DOI: https://doi.org/10.24959/ophcj.19.182845

Pyrido[2,3-d]pyrimidin-7-ones: synthesis and biological properties

H. M. Zinchenko, L. V. Muzychka, O. B. Smolii

Abstract


The review summarizes and systematizes data of the last twenty years on the synthetic methods and biological properties of pyrido[2,3-d]pyrimidin-7-ones, promising objects of organic and pharmaceutical chemistry. Two main approaches to the formation of the pyrido[2,3-d]pyrimidine system are considered. The first of them involves the cyclization of substituted pyridines containing functional groups in positions 2 and 3 of the heterocyclic ring. The second approach is based on the formation of a bicyclic system by adding a pyridone moiety to the pyrimidine ring. The methods developed allow to introduce various functional groups and aromatic substituents into the pyrido[2,3-d]pyrimidine system, as well as to obtain most of the target products with high yields. The effective three-component one-pot synthetic approaches to the formation of pyridine ring with the participation of functionalized pyrimidines and compounds with an active methylene group have been proposed. The analysis of the literature has shown that functionalized pyrimidines are the most common starting reagents, which structural modification is useful for the further annelation of the pyridine cycle. Much attention is paid to the biological properties of pyrido[2,3-d]pyrimidin-7-ones. The prospect of using pyrido[2,3-d]pyrimidin-7-one derivatives as tyrosine kinase inhibitors has been shown. Data on the biological effects of pyrido[2,3-d]pyrimidin-7-one derivatives indicate the possibility of detecting new biologically active compounds among pyridopyrimidines.


Keywords


pyrido[2,3-d]pyrimidin-7-ones; functionalized pyrimidines and pyridines; cyclization; intramolecular cyclocondensation; kinase inhibitors

References


Kraus, G. A., Gupta, V., Mokhtarian, M., Mehanovic, S., Nilsen-Hamilton, M. (2010). New effective inhibitors of the Abelson kinase. Bioorganic and Medicinal Chemistry, 18 (17), 6316–6321. https://doi:10.1016/ j.bmc.2010.07.021

Antczak, C., Veach, D. R., Ramirez, C. N., Minchenko, M. A., Shuma, D., Calder, P. A., Frattini, M. G., Clarkson, B., Djaballah, H. (2009). Structure–activity relationships of 6-(2,6-dichlorophenyl)-8-methyl-2-(phenylamino)pyrido[2,3-d]pyrimidin-7-ones: toward selective Abl inhibitors. Bioorganic and Medicinal Chemistry Letters, 19 (24), 6872–6876. https://doi.org/10.1016/j.bmcl.2009.10.085

Zhang, X., Huang, Y., Navarro, M. T., Hisoire, G., Caulfield, J. P. (2010). A Proof-of-concept and drug-drug Interaction study of Pamapimod, a novel p38 MAP kinase inhibitor, with methotrexate in patients with rheumatoid arthritis. Journal of Clinical Pharmacology, 50 (9), 1031–1038. https://doi.org/10.1177/0091270009357433

Zhao, X., Ning, L., Xie, Z., Jie, Zh., Li, X., Wan, X., Sun, X., Huang, B., Tang, P., Shen, S., Qin, A., Ma, Y., Song, L., Fan, S., Wan, S. (2019). The novel p38 inhibitor, Pamapimod, inhibits osteoclastogenesis and counteracts estrogen-dependent bone loss in mice. Journal of Bone and Mineral Research, 34 (5), 911–922. https://doi.org/10.1002/jbmr.3655

Cadoo, K. A., Gucalp, A., Traina, T. A. (2014). Palbociclib: an evidence-based review of its potential in the treatment of breast cancer. Breast Cancer: Targets and Therapy, 6, 123–133. http://dx.doi.org/10.2147/BCTT.S46725

Lu, J. (2015). Palbociclib: a first-in-class CDK4/CDK6 inhibitor for the treatment of hormone-receptor positive advanced breast cancer. Journal of Hematology and Oncology, 8 (98), 1–3. https://doi.org/10.1186/s13045-015-0194-5

Kim, E. S., Scott, L. J. (2017). Palbociclib: a review in HR-positive, HER2-negative, advanced or metastatic breast cancer. Targeted Oncology, 12 (3), 373–383. https://doi.org/10.1007/s11523-017-0492-7

Buron, F., Merour, J. Y., Akssira, M., Guillaumet, G., Routier, S. (2015). Recent advances in the chemistry and biology of pyridopyrimidines. European Journal of Medicinal Chemistry, 95, 76–95. http://dx.doi.org/10.1016/j.ejmech.2015.03.029

Shamroukh, A. H., Rashad, A. E., Abdelmegeid, F. M. E. (2016). The chemistry of pyrido[2,3-d]pyrimidines and their applications. Journal of Chemical and Pharmaceutical Research, 8 (3), 734–772.

Khatri, T. T., Shah, V. H. (2014). One pot synthesis of novel cyanopyridones as an intermediate of bioactive pyrido[2,3-d]pyrimidines. Journal of the Korean Chemical Society, 58 (4), 366–376. http://dx.doi.org/10.5012/jkcs.2014.58.4.366

Zhao, Y., Zhu, L., Provencal, D. P., Miller, T. A., O’Bryan, C., Langston, M., Shen, M., Bailey, D., Sha, D., Palmer, T., Ho, T., Li, M. (2012). Process research and kilogram synthesis of an investigational, potent MEK inhibitor. Organic Process Research and Development, 16 (10), 1652−1659. https://doi.org/10.1021/op300198a

Ammar, Y. A., El-Sharief, A. M. S., Mohamed, Y. A., Salem, M. A., Al-Sehemib, A. G., El-Gabyc, M. S. A. (2004). Cyanoacetanilides intermediates in heterocyclic synthesis. Part 1: A facile synthesis of polysubstituted and condensed pyridones. Journal of the Chinese Chemical Society, 51 (5A), 975–981. https://doi.org/10.1002/jccs.200400145

Ammar, Y. A., Ismail, M. M. F., El-Sehrawi, H. M., Noaman, E., Bayomi, A. H., Shawer, T. Z. (2006). Novel Pirfenidone analogues: synthesis of pyridin-2-ones for the treatment of pulmonary fibrosis. Archiv Der Pharmazie, 339 (8), 429–436. https://doi.org/10.1002/ardp.200600017

El-Adasy, A.-B. A. A. M., Khames, A. A., Gad-Elkareem, M. A. M. (2013). Synthesis of some new [1,8]naphthyridine, pyrido[2,3-d]pyrimidine, and other annulated pyridine derivatives. Journal of Heterocyclic Chemistry, 50 (1), 42–48. https://doi.org/10.1002/jhet.990

Al-Afaleq, E. I. (2001). A facile method for the synthesis of novel pyridinone derivatives via ketene N,S-acetals. Synthetic Communications, 31 (22), 3557–3567. http://dx.doi.org/10.1081/scc-100106218

Allam, Y. A., Swellem, R. H., Nawwar, G. A. M. (2001). Cyanoacetylurea in heterocyclic synthesis: A simple synthesis of heterocyclic condensed uracils. Journal of Chemical Research, 8, 346–348. https://doi.org/10.3184/030823401103170034

Camarasa, M., Puig de la Bellacasa, R., González, À. L., Ondoño, R., Estrada, R., Franco, S., Badia, R., Esté, J., Martínez, M. Á., Teixidó, J., Clotet, B., Borrell, J. I. (2016). Design, synthesis and biological evaluation of pyrido[2,3-d]pyrimidin-7-(8H)-ones as HCV inhibitors. European Journal of Medicinal Chemistry, 115, 463–483. https://doi.org/10.1016/j.ejmech.2016.03.055

