DOI: https://doi.org/10.24959/ophcj.18.952

The synthesis of derivatives of tetra(hexa)hydro[1,2,3]triazolo-[4,5-e][1,4]diazepines and their acylation

N. O. Syrota, S. V. Kemskiy, A. V. Bol’but, I. I. Chornobaev, V. V. Vovk

Abstract


Aim. To study the conditions for reduction of 5-hydroxy[1,2,3]triazolo[4,5-e][1,4]diazepines and develop the method for the synthesis of their tetra- and hexahydroderivatives.

Results and discussion. It has been found that the functional hydroxy and carbonyl groups of 5-hydroxy[1,2,3]triazolo[4,5-e][1,4]diazepines tend to selective reduction with complex metal hydrides, and it has allowed to develop methods for the synthesis of their hydrogenated derivatives and to carry out the acylation of the diazepine cycle.

Experimental part. The selective reduction of the hydroxy group was obtained by the interaction of 5-hydroxy[1,2,3]triazolo[4,5-e][1,4]diazepines with a 2-fold excess of NaBH4 in the boiling isopropanol. It allowed obtaining derivatives of tetrahydro[1,2,3]triazolo[4,5-e][1,4]diazepine-8(3H)-one with the yield of 61-82 %. The complete reduction of the diazepine cycle can be achieved only by using a 5-fold excess of LiAlH4-Me3SiCl hydration system and long-term boiling in THF. It has been shown that the tetrahydroderivatives synthesized with aliphatic carboxylic anhydrides are prone to selective acylation of the N4 diazepine ring atom, while hexahydroderivatives form a product of acetylation at N4 and N6 atoms.

Conclusions. The conditions for the partial and complete reduction of 5-hydroxy[1,2,3]triazolo[4,5-e][1,4]diazepines have been found, convenient methods for the synthesis of tetrahydro- and hexahydroderivatives have been developed, and their directed functionalization by acyl groups has been performed.


Keywords


derivatives of [1,2,3] triazolo [4,5-e][1,4] diazepines; selective reduction; complex hydrides of metals; acylation

References


Kaur, N., & Kishore, D. (2014). Synthetic Strategies Applicable in the Synthesis of Privileged Scaffold: 1,4–Benzodiazepine. Synthetic Communications, 44 (10), 1375–1413. https://doi.org/10.1080/00397911.2013.772202

Bhatia, M. S., Choudhari, P. B., Ingale, K. B., Zarekar, B. E. (2008). Synthesis, Screening and QSAR Studies of 2,4–Disubstituted 1,5–Benzodiazepine Derivatives. Oriental Journal of Chemistry, 24 (1), 147–152.

Alizadeh, A., & Zohreh, N. (2010). A Facile and Efficient Synthesis of Arylsulfonamido–Substituted 1,5–Benzodiazepines and N–[2–(3–Benzoylthioureido)aryl]–3–oxobutanamide Derivatives. Helvetica Chimica Acta, 93 (6), 1221–1226. https://doi.org/10.1002/hlca.200900364

Goswami, P., & Das, B. (2010). Organocatalyzed One–Pot Synthesis of Substituted 1,5–Benzodiazepine and Benzimidazole Derivatives. Synthetic Communications, 40 (11), 1685–1693. https://doi.org/10.1080/00397910903161686

Beccalli, E. M., Broggini, G., Paladino, G., & Zoni, C. (2005). Palladium–mediated approach to dibenzo[b,e][1,4]diazepines and benzopyrido–analogues. An efficient synthesis of tarpane. Tetrahedron, 61 (1), 61–68. https://doi.org/10.1016/j.tet.2004.10.061

Ferraris, D., Ficco, R. P., Dain, D., Ginski, M., Lautar, S., Lee–Wisdom, K., … Kalish, V. J. (2003). Design and synthesis of poly(ADP–ribose) polymerase–1 (PARP–1) inhibitors. part 4: Biological evaluation of imidazobenzodiazepines as potent PARP–1 inhibitors for treatment of ischemic injuries. Bioorganic & Medicinal Chemistry, 11 (17), 3695–3707. https://doi.org/10.1016/s0968-0896(03)00333-x

Skalitzky, D. J., Marakovits, J. T., Maegley, K. A., Ekker, A., Yu, X.–H., Hostomsky, Z., … Golding, B. T. (2003). Tricyclic Benzimidazoles as Potent Poly(ADP–ribose) Polymerase–1 Inhibitors. Journal of Medicinal Chemistry, 46 (2), 210–213. https://doi.org/10.1021/jm0255769

