular docking of macrocyclic compounds to the active site region of glutathione S-transferase was performed using AutoDock 4.2 and AutoDock Vina. Molecular dynamics was modeled using NAMD 2.10 program.
Conclusions. It has been determined that sulfonylcalix[4]arene can be a promising molecular platform for designing inhibitors of glutathione S-transferase.


Keywords


calix[4]arene; thiacalix[4]arene; sulfonylcalix[4]arene; glutathione S-transferase; inhibition; molecular docking; molecular dynamics

References


Slonchak, A. M., Obolenska, M. Yu. (2009). Ukrainskyi biokhimichnyi zhurnal, 81 (1), 5–11.

Hayes, J. D., Flanagan, J. U., Jowsey, I. R. (2005). Glutathione transferases. Annual Review of Pharmacology and Toxicology, 45 (1), 51–88.

doi: 10.1146/annurev.pharmtox.45.120403.095857

Mathew, N., Kalyanasundaram, M., Balaraman, K. (2006). GlutathioneS–transferase (GST) inhibitors. Expert Opinion on Therapeutic Patents, 16 (4), 431–444. doi: 10.1517/13543776.16.4.431

Koob, M., Dekant, W. (1991). Bioactivation of xenobiotics by formation of toxic glutathione conjugates. Chemico–Biological Interactions, 77 (2), 107–136. doi: 10.1016/0009–2797(91)90068–i

Strange, R. C., Spiteri, M. A., Ramachandran, S., Fryer, A. A. (2001). Glutathione–S–transferase family of enzymes. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 482 (1–2), 21–26. doi: 10.1016/s0027–5107(01)00206–8

Wang, W., Ballatori, N. (1998). Endogenous glutathione conjugates: occurrence and biological functions. Pharmacological reviews, 50 (3), 335–352.

Dann, A. T., Kenyon, A. P., Seed, P. T., Poston, L., Shennan, A. H., Tribe, R. M. (2004). GlutathioneS–transferase and liver function in intrahepatic cholestasis of pregnancy and pruritus gravidarum. Hepatology, 40 (6), 1406–1414. doi: 10.1002/hep.20473

Townsend, D. M., Tew, K. D. (2003). The role of glutathione–S–transferase in anti–cancer drug resistance. Oncogene, 22 (47), 7369–7375. doi: 10.1038/sj.onc.1206940

Piaggi, S., Raggi, C., Corti, A., Pitzalis, E., Mascherpa, M. C., Saviozzi, M., Casini, A. F. (2010). Glutathione transferase omega 1–1 (GSTO1–1) plays an anti–apoptotic role in cell resistance to cisplatin toxicity. Carcinogenesis, 31 (5), 804–811. doi: 10.1093/carcin/bgq031

Wang, Z., Liang, S., Lian, X., Liu, L., Zhao, S., Xuan, Q., Zhang, Q. (2015). Identification of proteins responsible for adriamycin resistance in breast cancer cells using proteomics analysis. Scientific Reports, 5 (1). doi: 10.1038/srep09301

Peters, W. H., Roelofs H. M. (1992). Biochemical characterization of resistance to mitoxantrone and adriamycin in Caco–2 human colon adenocarcinoma cells: a possible role for glutathione S–transferases. Cancer Research, 52 (1), 1886–1890.

Townsend, D. M., Tew, K. D. (2003). The role of glutathione–S–transferase in anti–cancer drug resistance. Oncogene, 22 (47), 7369–7375. doi: 10.1038/sj.onc.1206940

Ricci, G., De Maria, F., Antonini, G. et al. (2005). Electrostatic association of glutathione transferase to the nuclear membrane. Journal of Biological Chemistry, 280 (3), 263–271.