Lavecchia, M. J., Puig de la Bellacasa, R., Borrell, J. I., Cavasotto, C. N. (2016). Investigating molecular dynamics-guided lead optimization of EGFR inhibitors. Bioorganic and Medicinal Chemistry, 24 (4), 768–778. http://dx.doi.org/10.1016/j.bmc.2015.12.046

Borrell, J. I., Teixido, J., Martinez-Teipel, B., Serra, B., Matallana, J. L., Costa, M., Batllori, X. (2010). Unequivocal synthesis of 4-amino-1,5,6,8-tetrahydropyrido[2,3-d]pyrimidine-2,7-diones and 2-amino-3,5,6,8-tetrahydropyrido[2,3-d]pyrimidine-4,7-diones. ChemInform, 27 (39). https://doi.org/10.1002/chin.199639178

Mont, N., Teixidó, J., Borrell, J. I., Kappe, C. O. (2003). A three-component synthesis of pyrido[2,3-d]pyrimidines. Tetrahedron Letters, 44 (29), 5385–5387. https://doi.org/10.1016/s0040-4039(03)01306-6

Ahadi, S., Kamranifard, T., Armaghan, M., Khavasi, H. R., Bazgir, A. (2014). Domino Knoevenagel condensation–Michael addition–cyclization for the diastereoselective synthesis of dihydrofuropyrido[2,3-d]pyrimidines via pyridinium ylides in water. RSC Advances, 4 (14), 7296–7300. https://doi.org/10.1039/c3ra45795h

Khattab, A. F., Kappe, T. (1996). Pyrido[2,3-d]pyrimidines, II. One step synthesis of pyrido[2,3-d]pyrimidines and pyrimido[4,5-b]quinolines from 6-amino uracils. Monatshefte Fur Chemie Chemical Monthly, 127 (8–9), 917–925. https://doi.org/10.1007/bf00807031

Dong, Q., Dougan, D. R., Gong, X., Halkowycz, P., Jin, B., Kanouni, T., O’Connell, S. M., Scorah, N., Shi, L., Wallace, M. B., Zhou, F. (2011). Discovery of TAK-733, a potent and selective MEK allosteric site inhibitor for the treatment of cancer. Bioorganic and Medicinal Chemistry Letters, 21 (5), 1315–1319. https://doi.org/10.1016/j.bmcl.2011.01.071

Castillo, J.-C., Quiroga, J., Rodriguez, J., Coquerel, Y. (2016). Time-efficient synthesis of pyrido[2,3-d]pyrimidinones via α-oxoketenes. European Journal of Organic Chemistry, 2016 (11), 1994–1999. http://dx.doi.org/10.1002/ejoc.201600171

Vasudevan, A., Mavandadi, F., Chen, L., Gangjee, A. (1999). Reactions of 6-aminopyrimidines with biselectrophiles: manipulation of product composition with solvent and pyrimidine substitution variation. The Journal of Organic Chemistry, 64 (2), 634–638. https://doi.org/10.1021/jo9713870

Takahashi, M., Nagaoka, H., Inoue, K. (2004). Synthesis of trifluoromethylated pyrido[2,3-d]pyrimidine-2,4-diones from 6-aminouracils and trifluoromethylated pyrazolo[3,4-b]pyridines from 5-aminopyrazoles. Journal of Heterocyclic Chemistry, 41 (4), 525–530. https://doi.org/10.1002/jhet.5570410408

Bulicz, J., Bertarelli, D. C. G., Baumert, D., Fülle, F., Müller, C. E., Heber, D. (2006). Synthesis and pharmacology of pyrido[2,3-d]pyrimidinediones bearing polar substituents as adenosine receptor antagonists. Bioorganic and Medicinal Chemistry, 14 (8), 2837–2849. https://doi.org/10.1016/j.bmc.2005.12.008

Baharfar, R., Azimi, R. (2011). A clean and efficient cyclocondensation to pyrido[2,3-d]pyrimidine derivatives in aqueous media. Chinese Chemical Letters, 22 (10), 1183–1186. https://doi.org/10.1016/j.cclet.2011.04.020

Gineinah, M. M., Nasr, M. N. A., Badr, S. M. I., El-Husseiny, W. M. (2012). Synthesis and antitumor activity of new pyrido[2,3-d]pyrimidine derivatives. Medicinal Chemistry Research, 22 (8), 3943–3952. https://doi.org/10.1007/s00044-012-0396-0

Dulla, B., Wan, B., Franzblau, S. G., Kapavarapu, R., Reiser, O., Iqbal, J., Pal, M. (2012). Construction and functionalization of fused pyridine ring leading to novel compounds as potential antitubercular agents. Bioorganic and Medicinal Chemistry Letters, 22 (14), 4629–4635. http://dx.doi.org/10.1016/j.bmcl.2012.05.096

Reddy, M. V. R., Akula, B., Cosenza, S. C., Athuluridivakar, S., Mallireddigari, M. R., Pallela, V. R., … Reddy, E. P. (2014). Discovery of 8-Cyclopentyl-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-7-oxo-7,8-dihydro-pyrido[2,3-d]pyrimidine-6-carbonitrile (7x) as a Potent Inhibitor of Cyclin-Dependent Kinase 4 (CDK4) and AMPK-Related Kinase 5 (ARK5). Journal of Medicinal Chemistry, 57 (3), 578–599. https://doi.org/10.1021/jm401073p

Goldstein, D. M., Soth, M., Gabriel, T., Dewdney, N., Kuglstatter, A., Arzeno, H., … Zecic, H. (2011). Discovery of 6-(2,4-Difluorophenoxy)-2-[3-hydroxy-1-(2-hydroxyethyl)propylamino]-8-methyl-8H-pyrido[2,3-d]pyrimidin-7-one (Pamapimod) and 6-(2,4-Difluorophenoxy)-8-methyl-2-(tetrahydro-2H-pyran-4-ylamino)pyrido[2,3-d]pyrimidin-7(8H)-one (R1487) as Orally Bioavailable and Highly Selective Inhibitors of p38α Mitogen-Activated Protein Kinase. Journal of Medicinal Chemistry, 54 (7), 2255–2265. https://doi.org/10.1021/jm101423y

Ren L., Ahrendt K.A., Grina J., Laird E.R., Buckmelter A.J., Hansen J.D., Newhouse B., Moreno D., Wenglowsky S., Dinkel V., Gloor S.L., Hastings G., Rana S., Rasor K., Risom T., Sturgis H.L., Voegtli W.C., Mathieu S. (2012). The discovery of potent and selective pyridopyrimidin-7-one based inhibitors of B-RafV600E kinase. Bioorganic and Medicinal Chemistry Letters, 22 (10), 3387–3391. http://dx.doi.org/10.1016/j.bmcl.2012.04.015

Rudolph, J., Murray, L. J., Ndubaku, C. O., O’Brien, T., Blackwood, E., Wang, W., … Zhong, Y. (2016). Chemically Diverse Group I p21-Activated Kinase (PAK) Inhibitors Impart Acute Cardiovascular Toxicity with a Narrow Therapeutic Window. Journal of Medicinal Chemistry, 59 (11), 5520–5541. https://doi.org/10.1021/acs.jmedchem.6b00638

Koval, A. B., & Wuest, W. M. (2016). An optimized synthesis of the potent and selective Pak1 inhibitor FRAX-1036. Tetrahedron Letters, 57 (3), 449–451. http://dx.doi.org/10.1016/j.tetlet.2015.12.059

Blass, B. E., Coburn, K., Fairweather, N., Sabat, M., & West, L. (2006). A facile, KF/Al2O3 mediated method for the preparation of functionalized pyrido[2,3-d]pyrimidin-7(8H)-ones. Tetrahedron Letters, 47 (18), 3177–3180. https://doi.org/10.1016/j.tetlet.2006.02.155