Tikhe, J. G., Webber, S. E., Hostomsky, Z., Maegley, K. A., Ekkers, A., Li, J., … Newell, D. R. (2004). Design, Synthesis, and Evaluation of 3,4–Dihydro–2H–[1,4]diazepino[6,7,1–hi]indol–1–ones as Inhibitors of Poly(ADP–Ribose). Polymerase. Journal of Medicinal Chemistry, 47 (22), 5467–5481. https://doi.org/10.1021/jm030513r

Jiang, T., Zhou, Y., Chen, Z., Sun, P., Zhu, J., Zhang, Q., … Shen, J. (2015). Design, Synthesis, and Pharmacological Evaluation of Fused β–Homophenylalanine Derivatives as Potent DPP–4 Inhibitors. ACS Medicinal Chemistry Letters, 6 (5), 602–606. https://doi.org/10.1021/acsmedchemlett.5b00074

Ding, C. Z., Batorsky, R., Bhide, R., Chao, H. J., Cho, Y., Chong, S., … Hunt, J. T. (1999). Discovery and Structure−Activity Relationships of Imidazole–Containing Tetrahydrobenzodiazepine Inhibitors of Farnesyltransferase. Journal of Medicinal Chemistry, 42 (25), 5241–5253. https://doi.org/10.1021/jm990391w

Škopić, M. K., Bugain, O., Jung, K., Onstein, S., Brandherm, S., Kalliokoski, T., & Brunschweiger, A. (2016). Design and synthesis of DNA–encoded libraries based on a benzodiazepine and a pyrazolopyrimidine scaffold. MedChemComm, 7 (10), 1957–1965. https://doi.org/10.1039/c6md00243a

Sabb, A. L., Vogel, R. L., Welmaker, G. S., Sabalski, J. E., Coupet, J., Dunlop, J., … Harrison, B. (2004). Cycloalkyl[b][1,4]benzodiazepinoindoles are agonists at the human 5–HT2C receptor. Bioorganic & Medicinal Chemistry Letters, 14 (10), 2603–2607. https://doi.org/10.1016/j.bmcl.2004.02.100

Hussenether, T., Hübner, H., Gmeiner, P., & Troschütz, R. (2004). Clozapine derived 2,3–dihydro–1H–1,4– and 1,5–benzodiazepines with D4 receptor selectivity: synthesis and biological testing. Bioorganic & Medicinal Chemistry, 12 (10), 2625–2637. https://doi.org/10.1016/j.bmc.2004.03.023

Chiodini, G., Pallavicini, M., Zanotto, C., Bissa, M., Radaelli, A., Straniero, V., … Valoti, E. (2015). Benzodioxane–benzamides as new bacterial cell division inhibitors. European Journal of Medicinal Chemistry, 89, 252–265. https://doi.org/10.1016/j.ejmech.2014.09.100

Breslin, H. J., Kukla, M. J., Ludovici, D. W., Mohrbacher, R., Ho, W., Miranda, M., … Leo, G. (1995). Synthesis and Anti–HIV–1 Activity of 4,5,6,7–Tetrahydro–5–methylimidazo[4,5,1–jk][1,4]benzodiazepin–2(1H)–one (TIBO) Derivatives. 3. Journal of Medicinal Chemistry, 38 (5), 771–793. https://doi.org/10.1021/jm00005a005

16. Pat. WO2007040435 (A1). (2007). Novel 5,6–dihydropyrazolo[3,4–e] [l,4]diazepin–4(H)–one Derivatives for the Treatment of Asthma and Chronic Obstructive Pulmonary Disease. Declared 2.10.2006; published 12.04.2007.

17. Pat. US 20070197608 A1. (2007). Piperazine as Oxitocin Agonists. Declared 02.09.2004; published 23.08. 2007.

Daly, J. W., Hide, I., & Bridson, P. K. (1990). Imidazodiazepinediones: a new class of adenosine receptor antagonists. Journal of Medicinal Chemistry, 33 (10), 2818–2821.https://doi.org/10.1021/jm00172a022

Isshiki K., Takahashi Y., Iinuma H., Naganawa H., Umezawa Y., Takeuchi T., Umezawa H., Nishimura S., Okada N., Tatsuta K. 1987. Synthesis of Azepinomicin and its β–D–Ribofuranoside. Journal of Antibiotics, 40(10), 1461–1463.