Van Zanden, J. J., Ben Hamman, O., van Iersel, M. L. P. S., Boeren, S., Cnubben, N. H. P., Lo Bello, M., Rietjens, I. M. C. M. (2003). Inhibition of human glutathione S–transferase P1–1 by the flavonoid quercetin. Chemico–Biological Interactions, 145 (2), 139–148. doi: 10.1016/s0009–2797(02)00250–8

Yang, X., Liu, G., Li, H., Zhang, Y., Song, D., Li, C., Zhao, G. (2010). Novel Oxadiazole Analogues Derived from Ethacrynic Acid: Design, Synthesis, and Structure−Activity Relationships in Inhibiting the Activity of GlutathioneS–Transferase P1–1 and Cancer Cell Proliferation. Journal of Medicinal Chemistry, 53 (3), 1015–1022. doi: 10.1021/jm9011565

Schultz, M., Dutta, S., Tew, K. D. (1997). Inhibitors of glutathione S–transferases as therapeutic agents. Advanced Drug Delivery Reviews, 26 (2–3), 91–104. doi: 10.1016/s0169–409x(97)00029–x

Burg, D., Hameetman, L., Filippov, D. V., van der Marel, G. A., Mulder, G. J. (2002). Inhibition of glutathione S–transferase in rat hepatocytes by a glycine–tetrazole modified S–alkyl–GSH analogue. Bioorganic & Medicinal Chemistry Letters, 12 (12), 1579–1582. doi: 10.1016/s0960–894x(02)00247–0

Kunze, T., Heps, S. (2000). Phosphono analogs of glutathione: inhibition of glutathione transferases, metabolic stability, and uptake by cancer cells. Biochemical Pharmacology, 59 (8), 973–981. doi: 10.1016/s0006–2952(99)00401–3

Calix[4]arene–α–hydroxyphosphonic acids.Synthesis, stereochemistry, and inhibition of glutathione S–transferase. (2012). Arkivoc, 2012 (4), 278. doi: 10.3998/ark.5550190.0013.421

Trush, V. V., Tanchuk, V. Y., Cherenok, S. O., Kalchenko, V. I., Vovk, A. I. (2014). Calix[4]arene α–hydroxymethylphosphonic acids as potential inhibitors of protein tyrosine phosphatases. Žurnal Organìčnoï Ta Farmacevtičnoï Hìmìï, 12 (1(45)), 39–42. doi: 10.24959/ophcj.14.782

Trush, V., Cherenok, S., Tanchuk, V. et al. (2015). Evaluation of inhibition of protein tyrosine phosphatase 1B by calixarene–based α–ketophosphonic acids. Chemical Biology Letters, 2 (1), 1–5.

Vovk, A. I., Kononets, L. A., Tanchuk, V. Y., Drapailo, A. B., Kalchenko, V. I., Kukhar, V. P. (2009). Thiacalix[4]arene as molecular platform for design of alkaline phosphatase inhibitors. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 66 (3–4), 271–277. doi: 10.1007/s10847–009–9607–9

Vovk, A. I., Kononets, L. A., Tanchuk, V. Y., Cherenok, S. O., Drapailo, A. B., Kalchenko, V. I., Kukhar, V. P. (2010). Inhibition of Yersinia protein tyrosine phosphatase by phosphonate derivatives of calixarenes. Bioorganic & Medicinal Chemistry Letters, 20 (2), 483–487. doi: 10.1016/j.bmcl.2009.11.126

Trush, V. V., Tanchuk, V. Yu., Kononets, L. A. et al. (2012). Dopovidi Natsionalnoi akademii nauk Ukrainy, 3, 145–151.

Buldenko, V., Kobzar, O., Trush, V., Drapailo, A., Kalchenko, V. (2017). Sulfonyl–bridged Calix[4]arene as an Inhibitor of Protein Tyrosine Phosphatases. French–Ukrainian Journal of Chemistry, 5 (2), 144–151. doi: 10.17721/fujcv5i2p144–151 26.

Buldenko, V. M., Kononets, L. A., Kobzar, O. L., Drapailo, A. B., Vyshnevsky, S. G., Kalchenko, V. I., Vovk, A. I. (2017). The inhibitory potential of calixarenes against nucleotide pyrophosphatase/phosphodiesterase 1. Žurnal Organìčnoï Ta Farmacevtičnoï Hìmìï, 15 (4(60)), 41–47. doi: 10.24959/ophcj.17.928

Gutsche, C. D. (1998). Calixarenes revisited. The Royal Society of Chemistry, 2 (4), 56–61.