Angiolini, M., Bassini, D. F., Gude, M., & Menichincheri, M. (2005). Solid-phase synthesis of pyrido[2,3-d]pyrimidin-7-ones. Tetrahedron Letters, 46 (50), 8749–8752. https://doi.org/10.1016/j.tetlet.2005.10.030

Barvian, M., Boschelli, D. H., Cossrow, J., Dobrusin, E., Fattaey, A., Fritsch, A., … Zhang, E. (2000). Pyrido[2,3-d]pyrimidin-7-one Inhibitors of Cyclin-Dependent Kinases. Journal of Medicinal Chemistry, 43 (24), 4606–4616. https://doi.org/10.1021/jm000271k

Yan, H., Boehm, J. C., Jin, Q., Kasparec, J., Li, H., Zhu, C., … Wan, Z. (2007). An improved and highly convergent synthesis of 4-substituted-pyrido[2,3-d]pyrimidin-7-ones. Tetrahedron Letters, 48 (7), 1205–1207. https://doi.org/10.1016/j.tetlet.2006.12.064

Sakamoto, T., Koga, Y., Hikota, M., Matsuki, K., Mochida, H., Kikkawa, K., … Yamada, K. (2015). 8-(3-Chloro-4-methoxybenzyl)-8H-pyrido[2,3-d]pyrimidin-7-one derivatives as potent and selective phosphodiesterase 5 inhibitors. Bioorganic & Medicinal Chemistry Letters, 25 (7), 1431–1435. http://dx.doi.org/10.1016/j.bmcl.2015.02.041

VanderWel, S. N., Harvey, P. J., McNamara, D. J., Repine, J. T., Keller, P. R., Quin, J., Booth, R. J., Elliott, W. L., Dobrusin, E. M., Fry, D. W., Toogood, P. L. (2005). Pyrido[2,3-d]pyrimidin-7-ones as specific inhibitors of Cyclin-dependent kinase 4. Journal of Medicinal Chemistry, 48 (7), 2371–2387. https://doi.org/10.1021/jm049355

Apsunde, T., & Wurz, R. P. (2014). Pyridin-2-one Synthesis Using Ester Enolates and Aryl Aminoaldehydes and Ketones. The Journal of Organic Chemistry, 79 (7), 3260–3266. https://doi.org/10.1021/jo500284n

Wurz, R. P., Pettus, L. H., Ashton, K., Brown, J., Chen, J. J., Herberich, B., … Tasker, A. S. (2015). Oxopyrido[2,3-d]pyrimidines as Covalent L858R/T790M Mutant Selective Epidermal Growth Factor Receptor (EGFR) Inhibitors. ACS Medicinal Chemistry Letters, 6 (9), 987–992. https://doi.org/10.1021/acsmedchemlett.5b00193

Wan, Z., Yan, H., Hall, R. F., Lin, X., Livia, S., Respondek, T., … Callahan, J. F. (2009). Design and development of arrayable syntheses to accelerate SAR studies of pyridopyrimidinone and pyrimidopyrimidinone. Tetrahedron Letters, 50 (3), 370–372. https://doi.org/10.1016/j.tetlet.2008.11.014

Klutchko, S. R., Hamby, J. M., Boschelli, D. H., Wu, Z., Kraker, A. J., Amar, A. M., … Doherty, A. M. (1998). 2-Substituted Aminopyrido[2,3-d]pyrimidin-7(8H)-ones. Structure−Activity Relationships Against Selected Tyrosine Kinases and in Vitro and in Vivo Anticancer Activity. Journal of Medicinal Chemistry, 41 (17), 3276–3292. https://doi.org/10.1021/jm9802259

Zhang, J., Lu, D., Wei, H.-X., Gu, Y., Selkoe, D. J., Wolfe, M. S., & Augelli-Szafran, C. E. (2016). Part 3: Notch-sparing γ-secretase inhibitors: SAR studies of 2-substituted aminopyridopyrimidinones. Bioorganic & Medicinal Chemistry Letters, 26 (9), 2138–2141. http://dx.doi.org/10.1016/j.bmcl.2016.03.077

Zinchenko, A. N., Muzychka, L. V., Biletskii, I. I., & Smolii, O. B. (2017). Synthesis of new 4-amino-substituted 7-iminopyrido[2,3-d]pyrimidines. Chemistry of Heterocyclic Compounds, 53 (5), 589–596. https://doi.org/10.1007/s10593-017-2096-7

Deb, M. L., & Bhuyan, P. J. (2006). Synthesis of Novel Classes of Pyrido[2,3-d]-pyrimidines, Pyrano[2,3-d]pyrimidines, and Pteridines. Synthetic Communications, 36 (20), 3085–3090. http://dx.doi.org/10.1080/00397910600775622

Murphy-Benenato, K. E., Gingipalli, L., Boriack-Sjodin, P. A., Martinez-Botella, G., Carcanague, D., Eyermann, C. J., … Patel, S. J. (2015). Negishi cross-coupling enabled synthesis of novel NAD+-dependent DNA ligase inhibitors and SAR development. Bioorganic & Medicinal Chemistry Letters, 25 (22), 5172–5177. http://dx.doi.org/10.1016/j.bmcl.2015.09.075

Spalluto, G., & Cacciari, B. (2006). Facile and Versatile Route to the Synthesis of Fused 2-Pyridones : Useful Intermediates for Polycyclic Sytems. Synthetic Communications, 36 (9), 1173–1183. http://dx.doi.org/10.1080/00397910500514063

Shanmugasundaram, P., Mohanarangan, J., Raj, R. K., Aanandhi, M. V. (2009). Synthesis and biological evaluation of pyrido[2,3-d]pyrimidinecarboxylate derivatives. Rasayan Journal of Chemistry, 2 (2), 345–349.

Ellingboe, J. W., Antane, M., Nguyen, T. T., Collini, M. D., Antane, S., Bender, R., … McCallum, J. (1994). Pyrido[2,3-d]pyrimidine Angiotensin II Antagonists. Journal of Medicinal Chemistry, 37 (4), 542–550. https://doi.org/10.1021/jm00030a013

Harutyunyan, A. A., Panosyan, G. A., Chishmarityan, S. G., Paronikyan, R. V., & Stepanyan, H. M. (2015). Synthesis and properties of derivatives of pyrimidin-5-ylpropanoic acids and 8-aryl-4-methyl- and 4,6-dimethyl-2-phenyl-5,6,7,8-tetrahydropyrido-[2,3-d]pyrimidin-7-ones. Russian Journal of Organic Chemistry, 51 (5), 705–710. https://doi.org/10.1134/S1070428015050218

Adcock, J., Gibson, C. L., Huggan, J. K., & Suckling, C. J. (2011). Diversity oriented synthesis: substitution at C5 in unreactive pyrimidines by Claisen rearrangement and reactivity in nucleophilic substitution at C2 and C4 in pteridines and pyrido[2,3-d]pyrimidines. Tetrahedron, 67 (18), 3226–3237. https://doi.org/10.1016/j.tet.2011.03.011

Le, P. T., Cheng, H., Ninkovic, S., Plewe, M., Huang, X., Wang, H., … Zhang, E. (2012). Design and synthesis of a novel pyrrolidinyl pyrido pyrimidinone derivative as a potent inhibitor of PI3Kα and mTOR. Bioorganic & Medicinal Chemistry Letters, 22 (15), 5098–5103. http://dx.doi.org/10.1016/j.bmcl.2012.05.100

