DOI: https://doi.org/10.24959/ophcj.19.961

The synthesis of 3-aryl-3-trifluoromethyl-2,3-dihydro-1h-pyrrolizin-1-ones

S. V. Melnykov, V. M. Tkachuk, A. M. Grozav, I. Gillaizeau, V. A. Sukach

Abstract


Aim. To develop the efficient method for the synthesis of 3-aryl-3-trifluoromethyl-2,3-dihydro-1H-pyrrolizin-1-ones as promising scaffolds in design of bioactive compounds.

Results and discussion. It has been shown that condensation of 3-amino-3-aryl-4,4,4-trifluorobutanoic acid methyl esters with 2,5-dimethoxytetrahydrofuran is a convenient synthetic approach to 4,4,4-trifluoro-3-aryl-3-(1H-pyrrol-1-yl)methylbutanoic acid methyl esters converted to 3-aryl-3-trifluoromethyl-2,3-dihydro-1H-pyrrolizin-1-ones by the intramolecular Friedel-Crafts reaction.

Experimental part. By the interaction of 3-amino-3-aryl-4,4,4-trifluorobutanoic acid methyl esters with 2,5-dimethoxytetrahydrofuranin acetic acid at 70 оC 4,4,4-trifluoro-3-aryl-3-(1H-pyrrol-1-yl)methylbutanoic acid methyl esters were obtained and subsequently cyclized into 3-aryl-3-trifluoromethyl-2,3-dihydro-1H-pyrrolizin-1-ones upon treatment with boron tribromide in dichloromethane at room temperature. The structures of the compounds synthesized were confirmed by LCMS, IR and NMR (1H, 13C, 19F) spectroscopic methods.

Conclusions. An efficient two step protocol for the synthesis of 3-aryl-3-trifluoromethyl-2,3-dihydro-1H-pyrrolizin-1-ones has been developed. It includes transformation of 3-amino-3-aryl-4,4,4-trifluorobutanoic acid methyl esters into the corresponding 3-(1H-pyrrol-1-yl) derivatives and their further intramolecular cyclization.

Keywords


3-amino-3-aryl-4,4,4-trifluorobutanoic acid esters; 2,5-dimethoxytetrahydrofuran; 3-aryl-3-trifluoromethyl-2,3-dihydro-1H-pyrrolizin-1-ones; boron tribromide; cyclocondensation

References


Smith, L. W., Culvenor, C. C. J. (1981). Plant sources of hepatotoxic pyrrolizidine alkaloids. Journal of Natural Products, 44 (2), 129–152. https://doi.org/10.1021/np50014a001

Belal, A., El–Gendy Bel–D. (2014). Pyrrolizines : promising scaffolds for anticancer drugs. Bioorganic and Medicinal Chemistry, 22 (1), 46–53. https://doi.org/10.1016/j.bmc.2013.11.040

Jarosinski, M. A., Reddy, P. S., Anderson, W. K. (1993). Synthesis, chemical reactivity, and antitumor evaluation of congeners of carmethizole hydrochloride, an experimental acylated vinylogous carbinolamine tumor inhibitor. Journal of Medicinal Chemistry, 36 (23), 3618–3627. https://doi.org/10.1021/jm00075a017

Atwell, G. J., Fan, J.–Y., Tan, K. & Denny, W. (1998). DNA–directed alkylating agents. 7. Synthesis, DNA interaction, and antitumor activity of bis(hydroxymethyl)– and bis(carbamate)–substituted pyrrolizines and imidazoles. Journal of Medicinal Chemistry, 41, 4744–4754. https://doi.org/10.1021/jm9803119

Liedtke, A. J., Keck, P. R. W. E. F., Lehmann, F, Koeberle, A., Werz, O., Laufer, S. A. (2009). Arylpyrrolizines as inhibitors of microsomal prostaglandin E2 synthase–1 (mPGES–1) or as dual inhibitors of mPGES–1 and 5–lipoxygenase (5-LOX). Journal of Medicinal Chemistry, 52 (15), 4968–4972. https://doi.org/10.1021/jm900481c