Alonso, H., Bliznyuk, A. A., Gready, J. E. (2006). Combining docking and molecular dynamic simulations in drug design. Medicinal Research Reviews, 26 (5), 531–568. doi: 10.1002/med.20067

Oakley, A. J., Lo Bello, M., Nuccetelli, M., Mazzetti, A. P., Parker, M. W. (1999). The ligandin (non–substrate) binding site of human pi class glutathione transferase is located in the electrophile binding site (H–site). Journal of Molecular Biology, 291 (4), 913–926. doi: 10.1006/jmbi.1999.3029

Morris, M., Huey, R., Olson A. (2008) Using autodock for ligand–receptor docking. TSRI, 8 (14), 1–8.

Trott, O., Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry, 31 (2), 455–461. doi: 10.1002/jcc.21334

ChemAxon (2009). Available at: http: // www. Chemaxon. com.

Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4 (1), 17. doi: 10.1186/1758–2946–4–17

Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26 (16), 1781–1802. doi: 10.1002/jcc.20289

Zoete, V., Cuendet, M. A., Grosdidier, A., Michielin, O. (2011). SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32 (11), 2359–2368. doi: 10.1002/jcc.21816

Humphrey, W., Dalke, A., Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14 (1), 33–38. doi: 10.1016/0263–7855(96)00018–5


GOST Style Citations


1. Слончак, А. М. Cтруктура і функції глутатіон S–трансферази Р1–1 / А. М. Слончак, М. Ю. Оболенська // Укр. біохім. журн. – 2009. – Т. 81, № 1. – С. 5–11.

2. Hayes, J. D. Glutathione transferases / J. D. Hayes, J. U. Flanagan, I. R. Jowsey // Annu. Rev. – Pharmacol. Toxicol. – 2005. – Vol. 45, Issue 1. – P. 51–88. doi: 10.1146/annurev.pharmtox.45.120403.095857

3. Mathe, N. Glutathione S–transferase inhibitors / N. Mathe, M. Kalyanasundaram, K. Balaraman // Expert Opin. – 2006. – Vol. 16. Issue 4. – P. 431–444. doi: 10.1517/13543776.16.4.431

4. Koob, M. Bioactivation of xenobiotics by formation of toxic glutathione conjugates / M. Koob, W. Dekant // Chem. Biol. Interact. – 1991. – Vol. 77, Issue 2. – P. 107–136. doi: 10.1016/0009–2797(91)90068–I

5. Glutathione–S–transferase family of enzymes / R. C. Strange, M. A. Spiteri, S. Ramachandran, A. A. Fryer // Mutat. Res. – 2001. – Vol. 482, Issue 1–2. – P. 21–26. doi: 10.1016/S0027–5107(01)00206–8

6. Wang, W. Endogenous glutathione conjugates: occurrence and biological functions / W. Wang, N. Ballatori // Pharmacol. Rev. – 1998. – Vol. 50, Issue 3. – P. 335–352.

7. Glutathione S–transferase and liver function in intrahepatic cholestasis of pregnancy and pruritus gravidarum / A. T. Dann, A. P. Kenyon, P. T. Seed et al. // Reprod. Biol. – 2004. – Vol. 40, Issue 6. – P. 1406–1414. doi: 10.1002/hep.20473

8. Townsend, D. M. The role of glutathione–S–transferase in anti–cancer drug resistance / D. M. Townsend, K. D. Tew // Oncogene. – 2003. – Vol. 22, Issue 47. – P. 7369–7375. doi: 10.1038/sj.onc.1206940

9. Glutathione transferase omega 1–1 (GSTO1–1) plays an anti–apoptotic role in cell resistance to cisplatin toxicity / S. Piaggi, C. Raggi, A. Corti et al. // Carcinogenesis. – 2010. – Vol. 31, Issue 5. – P. 804–811. doi: 10.1093/carcin/bgq031

