DOI: https://doi.org/10.24959/ophcj.18.943

5-Sulfurofunctionalized (1,3-thiazolidin-2-ylidene)pyrimidine-2,4,6-triones and their antibacterial activity

M. V. Litvinchuk, A. V. Bentya, A. M. Grozav, N. D. Yakovychuk, N. Yu. Slyvka, M. V. Vovk

Abstract


Aim. Studying of the antimicrobial and antifungal activity of 5-sulfurofunctionalized derivatives (1,3-thiazolidine-2-ylidene)pyrimidine-2,4,6(1H,3H,5H)-triones, obtained by the interaction of [5-(iodomethyl)thiazolidine-2-ylidene]pyrimidine-2,4,6(1H,3H,5H)-triones with a number of S-nucleophilic reagents.

Results and discussion. A series of new derivatives containing 5-thiocyanato(acetylthio, butylxanthonato)methyl groups has been synthesized by functionalization of [5-(iodomethyl)thiazolidine-2-ylidene]pyrimidine-2,4,6(1H,3H,5H)-triones with sulfur-containing reagents. Among the synthesized compounds substances with moderate antibacterial and antifungal activity were found.

Experimental part. Novel 5-thiofunctionalized derivatives were obtained by reaction of [5-(iodomethyl)thiazolidine-2-ylidene]pyrimidine-2,4,6(1H,3H,5H)-triones with potassium thiocyanate, potassium thioacetate in dimethylformamide or potassium buthylxanthate in ethanol with 72-99% yields. The structure of new compounds was confirmed by complex spectral methods. Screening of the antifungal and antimicrobial effects of the synthesized compounds was carried out using a micro-method of double serial dilutions in a liquid nutrient medium.

Conclusions. 5-Sulfurofunctionalized (1,3-thiazolidine-2-ylidene)pyrimidine-2,4,6-triones, obtained by the reaction of corresponding 5-iodomethyl derivatives with a number of S-nucleophilic reagents, have shown moderate antimicrobial and antifungal activity and are promising for further in-depth research.

 


Keywords


5-sulfurofunctionalized 1,3-thiazolidines; derivatives of barbituric acid; antibacterial activity

References


Ernst, B., Clark, G., Grundmann, O. (2015). The Physicochemical and Pharmacokinetic Relationships of Barbiturates – From the Past to the Future. Current Pharmaceutical Design, 21 (25), 3681–3691. doi: 10.2174/1381612821666150331131009

Fischer, E., von Mering, J. (1903). Ueber eine neue Klasse von Schlafmitteln. Therapie der Gegenwart, 44, 97–101.

Ding, K., Zhou, Z., Zhou, S., Yuan, Y., Kim, K., Zhang, T., Zhan, C.–G. (2018). Design, synthesis, and discovery of 5–((1,3–diphenyl–1 H –pyrazol–4–yl) methylene)pyrimidine–2,4,6(1 H ,3 H ,5 H )–triones and related derivatives as novel inhibitors of mPGES–1. Bioorganic & Medicinal Chemistry Letters, 28(5), 858–862. doi: 10.1016/j.bmcl.2018.02.011

Dixit, V. A., Rathi, P. C., Bhagat, S., Gohlke, H., Petersen, R. K., Kristiansen, K., Chakraborti, A. K., Bharatam, P. V. (2016). Design and synthesis of novel Y–shaped barbituric acid derivatives as PPARγ activators. European Journal of Medicinal Chemistry, 108, 423–435. doi: 10.1016/j.ejmech.2015.11.030

Penthala, N. R., Ketkar, A., Sekhar, K. R., Freeman, M. L., Eoff, R. L., Balusu, R., Crooks, P. A. (2015). 1–Benzyl–2–methyl–3–indolylmethylene barbituric acid derivatives: Anti–cancer agents that target nucleophosmin 1 (NPM1). Bioorganic & Medicinal Chemistry, 23 (22), 7226–7233. doi: 10.1016/j.bmc.2015.10.019

Xu, C., Wyman, A. R., Alaamery, M. A., Argueta, S. A., Ivey, F. D., Meyers, J. A., Lerner, A., Burdo, T. H., Connolly, T., Hoffman, C. S., Chiles, T. C. (2016). Anti–inflammatory effects of novel barbituric acid derivatives in T lymphocytes. International Immunopharmacology, 38, 223–232. doi: 10.1016/j.