Cheng, H., Hoffman, J. E., Le, P. T., Pairish, M., Kania, R., Farrell, W., … Rahavendran, S. V. (2013). Structure-based design, SAR analysis and antitumor activity of PI3K/mTOR dual inhibitors from 4-methylpyridopyrimidinone series. Bioorganic & Medicinal Chemistry Letters, 23 (9), 2787–2792. http://dx.doi.org/10.1016/j.bmcl.2013.02.020

Elokdah, H. M., Friedrichs, G. S., Chai, S.-Y., Harrison, B. L., Primeau, J., Chlenov, M., & Crandall, D. L. (2002). Novel human metabolites of the angiotensin-II antagonist tasosartan and their pharmacological effects. Bioorganic & Medicinal Chemistry Letters, 12 (15), 1967–1971. https://doi.org/10.1016/s0960-894x(02)00303-7

Blades, K., & Glossop, S. (2016). A Three-Step Protocol towards N-8-(2,2-Dimethoxyethyl)-2-methylsulfanylpyrido[2,3-d]pyrimidin-7-one. Synthesis, 49 (03), 554–556. https://doi.org/10.1055/s-0036-1588364

Choi, H.-S., Wang, Z., Richmond, W., He, X., Yang, K., Jiang, T., … He, Y. (2006). Design and synthesis of 7H-pyrrolo[2,3-d]pyrimidines as focal adhesion kinase inhibitors. Part 1. Bioorganic & Medicinal Chemistry Letters, 16 (8), 2173–2176. https://doi.org/10.1016/j.bmcl.2006.01.053

Boros, E. E., Thompson, J. B., Wood, E. R., McDonald, O. B., Spitzer, T. D., Sefler, A. M., & Reep, B. R. (2004). Tandem Michael-addition/cyclization synthesis and EGFR kinase inhibition activity of pyrido[2,3-d]pyrimidin-7(8H)-ones. Journal of Heterocyclic Chemistry, 41 (3), 355–358. https://doi.org/10.1002/jhet.5570410308

Wang, X., Zeng, Z., Shi, D., Tu, S., Wei, X., & Zong, Z. (2005). Three-Component, One-Pot Synthesis of Pyrido[2,3‐d]pyrimidine Derivatives Catalyzed by KF‐alumina. Synthetic Communications, 35 (14), 1921–1927. http://dx.doi.org/10.1081/SCC-200064984

Abdolmohammadi, S., & Afsharpour, M. (2012). Facile one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives over ZrO2 nanoparticles catalyst. Chinese Chemical Letters, 23 (3), 257–260. https://doi.org/10.1016/j.cclet.2012.01.001

Nasr, M. N., Gineinah, M. M. (2002). Pyrido[2,3-d]pyrimidines and pyrimido[5’,4’:5,6]pyrido[2,3-d]pyrimidines as new antiviral agents: synthesis and biological activity. Archiv der Pharmazie, 335 (6), 289–295. https://doi.org/10.1002/1521-4184(200208)335:6<289::AIDARDP289>3.0.CO;2-Z

Shi, D., Ji, S., Niu, L., Shi, J., & Wang, X. (2007). One-pot synthesis of pyrido[2,3-d]pyrimidines via efficient three-component reaction in aqueous media. Journal of Heterocyclic Chemistry, 44 (5), 1083–1090. https://doi.org/10.1002/jhet.5570440517

Nia, R. H., Mamaghani, M., Tabatabaeian, K., (2013). A rapid one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives using brønsted-acidic ionic liquid as catalyst. Acta Chimica Slovenica, 60 (4), 889–895.

Walters, I., Austin, C., Austin, R., Bonnert, R., Cage, P., Christie, M., … Robinson, D. (2008). Evaluation of a series of bicyclic CXCR2 antagonists. Bioorganic & Medicinal Chemistry Letters, 18 (2), 798–803. https://doi.org/10.1016/j.bmcl.2007.11.039

Tu, S., Zhang, J., Zhu, X., Xu, J., Zhang, Y., Wang, Q., … Zhang, J. (2006). New potential inhibitors of cyclin-dependent kinase 4 : Design and synthesis of pyrido[2,3-d]pyrimidine derivatives under microwave irradiation. Bioorganic & Medicinal Chemistry Letters, 16 (13), 3578–3581. https://doi.org/10.1016/j.bmcl.2006.03.084

Heravi, M. M., Saeedi, M., Beheshtiha, Y. S., & Oskooie, H. A. (2011). One-pot chemoselective synthesis of novel fused pyrimidine derivatives. Chemistry of Heterocyclic Compounds, 47 (6), 737–744. https://doi.org/10.1007/s10593-011-0828-7

Zinchenko, A. M., Muzychka, L. V., Kucher, O. V., Sadkova, I. V., Mykhailiuk, P. K., & Smolii, O. B. (2018). One-Pot Synthesis of 6-Aminopyrido[2,3-d]pyrimidin-7-ones. European Journal of Organic Chemistry, 2018 (46), 6519–6523. http://dx.doi.org/10.1002/ejoc.201801204

Zinchenko, A. N., Muzychka, L. V., Smolii, O. B., Bdzhola, V. G., Protopopov, M. V., & Yarmoluk, S. M. (2017). Synthesis and biological evaluation of novel amino-substituted derivatives of pyrido[2,3-d]pyrimidine as inhibitors of protein kinase CK2. Biopolymers and Cell, 33 (5), 367–378. http://dx.doi.org/10.7124/bc.000960

Xu, T., Peng, T., Ren, X., Zhang, L., Yu, L., Luo, J., … Ding, K. (2015). C5-substituted pyrido[2,3-d]pyrimidin-7-ones as highly specific kinase inhibitors targeting the clinical resistance-related EGFRT790M mutant. MedChemComm, 6 (9), 1693–1697. https://doi.org/10.1039/C5MD00208G

Yu, L., Huang, M., Xu, T., Tong, L., Yan, X., Zhang, Z., … Lu, X. (2017). A structure-guided optimization of pyrido[2,3-d]pyrimidin-7-ones as selective inhibitors of EGFRL858R/T790M mutant with improved pharmacokinetic properties. European Journal of Medicinal Chemistry, 126, 1107–1117. https://doi.org/10.1016/j.ejmech.2016.12.006

Brameld, K. A., Owens, T. D., Verner, E., Venetsanakos, E., Bradshaw, J. M., Phan, V. T., … Funk, J. O. (2017). Discovery of the Irreversible Covalent FGFR Inhibitor 8-(3-(4-Acryloylpiperazin-1-yl)propyl)-6-(2,6-dichloro-3,5-dimethoxyphenyl)-2-(methylamino)pyrido[2,3-d]pyrimidin-7(8H)-one (PRN1371) for the Treatment of Solid Tumors. Journal of Medicinal Chemistry, 60 (15), 6516–6527. https://doi.org/10.1021/acs.jmedchem.7b00360

Ndubaku, C. O., Crawford, J. J., Drobnick, J., Aliagas, I., Campbell, D., Dong, P., … Rudolph, J. (2015). Design of Selective PAK1 Inhibitor G-5555: Improving Properties by Employing an Unorthodox Low-pKa Polar Moiety. ACS Medicinal Chemistry Letters, 6 (12), 1241–1246. https://doi.org/10.1021/acsmedchemlett.5b00398

Khokhani, K., Khatri, T., Ram, V., Patel, P. (2013). Microwave assisted synthesis and biological investigations of novel derivatives of pyrido[2,3-d]pyrimidines. Chemistry and Biology Interface, 3 (3), 192–200.