Laufer, S. A., Augustin, J., Dannhardt, G, Kiefer, W. (1994). (6,7–Diaryldihydropyrrolizin–5–yl)acetic acids, a novel class of potent dual inhibitors of both cyclooxygenase and 5-lipoxygenase. Journal of Medicinal Chemistry, 37 (12), 1894–1897. https://doi.org/10.1021/jm00038a021

Abbas, S. E., Awadallah, F. M., Ibrahim, Gouda, A. M. (2010). Novel substituted and fused pyrrolizine derivatives : synthesis, anti–inflammatory and ulcerogenecity studies. European Journal of Medicinal Chemistry, 45 (2), 482–491. https://doi.org/10.1016/j.ejmech.2009.10.031

Barsoum, F. F. (2011). Synthesis and molecular modeling studies of anti–inflammatory active 1H–pyrrolizine–5–carboxamides. Archiv der Pharmazie, 344 (1), 56–65. https://doi.org/10.1002/ardp.201000166

Yu, H., Wang, F., Zhang, S. F. (2003). Synthesis of 5–aryl–1,2–dihydro–1–pyrrolizinones. Chinese Chemical Letters, 14 (6), 565–568.

Ritthiwigrom, T., Nash, R. J. & Pyne, S. G. (2010). Synthesis of polyhydroxylated pyrrolizidine and indolizidine compounds and their glycosidase inhibitory activities. Tetrahedron, 66 (48), 9340–9347. https://doi.org/10.1016/j.tet.2010.10.008

Rault, S., Lancelot, J. C., Bouyazza, L., Robba, M., Quermonne, M. A., Nammathao, B., Louchahi-Raoul, J. & Marcy, R. (1991). Synthesis and preliminary study of psychotropic effect of alkylamino and iminopyrrolo[1,2–a]indoles. European Journal of Medicinal Chemistry, 26, 939–946. https://doi.org/10.1016/0223-5234(91)90136-b

Buechter, D. D., Thurston, D. E. (1987). Studies on the pyrrolizidine antitumor agent, clazamycin: interconversion of clazamycins A and B. Journal of Natural Products, 50 (3), 360–367. https://doi.org/10.1021/np50051a004

Wang, J., Sánchez-Roselló, M., Aceña, J. L., del Pozo, C., Sorochinsky, A. E., Fustero, S., … Liu, H. (2013). Fluorine in Pharmaceutical Industry : Fluorine–Containing Drugs Introduced to the Market in the Last Decade (2001–2011). Chemical Reviews, 114 (4), 2432–2506. https://doi.org/10.1021/cr4002879

Schierlinger, C., Burger, K. (1992). Peptide modification by introduction of α-trifluoromethyl α–amino acids via 4–trifluoromethyl–1,3–oxazolidin–2,5–diones. Tetrahedron Letters, 33 (2), 193–194. https://doi.org/10.1016/0040-4039(92)88047-9

Iyer, R. P., Yu, D., Ho, N.–H., Tan, W., & Agrawal, S. (1995). A novel nucleoside phosphoramidite synthon derived from 1R, 2S–ephedrine. Tetrahedron: Asymmetry, 6 (5), 1051–1054. https://doi.org/10.1016/0957-4166(95)00122-6

Chandra Sheker Reddy, A., Shanthan Rao, P.,Venkataratnam, R. (1997). Fluoro organics : facile syntheses of novel 2– or 4–trifluoromethyl–1H–arylo–1,5–diazepines, oxazepines, thiazepines, 2–(1,1,1–trifluoroacetonyl)imidazoles, oxazoles and thiazoles. Tetrahedron, 53 (16), 5847–5854. https://doi.org/10.1016/s0040-4020(97)00244-5

