Pyrido[2,3-d]pyrimidin-7-ones: synthesis and biological properties

H. M. Zinchenko, L. V. Muzychka, O. B. Smolii


The review summarizes and systematizes data of the last twenty years on the synthetic methods and biological properties of pyrido[2,3-d]pyrimidin-7-ones, promising objects of organic and pharmaceutical chemistry. Two main approaches to the formation of the pyrido[2,3-d]pyrimidine system are considered. The first of them involves the cyclization of substituted pyridines containing functional groups in positions 2 and 3 of the heterocyclic ring. The second approach is based on the formation of a bicyclic system by adding a pyridone moiety to the pyrimidine ring. The methods developed allow to introduce various functional groups and aromatic substituents into the pyrido[2,3-d]pyrimidine system, as well as to obtain most of the target products with high yields. The effective three-component one-pot synthetic approaches to the formation of pyridine ring with the participation of functionalized pyrimidines and compounds with an active methylene group have been proposed. The analysis of the literature has shown that functionalized pyrimidines are the most common starting reagents, which structural modification is useful for the further annelation of the pyridine cycle. Much attention is paid to the biological properties of pyrido[2,3-d]pyrimidin-7-ones. The prospect of using pyrido[2,3-d]pyrimidin-7-one derivatives as tyrosine kinase inhibitors has been shown. Data on the biological effects of pyrido[2,3-d]pyrimidin-7-one derivatives indicate the possibility of detecting new biologically active compounds among pyridopyrimidines.


pyrido[2,3-d]pyrimidin-7-ones; functionalized pyrimidines and pyridines; cyclization; intramolecular cyclocondensation; kinase inhibitors


Kraus, G. A., Gupta, V., Mokhtarian, M., Mehanovic, S., Nilsen-Hamilton, M. (2010). New effective inhibitors of the Abelson kinase. Bioorganic and Medicinal Chemistry, 18 (17), 6316–6321. https://doi:10.1016/ j.bmc.2010.07.021

Antczak, C., Veach, D. R., Ramirez, C. N., Minchenko, M. A., Shuma, D., Calder, P. A., Frattini, M. G., Clarkson, B., Djaballah, H. (2009). Structure–activity relationships of 6-(2,6-dichlorophenyl)-8-methyl-2-(phenylamino)pyrido[2,3-d]pyrimidin-7-ones: toward selective Abl inhibitors. Bioorganic and Medicinal Chemistry Letters, 19 (24), 6872–6876.

Zhang, X., Huang, Y., Navarro, M. T., Hisoire, G., Caulfield, J. P. (2010). A Proof-of-concept and drug-drug Interaction study of Pamapimod, a novel p38 MAP kinase inhibitor, with methotrexate in patients with rheumatoid arthritis. Journal of Clinical Pharmacology, 50 (9), 1031–1038.

Zhao, X., Ning, L., Xie, Z., Jie, Zh., Li, X., Wan, X., Sun, X., Huang, B., Tang, P., Shen, S., Qin, A., Ma, Y., Song, L., Fan, S., Wan, S. (2019). The novel p38 inhibitor, Pamapimod, inhibits osteoclastogenesis and counteracts estrogen-dependent bone loss in mice. Journal of Bone and Mineral Research, 34 (5), 911–922.

Cadoo, K. A., Gucalp, A., Traina, T. A. (2014). Palbociclib: an evidence-based review of its potential in the treatment of breast cancer. Breast Cancer: Targets and Therapy, 6, 123–133.

Lu, J. (2015). Palbociclib: a first-in-class CDK4/CDK6 inhibitor for the treatment of hormone-receptor positive advanced breast cancer. Journal of Hematology and Oncology, 8 (98), 1–3.

Kim, E. S., Scott, L. J. (2017). Palbociclib: a review in HR-positive, HER2-negative, advanced or metastatic breast cancer. Targeted Oncology, 12 (3), 373–383.

Buron, F., Merour, J. Y., Akssira, M., Guillaumet, G., Routier, S. (2015). Recent advances in the chemistry and biology of pyridopyrimidines. European Journal of Medicinal Chemistry, 95, 76–95.