Cheng, H., Hoffman, J. E., Le, P. T., Pairish, M., Kania, R., Farrell, W., … Rahavendran, S. V. (2013). Structure-based design, SAR analysis and antitumor activity of PI3K/mTOR dual inhibitors from 4-methylpyridopyrimidinone series. Bioorganic & Medicinal Chemistry Letters, 23 (9), 2787–2792. http://dx.doi.org/10.1016/j.bmcl.2013.02.020

Le, P. T., Cheng, H., Ninkovic, S., Plewe, M., Huang, X., Wang, H., … Zhang, E. (2012). Design and synthesis of a novel pyrrolidinyl pyrido pyrimidinone derivative as a potent inhibitor of PI3Kα and mTOR. Bioorganic & Medicinal Chemistry Letters, 22 (15), 5098–5103. http://dx.doi.org/10.1016/j.bmcl.2012.05.100

Palmer, B. D., Smaill, J. B., Rewcastle, G. W., Dobrusin, E. M., Kraker, A., Moore, C. W., … Denny, W. A. (2005). Structure-activity relationships for 2-anilino-6-phenylpyrido[2,3-d]pyrimidin-7(8H)-ones as inhibitors of the cellular checkpoint kinase Wee1. Bioorganic & Medicinal Chemistry Letters, 15 (7), 1931–1935. https://doi.org/10.1016/j.bmcl.2005.01.079

Anderson, K., Chen, Y., Chen, Z., Dominique, R., Glenn, K., He, Y., … Zhang, X. (2013). Pyrido[2,3-d]pyrimidines: Discovery and preliminary SAR of a novel series of DYRK1B and DYRK1A inhibitors. Bioorganic & Medicinal Chemistry Letters, 23 (24), 6610–6615. http://dx.doi.org/10.1016/j.bmcl.2013.10.055


GOST Style Citations


1. New effective inhibitors of the Abelson kinase / G. A. Kraus, V. Gupta, M. Mokhtarian et al. // Bioorg. Med. Chem. – 2010. – Vol. 18, Issue 17. – P. 6316–6321. https://doi.org/10.1016/j.bmc.2010.07.021


2. Structure–activity relationships of 6-(2,6-dichlorophenyl)-8-methyl-2-(phenylamino)pyrido[2,3-d]pyrimidin-7-ones: toward selective Abl inhibitors / C. Antczak, D. R. Veach, C. N. Ramirez et al. // Bioorg. Med. Chem. Lett. – 2009. – Vol. 19, Issue 24. – P. 6872–6876. https://doi.org/10.1016/j.bmcl.2009.10.085


3. A Proof-of-concept and drug-drug Interaction study of Pamapimod, a novel p38 MAP kinase inhibitor, with methotrexate in patients with rheumatoid arthritis / X. Zhang, Y. Huang, M. T. Navarro et al. // J. Clin. Pharmacol. – 2010. – Vol. 50, Issue 9. – P. 1031–1038. https://doi.org/10.1177/0091270009357433


4. The novel p38 inhibitor, Pamapimod, inhibits osteoclastogenesis and counteracts estrogen-dependent bone loss in mice / X. Zhao, L. Ning, Z. Xie et al. // J. Bone Miner. Res. – 2019. – Vol. 34, Issue 5. – P. 911–922. https://doi.org/10.1002/jbmr.3655


5. Cadoo, K. A. Palbociclib: an evidence-based review of its potential in the treatment of breast cancer / K. A. Cadoo, A. Gucalp, T. A. Traina // Breast Cancer. – 2014. – Vol. 6. – P. 123–133. http://dx.doi.org/10.2147/BCTT.S46725


6. Lu, J. Palbociclib: a first-in-class CDK4/CDK6 inhibitor for the treatment of hormone-receptor positive advanced breast cancer / J. Lu // J. Hematol. Oncol. – 2015. – Vol. 8, Issue 98. – P. 1–3. https://doi.org/10.1186/s13045-015-0194-5


7. Kim, E. S. Palbociclib: a review in HR-positive, HER2-negative, advanced or metastatic breast cancer / E. S. Kim, L. J. Scott // Target. Oncol. – 2017. – Vol. 12, Issue 3. – P. 373–383. https://doi.org/10.1007/s11523-017-0492-7


8. Recent advances in the chemistry and biology of pyridopyrimidines / F. Buron, J. Y. Merour, M. Akssira et al. // Eur. J. Med. Chem. – 2015. – Vol. 95. – P. 76–95. http://dx.doi.org/10.1016/j.ejmech.2015.03.029


9. Shamroukh, A. H. The chemistry of pyrido[2,3-d]pyrimidines and their applications / A. H. Shamroukh, A. E. Rashad, F. M. E. Abdelmegeid // J. Chem. Pharm. Res. – 2016. – Vol. 8, Issue 3. – P. 734–772.


10. Khatri, T. T. One pot synthesis of novel cyanopyridones as an intermediate of bioactive pyrido[2,3-d]pyrimidines / T. T. Khatri, V. H. Shah // J. Korean Chem. Soc. – 2014. – Vol. 58, Issue 4. – P. 366–376. http://dx.doi.org/10.5012/jkcs.2014.58.4.366


11. Process research and kilogram synthesis of an investigational, potent MEK inhibitor / Y. Zhao, L. Zhu, D. P. Provencal et al. // Org. Process Res. Dev. – 2012. – Vol. 16, Issue 10. – P. 1652−1659. https://doi.org/10.1021/op300198a


12. Cyanoacetanilides intermediates in heterocyclic synthesis. Part 1: A facile synthesis of polysubstituted and condensed pyridones / Y. A. Ammar, A. M. S. El-Sharief, Y. A. Mohamed et al. // J. Chin. Chem. Soc. – 2004. – Vol. 51, Issue 5A. – P. 975–981. https://doi.org/10.1002/jccs.200400145


13. Novel Pirfenidone analogues: synthesis of pyridin-2-ones for the treatment of pulmonary fibrosis / Y. A. Ammar, M. M. F. Ismail, H. M. El-Sehrawi et al. // Arch. Pharm. – 2006. – Vol. 339, Issue 8. – P. 429–436. https://doi.org/10.1002/ardp.200600017


14. El-Adasy, A.-B. A. A. M. Synthesis of some new [1,8]naphthyridine, pyrido[2,3-d]pyrimidine, and other annulated pyridine derivatives / A.-B. A. A. M. El-Adasy, A. A. Khames, M. A. M. Gad-Elkareem // J. Heterocycl. Chem. – 2013. – Vol. 50, Issue 1. – P. 42–48. https://doi.org/10.1002/jhet.990


15. Al-Afaleq, E. I. A facile method for the synthesis of novel pyridinone derivatives via ketene N,S-acetals / E. I. Al-Afaleq // Synth. Commun. – 2001. – Vol. 31, Issue 22. – P. 3557–3567. http://dx.doi.org/10.1081/SCC-100106218


16. Allam, Y. A. Cyanoacetylurea in heterocyclic synthesis: A simple synthesis of heterocyclic condensed uracils / Y. A. Allam, R. H. Swellem, G. A. M. Nawwar // J. Chem. Res. – 2001. – Vol. 8. – P. 346–348. https://doi.org/10.3184/030823401103170034


17. Design, synthesis and biological evaluation of pyrido[2,3-d]pyrimidin-7-(8H)-ones as HCV inhibitors / M. Camarasa, R. Puig de la Bellacasa, A. L. González et al. // Eur. J. Med. Chem. – 2016. – Vol. 115. – P. 463–483. https://doi.org/10.1016/j.ejmech.2016.03.055.