Kemskiy, S. V., Syrota, N. A., Bol’but, A. V., Dorokhov, V. I., & Vovk, M. V. (2018). Synthesis of 5–hydroxy– and 5–sulfanyl–substituted [1,2,3]triazolo[4,5–е][1,4]diazepines. Chemistry of Heterocyclic Compounds, 54 (8), 789–795. https://doi.org/10.1007/s10593-018-2350-7

Tantravedi, S., Chakraborty, S., Shah, N. H., Fishbein, J. C., & Hosmane, R. S. (2013). Analogs of iso–azepinomycin as potential transition–state analog inhibitors of guanase: Synthesis, biochemical screening, and structure–activity correlations of various selectively substituted imidazo[4,5–e][1,4]diazepines. Bioorganic & Medicinal Chemistry, 21 (17), 4893–4903. https://doi.org/10.1016/j.bmc.2013.06.069

Bol’but, A. V., Kemskii, S. V., & Vovk, M. V. (2012). Synthesis of new Di–, Tetra–, and hexahydropyrazolo[3,4–e][1,4]diazepine derivatives. Russian Journal of Organic Chemistry, 48 (7), 991–1002. https://doi.org/10.1134/s1070428012070172


GOST Style Citations


1.         Kaur, N. Synthetic Strategies Applicable in the Synthesis of Privileged Scaffold : 1,4–Benzodiazepine / N. Kaur, D. Kishore // Synth. Commun. – 2014. – Vol. 44, Issue 10. – P. 1375–1413. https://doi.org/10.1080/00397911.2013.772202

2.         Synthesis, Screening and QSAR Studies of 2,4–Disubstituted 1,5–Benzodiazepine Derivatives / M. S. Bhatia, P. B. Choudhari, K. B. Ingale, B. E. Zarekar // Oriental J. Chem. – 2008. – Vol. 24, Issue 1. – P. 147–152.

3.         Alizabeh, A. A Facile and Efficient Synthesis of Arylsulfonamido–Substituted 1,5–Benzodiaepines and N–[2–(3–BenzoylThioureido)aryl]–3–oxobutanamide Derivatives / A. Alizabeh,N. Zohreh// Helv. Chim. Acta. – 2010. – Vol. 93, Issue 6. – P. 1221–1226. https://doi.org/10.1002/hlca.200900364

4.         Goswami, P. Organocatalyzed One–Pot Synthesis of Substituted 1,5–Benzodiazepine and Benzimidazole Derivatives / P. Goswami, B. Das // Synth. Commun. – 2010. – Vol. 40, Issue 11. – P. 1685–1693. https://doi.org/10.1080/00397910903161686

5.         Palladium–mediated Approach to Dibenzo[b,e][1,4]diazepines and Benzopyrido–Analogues. An Efficient Synthesis of Tarpane / E. M. Beccalli, G. Broggini, G. Paladino, C. Zoni // Tetrahedron. – 2005. – Vol. 61, Issue 1. – P. 61–68. https://doi.org/10.1016/j.tet.2004.10.061

6.         Design and Synthesis of Poly(ADP–Ribose) Polymerase–1 (PARP–1) Inhibitors. Part 4: Biological Evaluation of Imidazobenzodiazepines as Potent PARP–1 Inhibitors for Treatment of Ischemic Injuries / D. Ferraris, R. P. Ficco, D. Dain et al. // Bioorg. Med. Chem. – 2003. – Vol. 11, Issue 17. – P. 3695–3707. https://doi.org/10.1016/s0968-0896(03)00333-x

7.         Tricyclic Benzimidazoles as Potent Poly(ADP–ribose) Polymerase–1 Inhibitors / D. J. Skalitzky, J. T. Marakovits, K. A. Maegley et al. // J. Med. Chem. – 2003. – Vol. 46, Issue 2. – P. 210–213. https://doi.org/10.1021/jm0255769

8.         Design, Synthesis, and Evaluation of 3,4–Dihydro–2H–[1,4]diazepino[6,7,1–hi]indol–1–ones as Inhibitors of Poly(ADP–Ribose) Polymerase / J. G. Tikhe, S. E. Webber, Z. Hostomsky et al. // J. Med. Chem. – 2014. – Vol. 47, Issue 22. – P. 5467–5481. https://doi.org/10.1021/jm030513r

9.         Design, Synthesis, and Pharmacological Evaluation of Fused β–Homophenylalanine Derivatives as Potent DPP–4 Inhibitors / T. Jiang, Y. Zhou, Z. Chen et al. // Med. Chem. Lett. – 2015. – Vol. 6, Issue 5. – P. 602–606. https://doi.org/10.1021/acsmedchemlett.5b00074