Kawase, M., Niwa, M., Nozaki, M. & Motonashi, N. (1998). Synthesis of 2–trifluoromethyl–2,3,4,5–tetrahydro–1H–3–benzazepine derivatives. Heterocycles, 48 (3), 555–560. https://doi.org/10.3987/com-97-8090

Kalantari, M., Reza Islami, M., Hassani, Z. & Saidi, K. (2006). Synthesis of dimethyl 1–(trifluoromethyl)–3–pyrrolizine–2,3–dicarboxylate using phosphorus compounds. Arkivoc, X, 55–62. https://doi.org/10.3998/ark.5550190.0007.a07

Semenov, V. V, Zolotareva, N. V, Dolgonosova, A. Y. (2009). Oligomerization in the reaction of acetylacetone with organic diisocyanates. Russian Journal of Organic Chemistry, 45 (6), 936–938. https://doi.org/10.1134/s1070428009060232

Sonnet, P., Dallemagne, P., Guillon, J., Enguehard, C., Stiebing, S., Tanguy, J., … Séralini, G.–E. (2000). New aromatase inhibitors. Synthesis and biological activity of aryl–substituted pyrrolizine and indolizine derivatives. Bioorganic & Medicinal Chemistry, 8 (5), 945–955. https://doi.org/10.1016/s0968-0896(00)00024-9

Belloir, P. F., Laurent, A., Mison, P., Lesniak, S., & Bartnik, R. (1986). A New Approach to the Synthesis of Pyrrolizines: A One–pot Procedure from 2H–Pyrroles. Synthesis, 1986 (08), 683–686. https://doi.org/10.1055/s-1986-31750

Pinho e Melo, T. M. V. D., Soares, M. I. L., Paixão, J. A., Beja, A. M., Silva, M. R., Alte da Veiga, L., & Pessoa, J. C. (2002). Synthesis of Chiral Pyrrolo[1,2–c]thiazoles via Intramolecular Dipolar Cycloaddition of Münchnones : An Interesting Rearrangement to Pyrrolo[1,2–c]thiazines. The Journal of Organic Chemistry, 67 (12), 4045–4054. https://doi.org/10.1021/jo010807p

Yavari, I., Adib, M. (2001). Efficient synthesis of 5,6,7–trisubstituted 1H–pyrrolizines. Tetrahedron, 57 (27), 5873–5878. https://doi.org/10.1016/s0040-4020(01)00525-7

Tasgin, D. I., Unaleroglu, C. (2016). Ring annulation versus alkylation of pyrrole with α–phosphoryl–α,β–unsaturated ketones. Tetrahedron, 72 (39), 5934–5942. https://doi.org/10.1016/j.tet.2016.08.045

Campbell, S. E., Comer, M. C., Derbyshire, P. A., Despinoy, X. L. M., McNab, H., Morrison, R., … Thornley, C. (1997). Synthesis of pyrrolizin–3–ones by flash vacuum pyrolysis of pyrrol–2–ylmethylidene Meldrum’s acid derivatives and 3– (pyrrol–2–yl)propenoic esters. Journal of the Chemical Society, Perkin Transactions 1, (15), 2195–2202. https://doi.org/10.1039/a701749i

Unaleroglu, C., Tasgin, D., Aytac, S., & Temelli, B. (2009). An Efficient Synthetic Route for Pyrrolizinone Synthesis through Functionalized C–Alkylpyrroles. Synthesis, 2009 (19), 3243–3250. https://doi.org/10.1055/s-0029-1216951

Tasgin, D. I., Unaleroglu, C. (2013). Michael addition of N–heteroaromatics to vinylphosphonates and synthesis of phosphoryl pyrrolizones by cyclization of Michael adducts. Synthesis, 45 (02), 193–198. https://doi.org/10.1055/s-0032-1317894