Shamroukh, A. H., Rashad, A. E., Abdelmegeid, F. M. E. (2016). The chemistry of pyrido[2,3-d]pyrimidines and their applications. Journal of Chemical and Pharmaceutical Research, 8 (3), 734–772.

Khatri, T. T., Shah, V. H. (2014). One pot synthesis of novel cyanopyridones as an intermediate of bioactive pyrido[2,3-d]pyrimidines. Journal of the Korean Chemical Society, 58 (4), 366–376.

Zhao, Y., Zhu, L., Provencal, D. P., Miller, T. A., O’Bryan, C., Langston, M., Shen, M., Bailey, D., Sha, D., Palmer, T., Ho, T., Li, M. (2012). Process research and kilogram synthesis of an investigational, potent MEK inhibitor. Organic Process Research and Development, 16 (10), 1652−1659.

Ammar, Y. A., El-Sharief, A. M. S., Mohamed, Y. A., Salem, M. A., Al-Sehemib, A. G., El-Gabyc, M. S. A. (2004). Cyanoacetanilides intermediates in heterocyclic synthesis. Part 1: A facile synthesis of polysubstituted and condensed pyridones. Journal of the Chinese Chemical Society, 51 (5A), 975–981.

Ammar, Y. A., Ismail, M. M. F., El-Sehrawi, H. M., Noaman, E., Bayomi, A. H., Shawer, T. Z. (2006). Novel Pirfenidone analogues: synthesis of pyridin-2-ones for the treatment of pulmonary fibrosis. Archiv Der Pharmazie, 339 (8), 429–436.

El-Adasy, A.-B. A. A. M., Khames, A. A., Gad-Elkareem, M. A. M. (2013). Synthesis of some new [1,8]naphthyridine, pyrido[2,3-d]pyrimidine, and other annulated pyridine derivatives. Journal of Heterocyclic Chemistry, 50 (1), 42–48.

Al-Afaleq, E. I. (2001). A facile method for the synthesis of novel pyridinone derivatives via ketene N,S-acetals. Synthetic Communications, 31 (22), 3557–3567.

Allam, Y. A., Swellem, R. H., Nawwar, G. A. M. (2001). Cyanoacetylurea in heterocyclic synthesis: A simple synthesis of heterocyclic condensed uracils. Journal of Chemical Research, 8, 346–348.

Camarasa, M., Puig de la Bellacasa, R., González, À. L., Ondoño, R., Estrada, R., Franco, S., Badia, R., Esté, J., Martínez, M. Á., Teixidó, J., Clotet, B., Borrell, J. I. (2016). Design, synthesis and biological evaluation of pyrido[2,3-d]pyrimidin-7-(8H)-ones as HCV inhibitors. European Journal of Medicinal Chemistry, 115, 463–483.

Lavecchia, M. J., Puig de la Bellacasa, R., Borrell, J. I., Cavasotto, C. N. (2016). Investigating molecular dynamics-guided lead optimization of EGFR inhibitors. Bioorganic and Medicinal Chemistry, 24 (4), 768–778.

Borrell, J. I., Teixido, J., Martinez-Teipel, B., Serra, B., Matallana, J. L., Costa, M., Batllori, X. (2010). Unequivocal synthesis of 4-amino-1,5,6,8-tetrahydropyrido[2,3-d]pyrimidine-2,7-diones and 2-amino-3,5,6,8-tetrahydropyrido[2,3-d]pyrimidine-4,7-diones. ChemInform, 27 (39).

Mont, N., Teixidó, J., Borrell, J. I., Kappe, C. O. (2003). A three-component synthesis of pyrido[2,3-d]pyrimidines. Tetrahedron Letters, 44 (29), 5385–5387.

Ahadi, S., Kamranifard, T., Armaghan, M., Khavasi, H. R., Bazgir, A. (2014). Domino Knoevenagel condensation–Michael addition–cyclization for the diastereoselective synthesis of dihydrofuropyrido[2,3-d]pyrimidines via pyridinium ylides in water. RSC Advances, 4 (14), 7296–7300.