10.       Discovery and Structure−Activity Relationships of Imidazole–Containing Tetrahydrobenzodiazepine Inhibitors of Farnesyltransferase / C. Z. Ding, R. Batorsky, R. Bhide et al. // J. Med. Chem. – 1999. – Vol. 42, Issue 25. – P. 5241–5253. https://doi.org/10.1021/jm990391w

11.       Design and Synthesis of DNA–encoded Libraries Based on a Benzodiazepine and a Pyrazolopyrimidine Scaffold / M. K. Škopić, O. Bugain, K. Jung et al. // Med. Chem. Commun. – 2016. – Vol. 7, Issue 10. – P. 1957–1965. https://doi.org/10.1039/c6md00243a

12.       Cycloalkyl[b][1,4]diazepinoindoles are Agonists at the Human 5–HT2C Receptor / A. L. Sabb, R. L. Vogel, G. S. Velmaner et al. // Bioorg. Med. Chem. Lett. – 2004. – Vol. 14, Issue 10. – P. 2603–2607. https://doi.org/10.1016/j.bmcl.2004.02.100

13.       Clozapine Derived 2,3–Dihydro–1H–1,4– and 1,5–Benzodiazepines with D4 Receptor Selectivity: Synthesis and Biological Testing / T. Hussenether, H. Hübner, P. Gmeiner, R. Troschütz // Bioorg. Med. Chem. – 2004. – Vol. 12, Issue 10. – P. 2625–2637. https://doi.org/10.1016/j.bmc.2004.03.023

14.       Benzodioxane–benzamides as New Bacterial Cell Division Inhibitors / G. Chiodini, M. Pallavicini, C. Zanotto et al. // Eur. Med. Chem. – 2015. – Vol. 89, Issue 7. – P. 252–265. https://doi.org/10.1016/j.ejmech.2014.09.100

15.       Synthesis and Anti–HIV–1 Activity of 4,5,6,7–Tetrahydro–5–methylimidazo[4,5,1–jk][1,4]benzodiazepin–2(1H)–one (TIBO) Derivatives / H. J. Breslin, M. J. Kukla, D. W. Ludovici et al. // J. Med. Chem. – 1995. – Vol. 38, Issue 5. – P. 771–793. https://doi.org/10.1021/jm00005a005

16.       Pat. WO2007040435 (A1). Novel 5,6–dihydropyrazolo[3,4–e] [l,4]diazepin–4(H)–one Derivatives for the Treatment of Asthma and Chronic Obstructive Pulmonary Disease / K. Henriksson, A. Lisius, P. Sjo, P. Storm; Astra Zeneca Ab. – Declared: 2.10.2006 ; published: 12.04.2007.

17.       Pat. US 20070197608 A1. Piperazine as Oxitocin Agonists / P. Hudson, G. P. W. Pitt, A. R. Batt, M. B. Roe. – Declared: 02.09.2004 ; published: 23.08. 2007.

18.       Daly, J. W. Imidazodiazepinediones: A New Class of Adenosine Receptor Antagonists / J. W. Daly,I.Hide, P. K. Bridson // J. Med. Chem. – 1990. – Vol. 33, Issue 10. – P. 2818–2821. https://doi.org/10.1021/jm00172a022

19.       Synthesis of Azepinomicin and its β–D–Ribofuranoside / K. Isshiki, Y. Takahashi, H. Iinuma et al. // J. Antibiot. – 1987. – Vol. 40, Issue 10. – P. 1461–1463.

20.       Synthesis of 5–hydroxy– and 5–sulfanyl–substituted [1,2,3]triazolo[4,5–e][1,4]diazepines / S. V. Kemskiy, N. A. Syrota, A. V. Bol’but et al. // Chemistry of Heterocyclic Compounds. – 2018. –Vol. 54, Issue 8. – P. 789–795 https://doi.org/10.1007/s10593-018-2350-7

21.       Analogs of iso–azepinomycin as potential transition–state analog inhibitors of guanase: Synthesys, biochemical screening, and structure–activity correlations of various selectively substituted imidazo[4,5–e][1,4]diazepines / S. Tantravedi,S. Chakraborty, N. H. Shan et al. // Bioorg. Med. Chem. – 2013. – Vol. 21, Issue 17. – P. 4893–4903. https://doi.org/10.1016/j.bmc.2013.06.069

22.       Bol’but, A. V. Synthesis of New Di–, Tetra–, and Hexahydropyrazolo[3,4–e][1,4]diazepsne Derivatives / A. V. Bol’but, S. V. Kemskii, M. V. Vovk // Rus. J. Org. Chem. – 2012. – Vol. 48, Issue 7. – Р. 991–1002. https://doi.org/10.1134/s1070428012070172





Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: Ž. org. farm. hìm.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)