intimp.2016.06.004

Jain, A. K., Vaidya, A., Ravichandran, V., Kashaw, S. K., Agrawal, R. K. (2012). Recent developments and biological activities of thiazolidinone derivatives: A review. Bioorg Bioorganic & Medicinal Chemistry, 20 (11), 3378–3395. doi: 10.1016/j.bmc.2012.03.069

Tripathi, A. C., Gupta, S. J., Fatima, G. N., Sonar, P. K., Verma, A., Saraf, S.K. (2014). 4–Thiazolidinones: The advances continue… European Journal of Medicinal Chemistry, 72, 52–77. doi: 10.1016/j.ejmech.2013.11.017

Belluco, P., Gaion, R. M., Maragno, I., Dorigo, P. (1990). Etozoline and vascular spasm. Pharmacological Research, 22,123–124. doi: 10.1016/S1043–6618(09)80059–5

Salem, M. A. (2017). Synthesis of New Thiazole, Bithiazolidinone and Pyrano[2,3–d]thiazole Derivatives as Potential Antimicrobial Agents. Croatica Chemica Acta, 90 (1), 7–15. doi: 10.5562/cca2955

Hanna, M. M., George, R. F. (2013). ChemInform Abstract: Facile Synthesis and Quantitative Structure–Activity Relationship Study of Antitumor Active 2–(4–Oxo–thiazolidin–2–ylidene)–3–oxo–propionitriles. ChemInform, 44 (7). doi: 10.1002/chin.201307111

Helal, M. H. M., Salem, M. A., El–Gaby, M. S. A., Aljahdali, M. (2013). Synthesis and biological evaluation of some novel thiazole compounds as potential anti–inflammatory agents. European Journal of Medicinal Chemistry, 65, 517–526. doi: 10.1016/j.ejmech.2013.04.005

Chiou, G. (1993). The use of OB–104 to treat inflammation. Pat. WO9310789; declared 03.12.1991; published 10.06.1993.

Fischer, W., Bodewei, R., Satzinger, G. (1992). Anticonvulsant and sodium channel blocking effects of ralitoline in different screening models. Naunyn–Schmiedeberg’s Arch Pharmacology, 346 (4), 442–452. doi: 10.1007/bf00171088

Zeng, F., Liu, P., Shao, X., Liab, Z., Xu, X. (2016). Catalyst–free and selective synthesis of 2–aminothiophenes and 2–amino–4,5–dihydrothiophenes from 4–thiazolidinones in water. Royal Society of Chemistry Advances, 6 (64), 59808–59815. doi: 10.1039/C6RA11151C

Sogame, S., Suenaga, Y., Atobe, M., Kawanishi, M., Tanaka, E., Miyoshi, S. (2014). Discovery of a benzimidazole series of ADAMTS–5 (aggrecanase 2) inhibitors by scaffold hopping. European Journal of Medicinal Chemistry, 71, 250–258. doi: 10.1016/j.ejmech.2013.10.075

Atobe, M., Maekawara, N., Ishiguro, N., Sogame, S., Suenaga, Y., Kawanishi, M., Suzuki, H., Jinno, N., Tanaka, E., Miyoshi, S. (2013). A series of thiazole derivatives bearing thiazolidin–4–one as non–competitive ADAMTS–5 (Aggrecanase–2) inhibitors. Bioorganic & Medicinal Chemistry Letters, 23 (7), 2106–2110. doi: 10.1016/j.bmcl.2013.01.121

Schwede, W., Schulze, V., Buchmann, B., Briem, H., Siemeister, G., Boemer, U., Parczyk, K. (2006). Thiazolidinones and the use therof as polo–like kinase inhibitors. Pat. US2006079503; declared 29.04.2003; published 13.04.2006.

Takagi, M. (2004). Oxa(thia)zolidine compounds, proxess for preparation thereof and anti–inflammatory agents. Pat. EP1410822; declared: 25.06.2001; published: 21.04.2004.

Shimohara, N., Nagase, H., Tsujihata, S. (2008). Polymerizable compound, polymer, ink composition, printed articles and inkjet recording method. Pat. US20080241416; declared: 20.03.2008; published: 02.10.2008.

Tsuchimura, T. (2006). Ink composition, ink jet recording, method, printed material method of producing planographic printing plate, and planographic printing plate. Pat. US2006182937; declared: 22.12.2005; published: 17.08.2006.