Khattab, A. F., Kappe, T. (1996). Pyrido[2,3-d]pyrimidines, II. One step synthesis of pyrido[2,3-d]pyrimidines and pyrimido[4,5-b]quinolines from 6-amino uracils. Monatshefte Fur Chemie Chemical Monthly, 127 (8–9), 917–925.

Dong, Q., Dougan, D. R., Gong, X., Halkowycz, P., Jin, B., Kanouni, T., O’Connell, S. M., Scorah, N., Shi, L., Wallace, M. B., Zhou, F. (2011). Discovery of TAK-733, a potent and selective MEK allosteric site inhibitor for the treatment of cancer. Bioorganic and Medicinal Chemistry Letters, 21 (5), 1315–1319.

Castillo, J.-C., Quiroga, J., Rodriguez, J., Coquerel, Y. (2016). Time-efficient synthesis of pyrido[2,3-d]pyrimidinones via α-oxoketenes. European Journal of Organic Chemistry, 2016 (11), 1994–1999.

Vasudevan, A., Mavandadi, F., Chen, L., Gangjee, A. (1999). Reactions of 6-aminopyrimidines with biselectrophiles: manipulation of product composition with solvent and pyrimidine substitution variation. The Journal of Organic Chemistry, 64 (2), 634–638.

Takahashi, M., Nagaoka, H., Inoue, K. (2004). Synthesis of trifluoromethylated pyrido[2,3-d]pyrimidine-2,4-diones from 6-aminouracils and trifluoromethylated pyrazolo[3,4-b]pyridines from 5-aminopyrazoles. Journal of Heterocyclic Chemistry, 41 (4), 525–530.

Bulicz, J., Bertarelli, D. C. G., Baumert, D., Fülle, F., Müller, C. E., Heber, D. (2006). Synthesis and pharmacology of pyrido[2,3-d]pyrimidinediones bearing polar substituents as adenosine receptor antagonists. Bioorganic and Medicinal Chemistry, 14 (8), 2837–2849.

Baharfar, R., Azimi, R. (2011). A clean and efficient cyclocondensation to pyrido[2,3-d]pyrimidine derivatives in aqueous media. Chinese Chemical Letters, 22 (10), 1183–1186.

Gineinah, M. M., Nasr, M. N. A., Badr, S. M. I., El-Husseiny, W. M. (2012). Synthesis and antitumor activity of new pyrido[2,3-d]pyrimidine derivatives. Medicinal Chemistry Research, 22 (8), 3943–3952.

Dulla, B., Wan, B., Franzblau, S. G., Kapavarapu, R., Reiser, O., Iqbal, J., Pal, M. (2012). Construction and functionalization of fused pyridine ring leading to novel compounds as potential antitubercular agents. Bioorganic and Medicinal Chemistry Letters, 22 (14), 4629–4635.

Reddy, M. V. R., Akula, B., Cosenza, S. C., Athuluridivakar, S., Mallireddigari, M. R., Pallela, V. R., … Reddy, E. P. (2014). Discovery of 8-Cyclopentyl-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-7-oxo-7,8-dihydro-pyrido[2,3-d]pyrimidine-6-carbonitrile (7x) as a Potent Inhibitor of Cyclin-Dependent Kinase 4 (CDK4) and AMPK-Related Kinase 5 (ARK5). Journal of Medicinal Chemistry, 57 (3), 578–599.

Goldstein, D. M., Soth, M., Gabriel, T., Dewdney, N., Kuglstatter, A., Arzeno, H., … Zecic, H. (2011). Discovery of 6-(2,4-Difluorophenoxy)-2-[3-hydroxy-1-(2-hydroxyethyl)propylamino]-8-methyl-8H-pyrido[2,3-d]pyrimidin-7-one (Pamapimod) and 6-(2,4-Difluorophenoxy)-8-methyl-2-(tetrahydro-2H-pyran-4-ylamino)pyrido[2,3-d]pyrimidin-7(8H)-one (R1487) as Orally Bioavailable and Highly Selective Inhibitors of p38α Mitogen-Activated Protein Kinase. Journal of Medicinal Chemistry, 54 (7), 2255–2265.