18. Investigating molecular dynamics-guided lead optimization of EGFR inhibitors / M. J. Lavecchia, R. Puig de la Bellacasa, J. I. Borrell, C. N. Cavasotto // Bioorg. Med. Chem. – 2016. – Vol. 24, Issue 4. – P. 768–778. http://dx.doi.org/10.1016/j.bmc.2015.12.046


19. Unequivocal synthesis of 4-amino-1,5,6,8-tetrahydropyrido[2,3-d]pyrimidine-2,7-diones and 2-amino-3,5,6,8-tetrahydropyrido[2,3-d]pyrimidine-4,7-diones / J. I. Borrell, J. Texido, B. Martinez-Teipel et al. // ChemInform. – 2010. – Vol. 27, Issue 39. https://doi.org/10.1002/chin.199639178


20. A three-component synthesis of pyrido[2,3-d]pyrimidines / N. Mont, J. Teixido, J. I. Borrella, O. Kappe // Tetrahedron Lett. – 2003. – Vol. 44, Issue 29. – P. 5385–5387. https://doi.org/10.1016/S0040-4039(03)01306-6


21. Domino Knoevenagel condensation–Michael addition–cyclization for the diastereoselective synthesis of dihydrofuropyrido[2,3-d]pyrimidines via pyridinium ylides in water / S. Ahadi, T. Kamranifard, M. Armaghan et al. // RSC Adv. – 2014. – Vol. 4, Issue 14. – P. 7296–7300. https://doi.org/10.1039/C3RA45795H


22. Khattab, A. F. Pyrido[2,3-d]pyrimidines, II. One step synthesis of pyrido[2,3-d]pyrimidines and pyrimido[4,5-b]quinolines from 6-amino uracils / A. F. Khattab, T. Kappe // Monatsh. Chem. – 1996. – Vol. 127, Issue 8–9. – P. 917–925. https://doi.org/10.1007/BF00807031


23. Discovery of TAK-733, a potent and selective MEK allosteric site inhibitor for the treatment of cancer / Q. Dong, D. R. Dougan, X. Gong et al. // Bioorg. Med. Chem. Lett. – 2011. – Vol. 21, Issue 5. – P. 1315–1319. https://doi.org/10.1016/j.bmcl.2011.01.071


24. Time-efficient synthesis of pyrido[2,3-d]pyrimidinones via α-oxoketenes / J.-C. Castillo, J. Quiroga, J. Rodriguez, Y. Coquerel // Eur. J. Org. Chem. – 2016. – Vol. 2016, Issue 11. – P. 1994–1999. http://dx.doi.org/10.1002/ejoc.201600171


25. Reactions of 6-aminopyrimidines with biselectrophiles: manipulation of product composition with solvent and pyrimidine substitution variation / A. Vasudevan, F. Mavandadi, L. Chen, A. Gangjee // J. Org. Chem. – 1999. – Vol. 64, Issue 2. – P. 634–638. https://doi.org/10.1021/jo9713870


26. Takahashi, M. Synthesis of trifluoromethylated pyrido[2,3-d]pyrimidine-2,4-diones from 6-aminouracils and trifluoromethylated pyrazolo[3,4-b]-pyridines from 5-aminopyrazoles / M. Takahashi, H. Nagaoka, K. Inoue // J. Heterocycl. Chem. – 2004. – Vol. 41, Issue 4. – P. 525–530. https://doi.org/10.1002/jhet.5570410408


27. Synthesis and pharmacology of pyrido[2,3-d]pyrimidinediones bearing polar substituents as adenosine receptor antagonists / J. Bulicz, D. C. G. Bertarelli, D. Baumert et al. // Bioorg. Med. Chem. – 2006. – Vol. 14, Issue 8. – P. 2837–2849. https://doi.org/10.1016/j.bmc.2005.12.008


28. Baharfar, R. A clean and efficient cyclocondensation to pyrido[2,3-d]pyrimidine derivatives in aqueous media / R. Baharfar, R. Azimi // Chin. Chem. Lett. – 2011. – Vol. 22, Issue 10. – P. 1183–1186. https://doi.org/10.1016/j.cclet.2011.04.020


29. Synthesis and antitumor activity of new pyrido[2,3-d]pyrimidine derivatives / M. M. Gineinah, M. N. A. Nasr, S. M. I. Badr, W. M. El-Husseiny // Med. Chem. Res. – 2013. – Vol. 22, Issue 8. – P. 3943–3952. https://doi.org/10.1007/s00044-012-0396-0


30. Construction and functionalization of fused pyridine ring leading to novel compounds as potential antitubercular agents / B. Dulla, B. Wan, S. G. Franzblau et al. // Bioorg. Med. Chem. Lett. – 2012. – Vol. 22, Issue 14. – P. 4629–4635. http://dx.doi.org/10.1016/j.bmcl.2012.05.096

 

31. Discovery of 8-cyclopentyl-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-7-oxo-7,8-dihydro-pyrido[2,3-d]pyrimidine-6-carbonitrile (7x) as a potent inhibitor of Cyclin-Dependent Kinase 4 (CDK4) and AMPK-Related Kinase 5 (ARK5) / V. R. Reddy, B. Akula, S. C. Cosenza et al. // J. Med. Chem. – 2014. – Vol. 57, Issue 3.– P. 578−599. https://doi.org/10.1021/jm401073p


32. Discovery of 6-(2,4-difluorophenoxy)-2-[3-hydroxy-1-(2-hydroxyethyl)propylamino]-8-methyl-8H-pyrido[2,3-d]pyrimidin-7-one (Pamapimod) and 6-(2,4-difluorophenoxy)-8-methyl-2-(tetrahydro-2H-pyran-4-ylamino)pyrido[2,3-d]pyrimidin-7(8H)-one (R1487) as orally bioavailable and highly selective inhibitors of p38r Mitogen-Activated Protein Kinase / D. M. Goldstein, M. Soth, T. Gabriel et al. // J. Med. Chem. – 2011. – Vol. 54, Issue 7. – P. 2255–2265. https://doi.org/10.1021/jm101423y


33. The discovery of potent and selective pyridopyrimidin-7-one based inhibitors of B-RafV600E kinase / L. Ren, K. A. Ahrendt, J. Grina et al. // Bioorg. Med. Chem. Lett. – 2012. – Vol. 22, Issue 10. – P. 3387–3391. http://dx.doi.org/10.1016/j.bmcl.2012.04.015


34. Chemically diverse group I p21-activated kinase (PAK) inhibitors impart acute cardiovascular toxicity with a narrow therapeutic window / J. Rudolph, L. J. Murray, Ch. O. Ndubaku et al. //J. Med. Chem. – 2016. – Vol. 59, Issue 11. – P. 5520–5541. https://doi.org/10.1021/acs.jmedchem.6b00638


35. Koval, A. B. An optimized synthesis of the potent and selective Pak1 inhibitor FRAX-1036 / A. B. Koval, W. M. Wuest // Tetrahedron Lett. – 2016. – Vol. 57, Issue 3. – P. 449–451. http://dx.doi.org/10.1016/j.tetlet.2015.12.059


36. A facile, KF/Al2O3 mediated method for the preparation of functionalized pyrido[2,3-d]pyrimidin-7(8H)-ones / B. E. Blass, K. Coburn, N. Fairweather et al. // Tetrahedron Lett. – 2006. – Vol. 47, Issue 18. – P. 3177–3180. https://doi.org/10.1016/j.tetlet.2006.02.155


37. Solid-phase synthesis of pyrido[2,3-d]pyrimidin-7-ones / M. Angiolini, D. F. Bassini, M. Gude, M. Menichincheri // Tetrahedron Lett. – 2005. – Vol. 46, Issue 50. – P. 8749–8752. https://doi.org/10.1016/j.tetlet.2005.10.030


38. Pyrido[2,3-d]pyrimidin-7-one inhibitors of Cyclin-dependent kinases / M. Barvian, D. H. Boschelli, J. Cossrow et al. // J. Med. Chem. – 2000. – Vol. 43, Issue 24. – P. 4606–4616. https://doi.org/10.1021/jm000271k