10. Identification of proteins responsible for adriamycin resistance in breast cancer cells using proteomics analysis / Z. Wang, S. Liang, L. Liu et al. // Sci. Rep. – 2015. – Vol. 5, Issue 1. –P. 1–10. doi: 10.1038/srep09301

11. Peters, W. H. Biochemical characterization of resistance to mitoxantrone and adriamycin in Caco–2 human colon adenocarcinoma cells : a possible role for glutathione S–transferases / W. H. Peters, H. M. Roelofs // Cancer Res. – 1992. – Vol. 52, Issue 1. – P. 1886–1890.

12. Townsend, D. M. The role of glutathione S–transferase in anti–cancer drug resistance / D. M. Townsend, K. D. Tew // Oncogene. – 2003. – Vol. 22, Issue 47. – P. 7369–7375. doi: 10.1038/sj.onc.1206940

13. Electrostatic association of glutathione transferase to the nuclear membrane / G. Ricci, F. De Maria, G. Antonini et al. // J. Biol. Chem. – 2005. – Vol. 280, Issue 3. – P. 263–271.

14. Van Zarden, J. J. Inhibition of human glutathione S–transferase P1–1 by the flavonoid quercetin / J. J. Van Zanden, O. Ben Hamman, M. L. van Iersel // Chem. Biol. Interactions. – 2003. – Vol. 145, Issue 2. – P. 139–148. doi: 10.1016/S0009–2797(02)00250–8

15. Novel oxadiazole analogues derived from ethacrynic acid: design, synthesis, and structure–activity relationships in inhibiting the activity of glutathione S–transferase P1–1 and cancer cell proliferation / X. Yang, G. Liu, Li. Y. Zhang et al. // J. Biol. Chem.– 2010.– Vol. 53, Issue 3. – P. 1015–1022. doi: 10.1021/jm9011565

16. Schultz, M. Inhibitors of glutathione S–transferases as therapeutic agents / M. Schultz, S. Dutta, K. D. Tew // Adv. Drug Deliv. Rev. – 1997. – Vol. 26, Issue 2–3. – P. 91–104. doi: 10.1016/s0169–409x(97)00029–x

17. Inhibition of glutathione S–transferase in rat hepatocytes by a glycine–tetrazole modified S–alkyl–GSH analogue / D. Burg, L. Hameetman, D. V. Filippovet et al. // Bioorg. Med. Chem. Lett. – 2002. – Vol. 12, Issue 12. – P. 1579–1582. doi: 10.1016/s0960–894x(02)00247–0

18. Kunze, T. Phosphono analogs of glutathione: inhibition of glutathione transferases, metabolic stability, and uptake by cancer cells / T. Kunze, S. Heps // Biochem. Pharmacol. – 2000. – Vol. 59, Issue 8. – P. 973–981. doi: 10.1016/s0006–2952(99)00401–3

19. Calix[4]arene–α–hydroxyphosphonic acids. Synthesis, stereochemistry, and inhibition of glutathione S–transferase / S. O. Cherenok, O. A. Yushchenko, V. Yu. Tanchuk et al. // Arkivoc. – 2012. – Vol. 2012, Issue 4. – 278 p. doi: 10.3998/ark.5550190.0013.421

20. Calix[4]arene α–hydroxymethylphosphonic acids as potential inhibitors of protein tyrosine phosphatases / V. V. Trush, V. Y. Tanchuk, S. O. Cherenok et al. // Pharmaceut. Chem. J. – 2014. – Vol. 12, Issue 45. – P. 39–42. doi: 10.24959/ophcj.14.782

21. Evaluation of inhibition of protein tyrosine phosphatase 1B by calixarene–based α–ketophosphonic acids / V. Trush, S. Cherenok, V. Tanchuk et al. // Chem. Cent. J. – 2015. – Vol. 2, Issue 1. – P. 1–5.