Ren L., Ahrendt K.A., Grina J., Laird E.R., Buckmelter A.J., Hansen J.D., Newhouse B., Moreno D., Wenglowsky S., Dinkel V., Gloor S.L., Hastings G., Rana S., Rasor K., Risom T., Sturgis H.L., Voegtli W.C., Mathieu S. (2012). The discovery of potent and selective pyridopyrimidin-7-one based inhibitors of B-RafV600E kinase. Bioorganic and Medicinal Chemistry Letters, 22 (10), 3387–3391.

Rudolph, J., Murray, L. J., Ndubaku, C. O., O’Brien, T., Blackwood, E., Wang, W., … Zhong, Y. (2016). Chemically Diverse Group I p21-Activated Kinase (PAK) Inhibitors Impart Acute Cardiovascular Toxicity with a Narrow Therapeutic Window. Journal of Medicinal Chemistry, 59 (11), 5520–5541.

Koval, A. B., & Wuest, W. M. (2016). An optimized synthesis of the potent and selective Pak1 inhibitor FRAX-1036. Tetrahedron Letters, 57 (3), 449–451.

Blass, B. E., Coburn, K., Fairweather, N., Sabat, M., & West, L. (2006). A facile, KF/Al2O3 mediated method for the preparation of functionalized pyrido[2,3-d]pyrimidin-7(8H)-ones. Tetrahedron Letters, 47 (18), 3177–3180.

Angiolini, M., Bassini, D. F., Gude, M., & Menichincheri, M. (2005). Solid-phase synthesis of pyrido[2,3-d]pyrimidin-7-ones. Tetrahedron Letters, 46 (50), 8749–8752.

Barvian, M., Boschelli, D. H., Cossrow, J., Dobrusin, E., Fattaey, A., Fritsch, A., … Zhang, E. (2000). Pyrido[2,3-d]pyrimidin-7-one Inhibitors of Cyclin-Dependent Kinases. Journal of Medicinal Chemistry, 43 (24), 4606–4616.

Yan, H., Boehm, J. C., Jin, Q., Kasparec, J., Li, H., Zhu, C., … Wan, Z. (2007). An improved and highly convergent synthesis of 4-substituted-pyrido[2,3-d]pyrimidin-7-ones. Tetrahedron Letters, 48 (7), 1205–1207.

Sakamoto, T., Koga, Y., Hikota, M., Matsuki, K., Mochida, H., Kikkawa, K., … Yamada, K. (2015). 8-(3-Chloro-4-methoxybenzyl)-8H-pyrido[2,3-d]pyrimidin-7-one derivatives as potent and selective phosphodiesterase 5 inhibitors. Bioorganic & Medicinal Chemistry Letters, 25 (7), 1431–1435.

VanderWel, S. N., Harvey, P. J., McNamara, D. J., Repine, J. T., Keller, P. R., Quin, J., Booth, R. J., Elliott, W. L., Dobrusin, E. M., Fry, D. W., Toogood, P. L. (2005). Pyrido[2,3-d]pyrimidin-7-ones as specific inhibitors of Cyclin-dependent kinase 4. Journal of Medicinal Chemistry, 48 (7), 2371–2387.

Apsunde, T., & Wurz, R. P. (2014). Pyridin-2-one Synthesis Using Ester Enolates and Aryl Aminoaldehydes and Ketones. The Journal of Organic Chemistry, 79 (7), 3260–3266.

Wurz, R. P., Pettus, L. H., Ashton, K., Brown, J., Chen, J. J., Herberich, B., … Tasker, A. S. (2015). Oxopyrido[2,3-d]pyrimidines as Covalent L858R/T790M Mutant Selective Epidermal Growth Factor Receptor (EGFR) Inhibitors. ACS Medicinal Chemistry Letters, 6 (9), 987–992.