39. An improved and highly convergent synthesis of 4-substituted-pyrido[2,3-d]pyrimidin-7-ones / H. Yan, J. C. Boehm, Q. Jin et al. // Tetrahedron Lett. – 2007. – Vol. 48, Issue 7. – P. 1205–1207. https://doi.org/10.1016/j.tetlet.2006.12.064


40. 8-(3-Chloro-4-methoxybenzyl)-8H-pyrido[2,3-d]pyrimidin-7-one derivatives as potent and selective phosphodiesterase 5 inhibitors / T. Sakamoto, Yu. Koga, M. Hikota et al. // Bioorg. Med. Chem. Lett. – 2015. – Vol. 25, Issue 7. – P. 1431–1435. http://dx.doi.org/10.1016/j.bmcl.2015.02.041


41. Pyrido[2,3-d]pyrimidin-7-ones as specific inhibitors of Cyclin-dependent kinase 4 / S. N. VanderWel, P. J. Harvey, D. J. McNamara et al. // J. Med. Chem. – 2005. – Vol. 48, Issue 7. – P. 2371–2387. https://doi.org/10.1021/jm049355


42. Apsunde, T. Pyridin-2-one synthesis using ester enolates and aryl aminoaldehydes and ketones / T. Apsunde, R. P. Wurz // J. Org. Chem. – 2014. – Vol. 79, Issue 7. – P. 3260−3266. https://doi.org/10.1021/jo500284n


43. Oxopyrido[2,3-d]pyrimidines as Covalent L858R/T790M Mutant Selective Epidermal Growth Factor Receptor (EGFR) Inhibitors / R. P. Wurz, L. H. Pettus, K. Ashton et al. // ACS Med. Chem. Lett. – 2015. – Vol. 6, Issue 9. – P. 987–992. https://doi.org/10.1021/acsmedchemlett.5b00193


44. Design and development of arrayable syntheses to accelerate SAR studies of pyridopyrimidinone and pyrimidopyrimidinone / Z. Wan, H. Yan, R. F. Hall et al. // Tetrahedron Lett. – 2009. – Vol. 50, Issue 3. – P. 370–372. https://doi.org/10.1016/j.tetlet.2008.11.014


45. 2-Substituted aminopyrido[2,3-d]pyrimidin-7(8H)-ones. structure-activity relationships against selected tyrosine kinases and in vitro and in vivo anticancer activity / S. R. Klutchko, J. M. Hamby, D. H. Boschelli et al. // J. Med. Chem. – 1998. – Vol. 41, Issue 17. – P. 3276–3292. https://doi.org/10.1021/jm9802259


46. Part 3 : Notch-sparing c-secretase inhibitors: SAR studies of 2-substituted aminopyridopyrimidinones / J. Zhang, D. Lu, H.-X. Wei et al. // Bioorg. Med. Chem. Lett. – 2016. – Vol. 26, Issue 9. – P. 2138–2141. http://dx.doi.org/10.1016/j.bmcl.2016.03.077


47. Synthesis of new 4-amino-substituted 7-iminopyrido[2,3-d]pyrimidines / A. N. Zinchenko, L. V. Muzychka, I. I. Biletskii, O. B. Smolii // Chem. Heterocycl. Comp. – 2017. – Vol. 53, Issue 5. – P. 589–596. https://doi.org/10.1007/s10593-017-2096-7


48. Deb, M. L. Synthesis of novel classes of pyrido[2,3-d]-pyrimidines, pyrano[2,3-d]pyrimidines, and pteridines / M. L. Deb, P. J. Bhuyan // Synthetic Commun. – 2006. – Vol. 36, Issue 20. – P. 3085–3090. http://dx.doi.org/10.1080/00397910600775622


49. Negishi cross-coupling enabled synthesis of novel NAD+-dependent DNA ligase inhibitors and SAR development / K. E. Murphy-Benenato, L. Gingipalli, P. A. Boriack-Sjodin et al. // Bioorg. Med. Chem. Lett. – 2015. – Vol. 25, Issue 22. – P. 5172–5177. http://dx.doi.org/10.1016/j.bmcl.2015.09.075

 

50. Spalluto, G. Facile and versatile route to the synthesis of fused 2-pyridones: useful intermediates for polycyclic sytems / G. Spalluto, B. Cacciari // Synthetic Commun. – 2006. – Vol. 36, Issue 9. – P. 1177–1183. http://dx.doi.org/10.1080/00397910500514063


51. Synthesis and biological evaluation of pyrido[2,3-d]pyrimidine-carboxylate derivatives / P. Shanmugasundaram, J. Mohanarangan, R. K. Raj, M. V. Aanandhi // RASAYAN J. Chem. – 2009. – Vol. 2, Issue 2. – P. 345–349.


52. Pyrido[2,3-d]pyrimidine angiotensin II antagonists / J. W. Ellingboe, M. Antane, Th. T. Nguyen et al. // J. Med. Chem. – 1994. – Vol. 37, Issue 4. – P. 542–550. https://doi.org/10.1021/jm00030a013


53. Synthesis and properties of derivatives of pyrimidin-5-ylpropanoic acids and 8-aryl-4-methyland 4,6-dimethyl-2-phenyl-5,6,7,8-tetrahydropyrido-[2,3-d]pyrimidin-7-ones / A. A. Harutyunyan, G. A. Panosyan, S. G. Chishmarityan et al. // Russ. J. Org. Chem. – 2015. – Vol. 51, Issue 5. – P. 705–710. https://doi.org/10.1134/S1070428015050218


54. Diversity oriented synthesis: substitution at C5 in unreactive pyrimidines by Claisen rearrangement and reactivity in nucleophilic substitution at C2 and C4 in pteridines and pyrido[2,3-d]pyrimidines / J. Adcock, C. L. Gibson, J. K. Huggan, C. J. Suckling // Tetrahedron. – 2011. – Vol. 67, Issue 18. – P. 3226–3237. https://doi.org/10.1016/j.tet.2011.03.011


55. Design and synthesis of a novel pyrrolidinyl pyrido pyrimidinone derivative as a potent inhibitor of PI3Ka and mTOR / Ph. T. Le, H. Cheng, S. Ninkovic et al. // Bioorg. Med. Chem. Lett. – 2012. – Vol. 22, Issue 15. – P. 5098–5103. http://dx.doi.org/10.1016/j.bmcl.2012.05.100


56. Structure-based design, SAR analysis and antitumor activity of PI3K/mTOR dual inhibitors from 4-methylpyridopyrimidinone series / H. Cheng, J. E. Hoffman, Ph. T. Le et al. // Bioorg. Med. Chem. Lett. – 2013. – Vol. 23, Issue 9. – P. 2787–2792. http://dx.doi.org/10.1016/j.bmcl.2013.02.020


57. Novel human metabolites of the angiotensin-II antagonist tasosartan and their pharmacological effects / H. M. Elokdah, G. S. Friedrichs, S.-Ye. Chai et al. // Bioorg. Med. Chem. Lett. – 2002. – Vol. 12, Issue 15. – P. 1967–1971. https://doi.org/10.1016/s0960-894x(02)00303-7


58. Blades, K. A Three-Step Protocol towards N-8-(2,2-Dimethoxyethyl)-2-methylsulfanylpyrido[2,3-d]pyrimidin-7-one / K. Blades, S. C. Glossop // Synthesis. – 2017. – Vol. 49, Issue 3. – P. 554–556. https://doi.org/10.1055/s-0036-1588364