Byers, J. H., DeWitt, A., Nasveschuk, C. G., & Swigor, J. E. (2004). Tandem radical–electrophilic annulations to pyrrole. Tetrahedron Letters, 45 (35), 6587–6590. https://doi.org/10.1016/j.tetlet.2004.07.037

Unaleroglu, C., Yazici, A. (2007). Gadolinium triflate catalyzed alkylation of pyrroles : efficient synthesis of 3–oxo–2,3–dihydro–1H–pyrrolizine derivatives. Tetrahedron, 63 (25), 5608–5613. https://doi.org/10.1016/j.tet.2007.04.018

Clauson–Kaas, N., Tyle, Z., Rottenberg, M., Stenhagen, E., & Östling, S. (1952). Preparation of Cis– and Trans 2,5–Dimethoxy–2–(acetamidomethyl)–2,5–dihydrofuran, of Cis– and Trans 2,5–Dimethoxy–2–(acetamidomethyl)–tetrahydrofuran and of 1–Phenyl–2–(acetamidomethyl)–pyrrole. Acta Chemica Scandinavica, 6, 667–670. https://doi.org/10.3891/acta.chem.scand.06-0667

Elming, N., Clauson–Kaas, N., Rottenberg, M., Stenhagen, E., & Östling, S. (1952). The Preparation of Pyrroles from Furans. Acta Chemica Scandinavica, 6, 867–874. https://doi.org/10.3891/acta.chem.scand.06-0867

Kolicheva, M. E., Gerus, I. I., Yagupolskiy, Yu. L. & Kuchar, V. P. (1991). Zhurnal organicheskoy chimii, 27 (1), 117–121.

Jefford, C. W., Sienkiewicz, K., Thornton, S. R. (1995). Short, enantiospecific syntheses of indolizidines 209 B and 209 D, and piclavine a from diethyl–L–Glutamate. Helvetica Chimica Acta, 78 (6), 1511–1524. https://doi.org/10.1002/hlca.19950780610


GOST Style Citations


1. Smit, L. W. Plant sources of hepatotoxic pyrrolizidine alkaloids / L. W. Smith, C. C. J. Culvenor // J. Nat. Prod. – 1981. – Vol. 44, Issue 2. – P. 129–152. https://doi.org/10.1021/np50014a001

2. Belal, A. Pyrrolizines: promising scaffolds for anticancer drugs / A. Belal, El–Gendy Bel–D // Bioorg. Med. Chem. – 2014. – Vol. 22, Issue 1. – P. 46–53. https://doi.org/10.1016/j.bmc.2013.11.040

3. Jarosinski, M. A. Synthesis, chemical reactivity, and antitumor evaluation of congeners of carmethizole hydrochloride, an experimental acylated vinylogous carbinolamine tumor inhibitor / M. A. Jarosinski, P. S. Reddy, W. K. Anderson // J. Med. Chem. – 1993. – Vol. 36, Issue 23. – P. 3618–3627. https://doi.org/10.1021/jm00075a017
4. DNA–directed alkylating agents. 7. Synthesis, DNA interaction, and antitumor activity of bis(hydroxymethyl)– and bis(carbamate)-substituted pyrrolizines and imidazoles / G. J. Atwell, J.–Y. Fan, K. Tan et al. // J. Med. Chem. – 1998. – Issue 41. – P. 4744–4754. https://doi.org/10.1021/jm9803119

5. Arylpyrrolizines as inhibitors of microsomal prostaglandin E2 synthase–1 (mPGES–1) or as dual inhibitors of mPGES–1 and 5–lipoxygenase (5–LOX) / A. J. Liedtke, P. R. W. E. F. Keck, F. Lehmannetal et al. // J. Med. Chem. – 2009. – Vol. 52, Issue 15. – P. 4968–4972. https://doi.org/10.1021/jm900481c

6. (6,7–Diaryldihydropyrrolizin–5–yl)acetic acids, a novel class of potent dual inhibitors of both cyclooxygenase and 5–lipoxygenase / S. A. Laufer, J. Augustin, G. Dannhardtetal et al. // J. Med. Chem. – 1994. – Vol. 37, Issue 12. – P. 1894–1897. https://doi.org/10.1021/jm00038a021