Hanaki, N., Motoki, M., Yawata, T. (2010). Heterocyclic compound, ultraviolet absorbent and composition containing the same: Pat. US 20100210762; declared: 15.08.2008; published: 19.08.2010.

Watanabe, T. (2010). Compound for photoresist, photoresist liquid, and etching method using the same. Pat. US20100104985; declared: 05.03.2008; published: 29.04.2010.

Wolleb, H., Wolleb, A., Bienewald, F., Schmidhalter, B., Budry, J. L., Spahni, H. (2007). Optical recording matherials writable using blue lasers. Pat. US 20070172624; declared: 16.02.2005; published: 26.07.2007.

Litvinchuk, М. B., Bentia, А. V., Slyvka, N. Yu., Vovk, М. V. (2017). Ukrainskyi Khimichnyi Zhurnal, 83 (10), 90–99.

Metodychni vkazivky 9.9.5–143–2007 (2007). Vyznachennia chutlyvosti mikroorganizmiv do antybakterialnykh reparative. Kyiv: MOZ Ukrainy, 63.


GOST Style Citations


1. Ernst, B. J. The Physicochemical and Pharmacokinetic Relationships of Barbiturates – From the Past to the Future / B. J. Ernst, G. F. Clark,
O. Grundmann // Curr. Pharm. Des. – 2015. – Vol. 21, Issue 25. – P. 3681–3691. doi: 10.2174/1381612821666150331131009

2. Fischer, E. Ueber eine neue Klasse von Schlafmitteln / E. Fischer, J. von Mering // Therapie der Gegenwart. – 1903. – Vol. 44. – P. 97–101.

3. Design, synthesis, and discovery of 5–((1,3–diphenyl–1H–pyrazol–4–yl) methylene)pyrimidine–2,4,6(1H,3H,5H)–triones and related derivatives
as novel inhibitors of mPGES–1 / K. Ding, Z. Zhou, S. Zhou et al. // Bioorg. Med. Chem. Let. – 2018. – Vol. 28, Issue 5. – P. 858–862.
doi: 10.1016/j.bmcl.2018.02.011

4. Design and synthesis of novel Y–shaped barbituric acid derivatives as PPARγ activators / V. A. Dixit, P. C. Rathi, S. Bhagat et al. // Eur. J. Med.
Chem. – 2016. – Vol. 108. – P. 423–435. doi: 10.1016/j.ejmech.2015.11.030

5. 1–Benzyl–2–methyl–3–indolylmethylene barbituric acid derivatives: Anti–cancer agents that target nucleophosmin 1 (NPM1) / N. R. Penthala,
A. Ketkar, K. R. Sekhar et al. // Bioorg. Med. Chem. – 2015. – Vol. 23, Issue 22. – P. 7226–7233. doi: 10.1016/j.bmc.2015.10.019

6. Anti–inflammatory effects of novel barbituric acid derivatives in T lymphocytes / C. Xu, A. R. Wyman, M. A. Alaamery et al. // Int. Immunopharmacol.
– 2016. – Vol. 38. – P. 223–232. doi: 10.1016/j.intimp.2016.06.004

7. Recent developments and biological activities of thiazolidinone derivatives: A review / A. K. Jain, A. Vaidya, V. Ravichandran et al. // Bioorg. Med.
Chem. – 2012. – Vol. 20, Issue 11. – P. 3378–3395. doi: 10.1016/j.bmc.2012.03.069

8. 4–Thiazolidinones : The advances continue… / A. C. Tripathi, S. J. Gupta, G. N. Fatima et al. // Eur. J. Med. Chem. – 2014. – Vol. 72. – P. 52–77.
doi: 10.1016/j.ejmech.2013.11.017

9. Etozoline and vascular spasm / P. Belluco, R. M. Gaion, I. Maragno, P. Dorigo // Pharmacol. Res. – 1990. – Vol. 22. – P. 123–124. doi: 10.1016/
S1043–6618(09)80059–5

10. Salem, M. A. Synthesis of New Thiazole, Bithiazolidinone and Pyrano[2,3–d]thiazole Derivatives as Potential Antimicrobial Agents / M. A. Salem //
Croat. Chem. Acta. – 2017. – Vol. 90, Issue 1. – P. 7–15. doi: 10.5562/cca2955