22. Thiacalix[4]arene as molecular platform for design of alkaline phosphatase inhibitors / A. I. Vovk, L. A. Kononets, V. Yu.Tanchuk et al. // J. Incl. Phenom. Macrocycl. Chem. – 2009. –Vol. 66, Issue 3–4. – P. 271–277. doi: 10.1007/s10847–009–9607–9

23. Inhibition of Yersinia protein tyrosine phosphatase by phosphonate derivatives of calixarenes / A. I. Vovk, L. A., Kononets, V. Yu. Tanchuk et al. // Bioorg. Med. Chem. Lett. – 2010. – Vol. 20, Issue 2. – P. 483–487. doi: 10.1016/j.bmcl.2009.11.126

24. Iнгiбування протеїнтирозинфосфатаз фосфоновими кислотами на платформi калiкс[4]арену і тiакалiкс[4]арену / В. В. Труш, В. Ю. Танчук, Л. А. Кононець та ін. // Доп. Нац. академiї наук України. – 2012. – № 3. – С. 145–151.

25. Sulfonyl–bridged calix[4]arene as an inhibitor of protein tyrosine phosphatases / V. M. Buldenko, O. L. Kobzar, V. V. Trush et al. // Fr.–Ukr. J. Chem. – 2017. – Vol. 5, Issue 2. – P. 144–151. doi: 10.17721/fujcv5i2p144–151

26. The inhibitory potential of calixarenes against nucleotide pyrophosphatase/phosphodiesterase 1 / V. M. Buldenko, L. A. Kononets, O. L. Kobzar et al. // J. Org. Chem. – 2017. – Vol. 4, Issue 60. – P. 41–47. doi: 10.24959/ophcj.17.928

27. Gutsche, C. D. Calixarenes revisited / C. D. Gutsche // RSC. – 1998. – Vol. 2, Issue 4. – P. 56–61.

28. Alonso, H. Combining docking and molecular dynamic simulations in drug design / H. Alonso, A. A. Bliznyuk, J. E. Gready // Med. Res. Rev. – 2006. – Vol. 26, Issue 5. – P. 531–568. doi: 10.1002/med.20067

29. The ligandin (non–substrate) binding site of human Pi class glutathione transferase is located in the electrophile binding site (H–site) / A. J. Oakley, M. Lo Bello, M. Nuccetelli et al. // J. Mol. Biol. – 1999. – Vol. 291, Issue 4. – P. 913–926. doi: 10.1006/jmbi.1999.3029

30. Morris, M. Using autodock for ligand–receptor docking / M. Morris, R. Huey, A. Olson // TSRI. – 2008. – Vol. 8, Issue 14. – P. 1–8.

31. Trott, O. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading / O. Trott, A. J. Olson // J. Comput. Chem. – 2010. – Vol. 31, Issue 2. – P. 455–461. doi: 10.1002/jcc.21334

32. ChemAxon. – 2009. – Available at : http: // www. Chemaxon. com

33. Avogadro : an advanced semantic chemical editor, visualization, and analysis platform / M. D. Hanwell, D. E. Curtis, D. C. Lonie et al. // J. Cheminform. – 2012. – Vol. 4, Issue 1. – 17 p. doi: 10.1186/1758–2946–4–17

34. Scalable molecular dynamics with NAMD / J. C. Phillips, R. Braun, W. Wang et al. // J. Comput. Chem. – 2005. – Vol. 26, Issue 16. – P. 1781–1802. doi: 10.1002/jcc.20289

35. SwissParam, a fast force field generation tool for small organic molecules / V. Zoete, M. A. Cuendet, A. Grosdidier et al. // J. Comput. Chem. – 2011. – Vol. 32, Issue 11. – P. 2359 –2368. doi: 10.1002/jcc.21816

36. Humphrey, W. VMD : visual molecular dynamics / W. Humphrey, A. Dalke, K. Schulten // J. Mol. Graph. – 1996. – Vol. 14, Issue 1. – P. 33–38. doi: 10.1016/0263–7855(96)00018–5





DOI: https://doi.org/10.24959/ophcj.18.942

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: Ž. org. farm. hìm.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)