7. Novel substituted and fused pyrrolizine derivatives: synthesis, anti–inflammatory and ulcerogenecity studies / S. E. Abbas, F. M. Awadallah, N. A. Ibrahim et al. // Eur. J. Med. Chem. – 2010. – Vol. 45, Issue 12. – P. 482–491. https://doi.org/10.1016/j.ejmech.2009.10.031

8. Barsoum, F. F. Synthesis and molecular modeling studies of anti–inflammatory active 1H–pyrrolizine–5–carboxamides / F. F. Barsoum // Arch. Pharm. – 2010. – Vol. 344, Issue 1. – P. 56–65. https://doi.org/10.1002/ardp.201000166

9. Synthesis of 5–aryl–1, 2–dihydro–1–pyrrolizinones / H. Yu, F. Wang, S. F. Zhang // Chin. Chem. Lett. – 2003. – Vol. 14, Issue 6. P. 565–568.

10. Ritthiwigrom, T. Synthesis of polyhydroxylated pyrrolizidine and indolizidine compounds and their glycosidase inhibitory activities / T. Ritthiwigrom, R. J. Nash., S. G. Pyne // Tetrahedron. – 2010. – Vol. 66, Issue 48. – P. 9340–9347. https://doi.org/10.1016/j.tet.2010.10.008

11. Synthesis and preliminary study of psychotropic effect of alkylamino and imino pyrrolo[1,2–a]indoles / S. Rault, J. C. Lancelot, L. Bouyazza et al. // Eur. J. Med. Chem. – 1991. – Vol. 26, Issue 9. – P. 939–946. DOI: https://doi.org/10.1016/0223-5234(91)90136-b

12. Buechter, D. D. Studies on the pyrrolizidine antitumor agent, clazamycin: interconversion of clazamycins A and B / D. D. Buechter, D. E Thurston // J. Nat. Prod. – 1987. – Vol. 50, Issue 3. – P. 360–367. https://doi.org/10.1021/np50051a004

13. Fluorine in pharmaceutical industry : fluorine–containing drugs introduced to the market in the last Ddecade (2001–2011) / J. Wang, M. Sánchez–Roselló, J. L. Aceña et al. // Chem. Rev. – 2014. – Vol. 114, Issue 4. – P. 2432–2506. https://doi.org/10.1021/cr4002879

14. Schierlinger, C. Peptide modification by introduction of α–trifluoromethyl α–amino acids via 4–trifluoromethyl–1,3–oxazolidin–2,5–diones / C. Schierlinger, K. Burger // Tetrahedron Lett. – 1992. – Vol. 33, Issue 2. – P. 193–194. https://doi.org/10.1016/0040-4039(92)88047-9

15. A novel nucleoside phosphoramidite synthon derived from 1R, 2S–ephedrine / R. P. Iyer, D. Yu, N.–H. Ho et al. // Tetrahedron: Asymmetry. – 1995. – Vol. 6, Issue 5. – P. 1051–1054. DOI: https://doi.org/10.1016/0957-4166(95)00122-6

16. Chandra Sheker Reddy, A. Fluoro organics : facile syntheses of novel 2– or 4–trifluoromethyl–1H–arylo–1,5–diazepines, oxazepines, thiazepines, 2–(1,1,1–trifluoroacetonyl)imidazoles, oxazoles and thiazoles / A. Chandra Sheker Reddy, P. Shanthan Rao, R. Venkataratnam // Tetrahedron. – 1997. – Vol. 53, Issue 16. – P. 5847–5854. https://doi.org/10.1016/s0040-4020(97)00244-5