59. Design and synthesis of 7H-pyrrolo[2,3-d]pyrimidines as focal adhesion kinase inhibitors. Part 1 / H.-S. Choi, Z. Wang, W. Richmond et al. // Bioorg. Med. Chem. Lett. – 2006. – Vol. 16, Issue 8. – P. 2173–2176. https://doi.org/10.1016/j.bmcl.2006.01.053


60. Tandem Michael-Addition/Cyclization synthesis and EGFR Kinase inhibition activity of pyrido[2,3-d]pyrimidin-7(8H)-ones / E. E. Boros, E. R. Wood, O. B. McDonald et al. // J. Heterocycl. Chem. – 2004. – Vol. 41, Issue 3. – P. 355–358. https://doi.org/10.1002/jhet.5570410308

 

61. Three-component, one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives catalyzed by KF-alumina / X.-Sh. Wang, Z.-S. Zeng, D.-Q. Shi et al. // Synthetic Commun. – 2005. – Vol. 35, Issue 14. – P. 1921–1927. http://dx.doi.org/10.1081/SCC-200064984


62. Abdolmohammadi, Sh. Facile one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives over ZrO2 nanoparticles catalyst / Sh. Abdolmohammadi, M. Afsharpour // Chin. Chem. Lett. – 2012. – Vol. 23, Issue 3. – P. 257–260. https://doi.org/10.1016/j.cclet.2012.01.001


63. Nasr, M. N. Pyrido[2,3-d]pyrimidines and pyrimido[5’,4’:5,6]pyrido[2,3-d]pyrimidines as new antiviral agents: synthesis and biological activity / M. N. Nasr, M. M. Gineinah // Arch. Pharm. Pharm. Med. Chem. – 2002. – Vol. 335, Issue 6. – P. 289–295. https://doi.org/10.1002/1521-4184(200208)335:6<289::AID-ARDP289>3.0.CO;2-Z


64. One-pot synthesis of pyrido[2,3-d]pyrimidines via efficient three-component reaction in aqueous media / D. Shi, L. Niu, J. Shi et al. // J. Heterocycl. Chem. – 2007. – Vol. 44, Issue 5. – P. 1083–1090. https://doi.org/10.1002/jhet.5570440517

 

65. A rapid one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives using brønsted-acidic ionic liquid as catalyst / R. H. Nia, M. Mamaghani, K. Tabatabaeian et al. // Acta Chim. Slov. – 2013. – Vol. 60, Issue 4. – P. 889–895.


66. Evaluation of a series of bicyclic CXCR2 antagonists / I. Walters, C. Austin, R. Austin et al. // Bioorg. Med. Chem. Lett. – 2008. – Vol. 18, Issue 2. – P. 798–803. https://doi.org/10.1016/j.bmcl.2007.11.039


67. New potential inhibitors of cyclin-dependent kinase 4 : Design and synthesis of pyrido[2,3-d]pyrimidine derivatives under microwave irradiation / Sh. Tu, J. Zhang, X. Zhu et al. // Bioorg. Med. Chem. Lett. – 2006. – Vol. 16, Issue 13. – P. 3578–3581. https://doi.org/10.1016/j.bmcl.2006.03.084


68. One-pot chemoselective synthesis of novel fused pyrimidine derivatives / M. M. Heravi, M. Saeedi, Y. S. Beheshtiha, H. A. Oskooie // Chem. Heterocyc. Comp. – 2011. – Vol. 47, Issue 6. – P. 737–744. https://doi.org/10.1007/s10593-011-0828-7


69. One-Pot Synthesis of 6-Aminopyrido[2,3-d]pyrimidin-7-ones / A. M. Zinchenko, L. V. Muzychka, O. V. Kucher et al. // Eur. J. Org. Chem. – 2018. – Vol. 2018, Issue 46. – P. 6519–6523. http://dx.doi.org/10.1002/ejoc.201801204


70. Synthesis and biological evaluation of novel amino-substituted derivatives of pyrido[2,3-d]pyrimidine as inhibitors of protein kinase CK2 / A. N. Zinchenko, L. V. Muzychka, O. B. Smolii et al. // Biopol. Cell. – 2017. – Vol. 33, Issue 5. – P. 367–378. http://dx.doi.org/10.7124/bc.000960


71. C-5 Substituted pyrido[2,3-d]pyrimidin-7-ones as highly specific kinase inhibitors targeting clinical resistance related EGFRT790M mutant / T. Xu, T. Peng, X. Ren et al. // Med. Chem. Commun. – 2015. – Vol. 6. – P. 1693–1697. https://doi.org/10.1039/C5MD00208G


72. A Structure-guided optimization of pyrido[2,3-d]pyrimidin-7-ones as selective inhibitors of EGFRL858R/T790M mutant with improved pharmacokinetic properties / L. Yua, M. Huanga, T. Xua et al. // Eur. J. Med. Chem. – 2017. – Vol. 126. – P. 1107–1117. https://doi.org/10.1016/j.ejmech.2016.12.006


73. Discovery of the irreversible covalent FGFR inhibitor 8-(3-(4-acryloylpiperazin-1-yl)propyl)-6-(2,6-dichloro-3,5-dimethoxyphenyl)-2-(methylamino) pyrido[2,3-d]pyrimidin-7(8H)-one (PRN1371) for the treatment of solid tumors / K. A. Brameld, T. D. Owens, E. Verner et al. // J. Med. Chem. – 2017. – Vol. 60, Issue 15. – P. 6516−6527. https://doi.org/10.1021/acs.jmedchem.7b00360


74. Design of selective PAK1 inhibitor G‑5555 : Improving properties by e mploying an unorthodox low-pKa polar moiety / Ch. O. Ndubaku, J. J. Crawford, J. Drobnick et al. // ACS Med. Chem. Lett. – 2015. – Vol. 6, Issue 12. – P. 1241–1247. https://doi.org/10.1021/acsmedchemlett.5b00398


75. Microwave assisted synthesis and biological investigations of novel derivatives of pyrido[2,3-d]pyrimidines / K. Khokhani, T. Khatri, V. Ram et al. // Chem. Biol. Interf. – 2013. – Vol. 3, Issue 3. – P. 192–200.


76. Structure-based design, SAR analysis and antitumor activity of PI3K/mTOR dual inhibitors from 4-methylpyridopyrimidinone series / H. Cheng, J. E. Hoffman, Ph. T. Le et al. // Bioorg. Med. Chem. Lett. – 2013. – Vol. 23, Issue 9. – P. 2787–2792. http://dx.doi.org/10.1016/j.bmcl.2013.02.020


77. Design and synthesis of a novel pyrrolidinyl pyrido pyrimidinone derivative as a potent inhibitor of PI3Ka and mTOR / Ph. T. Le, H. Cheng, S. Ninkovic et al. // Bioorg. Med. Chem. Lett. – 2012. – Vol. 22, Issue 15. – P. 5098–5103. http://dx.doi.org/10.1016/j.bmcl.2012.05.100


78. Structure-activity relationships for 2-anilino-6-phenylpyrido[2,3-d]pyrimidin-7(8H)-ones as inhibitors of the cellular checkpoint kinase Wee1 / B. D. Palmer, J. B. Smaill, G. W. Rewcastle et al. // Bioorg. Med. Chem. Lett. – 2005. – Vol. 15, Issue 7. – P. 1931–1935. https://doi.org/10.1016/j.bmcl.2005.01.079


79. Pyrido[2,3–d]pyrimidines: Discovery and preliminary SAR of a novel series of DYRK1B and DYRK1A inhibitors / K. Anderson, Y. Chen, Z. Chen et al. // Bioorg. Med. Chem. Lett. – 2013. – Vol. 23, Issue 24. – P. 6610–6615. http://dx.doi.org/10.1016/j.bmcl.2013.10.055





Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: J. Org. Pharm. Chem.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)