Wan, Z., Yan, H., Hall, R. F., Lin, X., Livia, S., Respondek, T., … Callahan, J. F. (2009). Design and development of arrayable syntheses to accelerate SAR studies of pyridopyrimidinone and pyrimidopyrimidinone. Tetrahedron Letters, 50 (3), 370–372.

Klutchko, S. R., Hamby, J. M., Boschelli, D. H., Wu, Z., Kraker, A. J., Amar, A. M., … Doherty, A. M. (1998). 2-Substituted Aminopyrido[2,3-d]pyrimidin-7(8H)-ones. Structure−Activity Relationships Against Selected Tyrosine Kinases and in Vitro and in Vivo Anticancer Activity. Journal of Medicinal Chemistry, 41 (17), 3276–3292.

Zhang, J., Lu, D., Wei, H.-X., Gu, Y., Selkoe, D. J., Wolfe, M. S., & Augelli-Szafran, C. E. (2016). Part 3: Notch-sparing γ-secretase inhibitors: SAR studies of 2-substituted aminopyridopyrimidinones. Bioorganic & Medicinal Chemistry Letters, 26 (9), 2138–2141.

Zinchenko, A. N., Muzychka, L. V., Biletskii, I. I., & Smolii, O. B. (2017). Synthesis of new 4-amino-substituted 7-iminopyrido[2,3-d]pyrimidines. Chemistry of Heterocyclic Compounds, 53 (5), 589–596.

Deb, M. L., & Bhuyan, P. J. (2006). Synthesis of Novel Classes of Pyrido[2,3-d]-pyrimidines, Pyrano[2,3-d]pyrimidines, and Pteridines. Synthetic Communications, 36 (20), 3085–3090.

Murphy-Benenato, K. E., Gingipalli, L., Boriack-Sjodin, P. A., Martinez-Botella, G., Carcanague, D., Eyermann, C. J., … Patel, S. J. (2015). Negishi cross-coupling enabled synthesis of novel NAD+-dependent DNA ligase inhibitors and SAR development. Bioorganic & Medicinal Chemistry Letters, 25 (22), 5172–5177.

Spalluto, G., & Cacciari, B. (2006). Facile and Versatile Route to the Synthesis of Fused 2-Pyridones : Useful Intermediates for Polycyclic Sytems. Synthetic Communications, 36 (9), 1173–1183.

Shanmugasundaram, P., Mohanarangan, J., Raj, R. K., Aanandhi, M. V. (2009). Synthesis and biological evaluation of pyrido[2,3-d]pyrimidinecarboxylate derivatives. Rasayan Journal of Chemistry, 2 (2), 345–349.

Ellingboe, J. W., Antane, M., Nguyen, T. T., Collini, M. D., Antane, S., Bender, R., … McCallum, J. (1994). Pyrido[2,3-d]pyrimidine Angiotensin II Antagonists. Journal of Medicinal Chemistry, 37 (4), 542–550.

Harutyunyan, A. A., Panosyan, G. A., Chishmarityan, S. G., Paronikyan, R. V., & Stepanyan, H. M. (2015). Synthesis and properties of derivatives of pyrimidin-5-ylpropanoic acids and 8-aryl-4-methyl- and 4,6-dimethyl-2-phenyl-5,6,7,8-tetrahydropyrido-[2,3-d]pyrimidin-7-ones. Russian Journal of Organic Chemistry, 51 (5), 705–710.

Adcock, J., Gibson, C. L., Huggan, J. K., & Suckling, C. J. (2011). Diversity oriented synthesis: substitution at C5 in unreactive pyrimidines by Claisen rearrangement and reactivity in nucleophilic substitution at C2 and C4 in pteridines and pyrido[2,3-d]pyrimidines. Tetrahedron, 67 (18), 3226–3237.

Le, P. T., Cheng, H., Ninkovic, S., Plewe, M., Huang, X., Wang, H., … Zhang, E. (2012). Design and synthesis of a novel pyrrolidinyl pyrido pyrimidinone derivative as a potent inhibitor of PI3Kα and mTOR. Bioorganic & Medicinal Chemistry Letters, 22 (15), 5098–5103.