11. Hanna, M. M. Facile Synthesis and Quantitative Structure – Activity Relationship Study of Antitum or Active 2–(4–Oxo–thiazolidin–2–ylidene)–3–
oxo–propionitrile / M. M. Hanna, R. F. George // Chem. Pharm. Bull. – 2013. Vol. 44, Issue 7. doi: 10.1002/chin.201307111

12. Synthesis and biological evaluation of some novel thiazole compounds as potential anti–inflammatory agents / M. H. M. Helal, M. A. Salem,
M. S. A. El–Gaby, M. Aljahdali // Eur. J. Med. Chem. – 2013. – Vol. 65. – P. 517–526. doi: 10.1016/j.ejmech.2013.04.005

13. The use of OB–104 to treat inflammation. Pat. WO9310789 / Chiou G. – declared: 03.12.1991 ; published: 10.06.1993.

14. Fischer, W. Anticonvulsant and sodium channel blocking effects of ralitoline in different screening models / W. Fischer, R. Bodewei, G. Satzinger //
Naunyn–Schmiedeberg’s Arch Pharmacol. – 1992. – Vol. 346, Issue 4. – P. 442–452. doi: 10.1007/bf00171088

15. Catalyst–free and selective synthesis of 2–aminothiophenes and 2–amino–4,5–dihydrothiophenes from 4–thiazolidinones in water / F. Zeng,
P. Liu, X. Shao et al. // RSC Adv. – 2016. – Vol. 6, Issue 64. – P. 59808–59815. doi: 10.1039/C6RA11151C

16. Discovery of a benzimidazole series of ADAMTS–5 (aggrecanase–2) inhibitors by scaffold hopping / S. Sogame, Y. Suenaga, M. Atobe et al. // Eur.
J. Med. Chem. – 2014. – Vol. 71. – P. 250–258. doi: 10.1016/j.ejmech.2013.10.075

17. A series of thiazole derivatives bearing thiazolidin–4–one as non–competitive ADAMTS–5 (Aggrecanase–2) inhibitors / M. Atobe, N. Maekawara,
N. Ishiguro et al. // Bioorg. Med. Chem. Lett. – 2013. – Vol. 23, Issue 7. – P. 2106–2110. doi: 10.1016/j.bmcl.2013.01.121

18. Thiazolidinones and the use therof as polo–like kinase inhibitors. Pat. US2006079503 / Schwede W., Schulze V., Buchmann B., Briem H., Siemeister
G., Boemer U., Parczyk K. – declared: 29.04.2003 ; published :13.04.2006.

19. Oxa(thia)zolidine compounds, proxess for preparation thereof and anti–inflammatory agents. Pat. EP1410822 / Takagi M. – declared: 25.06.2001 ;
published: 21.04.2004.

20. Polymerizable compound, polymer, ink composition, printed articles and inkjet recording method. Pat. US20080241416 / Shimohara N., Nagase H.,
Tsujihata S. – declared : 20.03.2008 ; published : 02.10.2008.

21. Ink composition, ink jet recording, method, printed material method of producing planographic printing plate, and planographic printing plate.
Pat. US2006182937 / Tsuchimura T. – declared: 22.12.2005 ; published: 17.08.2006.

22. Heterocyclic compound, ultraviolet absorbent and composition containing the same. Pat. US 20100210762 / Hanaki N., Motoki M., Yawata T. –
declared: 15.08.2008 ; published: 19.08.2010.

23. Compound for photoresist, photoresist liquid, and etching method using the same. Pat. US20100104985 / Watanabe T. – declared: 05.03.2008 ;
published: 29.04.2010.

24. Optical recording matherials writable using blue lasers. Pat. US 20070172624 / Wolleb H., Wolleb A., Bienewald F., Schmidhalter B., Budry J. L.,
Spahni H. – declared: 16.02.2005 ; published: 26.07.2007.

25. 5–Функціоналізовані (1,3–тіазолідин–2–іліден)піримідин–2,4,6–тріони / M. Б. Літвінчук, А. В. Бентя, Н. Ю. Сливка, М. В. Вовк // Укр.
хім. журн. – 2017. – Вип. 83, № 10. – С. 90–99.

26. Визначення чутливості мікроорганізмів до антибактеріальних препаратів : метод. вказівки 9.9.5–143–2007. – К. : МОЗ України, 2007. – 63 с.





Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: Ž. org. farm. hìm.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)