Cheng, H., Hoffman, J. E., Le, P. T., Pairish, M., Kania, R., Farrell, W., … Rahavendran, S. V. (2013). Structure-based design, SAR analysis and antitumor activity of PI3K/mTOR dual inhibitors from 4-methylpyridopyrimidinone series. Bioorganic & Medicinal Chemistry Letters, 23 (9), 2787–2792.

Elokdah, H. M., Friedrichs, G. S., Chai, S.-Y., Harrison, B. L., Primeau, J., Chlenov, M., & Crandall, D. L. (2002). Novel human metabolites of the angiotensin-II antagonist tasosartan and their pharmacological effects. Bioorganic & Medicinal Chemistry Letters, 12 (15), 1967–1971.

Blades, K., & Glossop, S. (2016). A Three-Step Protocol towards N-8-(2,2-Dimethoxyethyl)-2-methylsulfanylpyrido[2,3-d]pyrimidin-7-one. Synthesis, 49 (03), 554–556.

Choi, H.-S., Wang, Z., Richmond, W., He, X., Yang, K., Jiang, T., … He, Y. (2006). Design and synthesis of 7H-pyrrolo[2,3-d]pyrimidines as focal adhesion kinase inhibitors. Part 1. Bioorganic & Medicinal Chemistry Letters, 16 (8), 2173–2176.

Boros, E. E., Thompson, J. B., Wood, E. R., McDonald, O. B., Spitzer, T. D., Sefler, A. M., & Reep, B. R. (2004). Tandem Michael-addition/cyclization synthesis and EGFR kinase inhibition activity of pyrido[2,3-d]pyrimidin-7(8H)-ones. Journal of Heterocyclic Chemistry, 41 (3), 355–358.

Wang, X., Zeng, Z., Shi, D., Tu, S., Wei, X., & Zong, Z. (2005). Three-Component, One-Pot Synthesis of Pyrido[2,3‐d]pyrimidine Derivatives Catalyzed by KF‐alumina. Synthetic Communications, 35 (14), 1921–1927.

Abdolmohammadi, S., & Afsharpour, M. (2012). Facile one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives over ZrO2 nanoparticles catalyst. Chinese Chemical Letters, 23 (3), 257–260.

Nasr, M. N., Gineinah, M. M. (2002). Pyrido[2,3-d]pyrimidines and pyrimido[5’,4’:5,6]pyrido[2,3-d]pyrimidines as new antiviral agents: synthesis and biological activity. Archiv der Pharmazie, 335 (6), 289–295.<289::AIDARDP289>3.0.CO;2-Z

Shi, D., Ji, S., Niu, L., Shi, J., & Wang, X. (2007). One-pot synthesis of pyrido[2,3-d]pyrimidines via efficient three-component reaction in aqueous media. Journal of Heterocyclic Chemistry, 44 (5), 1083–1090.

Nia, R. H., Mamaghani, M., Tabatabaeian, K., (2013). A rapid one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives using brønsted-acidic ionic liquid as catalyst. Acta Chimica Slovenica, 60 (4), 889–895.

Walters, I., Austin, C., Austin, R., Bonnert, R., Cage, P., Christie, M., … Robinson, D. (2008). Evaluation of a series of bicyclic CXCR2 antagonists. Bioorganic & Medicinal Chemistry Letters, 18 (2), 798–803.

Tu, S., Zhang, J., Zhu, X., Xu, J., Zhang, Y., Wang, Q., … Zhang, J. (2006). New potential inhibitors of cyclin-dependent kinase 4 : Design and synthesis of pyrido[2,3-d]pyrimidine derivatives under microwave irradiation. Bioorganic & Medicinal Chemistry Letters, 16 (13), 3578–3581.

Heravi, M. M., Saeedi, M., Beheshtiha, Y. S., & Oskooie, H. A. (2011). One-pot chemoselective synthesis of novel fused pyrimidine derivatives. Chemistry of Heterocyclic Compounds, 47 (6), 737–744.

Zinchenko, A. M., Muzychka, L. V., Kucher, O. V., Sadkova, I. V., Mykhailiuk, P. K., & Smolii, O. B. (2018). One-Pot Synthesis of 6-Aminopyrido[2,3-d]pyrimidin-7-ones. European Journal of Organic Chemistry, 2018 (46), 6519–6523.

Zinchenko, A. N., Muzychka, L. V., Smolii, O. B., Bdzhola, V. G., Protopopov, M. V., & Yarmoluk, S. M. (2017). Synthesis and biological evaluation of novel amino-substituted derivatives of pyrido[2,3-d]pyrimidine as inhibitors of protein kinase CK2. Biopolymers and Cell, 33 (5), 367–378.

Xu, T., Peng, T., Ren, X., Zhang, L., Yu, L., Luo, J., … Ding, K. (2015). C5-substituted pyrido[2,3-d]pyrimidin-7-ones as highly specific kinase inhibitors targeting the clinical resistance-related EGFRT790M mutant. MedChemComm, 6 (9), 1693–1697.

Yu, L., Huang, M., Xu, T., Tong, L., Yan, X., Zhang, Z., … Lu, X. (2017). A structure-guided optimization of pyrido[2,3-d]pyrimidin-7-ones as selective inhibitors of EGFRL858R/T790M mutant with improved pharmacokinetic properties. European Journal of Medicinal Chemistry, 126, 1107–1117.

Brameld, K. A., Owens, T. D., Verner, E., Venetsanakos, E., Bradshaw, J. M., Phan, V. T., … Funk, J. O. (2017). Discovery of the Irreversible Covalent FGFR Inhibitor 8-(3-(4-Acryloylpiperazin-1-yl)propyl)-6-(2,6-dichloro-3,5-dimethoxyphenyl)-2-(methylamino)pyrido[2,3-d]pyrimidin-7(8H)-one (PRN1371) for the Treatment of Solid Tumors. Journal of Medicinal Chemistry, 60 (15), 6516–6527.

Ndubaku, C. O., Crawford, J. J., Drobnick, J., Aliagas, I., Campbell, D., Dong, P., … Rudolph, J. (2015). Design of Selective PAK1 Inhibitor G-5555: Improving Properties by Employing an Unorthodox Low-pKa Polar Moiety. ACS Medicinal Chemistry Letters, 6 (12), 1241–1246.

Khokhani, K., Khatri, T., Ram, V., Patel, P. (2013). Microwave assisted synthesis and biological investigations of novel derivatives of pyrido[2,3-d]pyrimidines. Chemistry and Biology Interface, 3 (3), 192–200.

Cheng, H., Hoffman, J. E., Le, P. T., Pairish, M., Kania, R., Farrell, W., … Rahavendran, S. V. (2013). Structure-based design, SAR analysis and antitumor activity of PI3K/mTOR dual inhibitors from 4-methylpyridopyrimidinone series. Bioorganic & Medicinal Chemistry Letters, 23 (9), 2787–2792.

Le, P. T., Cheng, H., Ninkovic, S., Plewe, M., Huang, X., Wang, H., … Zhang, E. (2012). Design and synthesis of a novel pyrrolidinyl pyrido pyrimidinone derivative as a potent inhibitor of PI3Kα and mTOR. Bioorganic & Medicinal Chemistry Letters, 22 (15), 5098–5103.

Palmer, B. D., Smaill, J. B., Rewcastle, G. W., Dobrusin, E. M., Kraker, A., Moore, C. W., … Denny, W. A. (2005). Structure-activity relationships for 2-anilino-6-phenylpyrido[2,3-d]pyrimidin-7(8H)-ones as inhibitors of the cellular checkpoint kinase Wee1. Bioorganic & Medicinal Chemistry Letters, 15 (7), 1931–1935.

Anderson, K., Chen, Y., Chen, Z., Dominique, R., Glenn, K., He, Y., … Zhang, X. (2013). Pyrido[2,3-d]pyrimidines: Discovery and preliminary SAR of a novel series of DYRK1B and DYRK1A inhibitors. Bioorganic & Medicinal Chemistry Letters, 23 (24), 6610–6615.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: J. Org. Pharm. Chem.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)