17. Synthesis of 2–trifluoromethyl–2,3,4,5–tetrahydro–1H–3–benzazepine derivatives / M. Kawase, M. Niwa, M. Nozaki et al. // Heterocycles. – 1998. – Vol. 48, Issue 3. – P. 555–560. https://doi.org/10.3987/com-97-8090

18. Synthesis of dimethyl 1–(trifluoromethyl)–3H–pyrrolizine–2,3–dicarboxylate using phosphorus compounds / M. Kalantari, M. Reza Islami, Z. Hassani et al. // Arkivoc. – Issue X. – P. 55–62. https://doi.org/10.3998/ark.5550190.0007.a07

19. Semenov, V. V. Oligomerization in the reaction of acetylacetone with organic diisocyanates / V. V. Semenov, N. V. Zolotareva, A. Y. Dolgonosova // Russ. J. Org. Chem. – 2009. – Vol. 45, Issue 6. – P. 936–938. DOI: https://doi.org/10.1134/s1070428009060232

20. New aromatase inhibitors. Synthesis and biological activity of aryl–substituted pyrrolizine and indolizine derivatives / P. Sonnet, P. Dallemagne, J. Guillon et al. // Bioorg. Med. Chem. – 2009. – Vol. 8, Issue 5. – P. 945–955. https://doi.org/10.1016/s0968-0896(00)00024-9

21. A new approach to the synthesis of pyrrolizines: a one–pot procedure from 2H–pyrroles / P. F. Belloir, A. Laurent, P. Mison et al. // Synthesis. – 1986. – Issue 08. – P. 683–686. https://doi.org/10.1055/s-1986-31750

22. Synthesis of chiral pyrrolo[1,2–c]thiazoles via intramolecular dipolar cycloaddition of münchnones : an interesting rearrangement to Ppyrrolo[1,2–c]thiazines / T. M. V. D. Pinho e Melo, M. I. L. Soares, J. A. Paixão et al. // J. Org. Chem. – 2002. – Vol. 67, Issue 12. – P. 4045–4054. https://doi.org/10.1021/jo010807p

23. Yavari, I. Efficient synthesis of 5,6,7–trisubstituted 1H–pyrrolizines / I. Yavari, M. Adib // Tetrahedron. – 2001. – Vol. 57, Issue 27. – P. 5873–5878. https://doi.org/10.1016/s0040-4020(01)00525-7

24. Tasgin, D. I. Ring annulation versus alkylation of pyrrole with α–phosphoryl–α,β–unsaturated ketones / D. I. Tasgin, C. Unaleroglu // Tetrahedron. –2016. – Vol. 72, Issue 39. – P. 5934–5942. https://doi.org/10.1016/j.tet.2016.08.045

25. Synthesis of pyrrolizin–3–ones by flash vacuum pyrolysis of pyrrol–2–ylmethylidene Meldrum’s acid derivatives and 3–(pyrrol–2–yl)propenoic ester / E. S. Campbell, C. M. Comer, A. P. Derbyshire et al. // J. Chem. Soc., Perkin Trans. 1. – 1997. – Vol. 1, Issue 15. – P. 2195–2202. https://doi.org/10.1039/a701749i

26. An efficient synthetic route for pyrrolizinone synthesis through functionalized C–Alkylpyrroles / C. Unaleroglu, D. I. Tasgin, S. Aytac et al. // Synthesis. – 2009. – Issue 19. – P. 3243–3250. https://doi.org/10.1055/s-0029-1216951

27. Tasgin, D. I. Michael addition of N–heteroaromatics to vinylphosphonates and synthesis of phosphoryl pyrrolizones by cyclization of Michael adducts / D. I. Tasgin, C. Unaleroglu // Synthesis. – 2013. – Issue 02. – P. 193–198. https://doi.org/10.1055/s-0032-1317894

28. Tandem radical–electrophilic annulations to pyrrole / J. H. Byers, A. De Witt, C. G. Nasveschuk et al. // Tetrahedron Lett. – 2004. – Vol. 45, Issue 35. – P. 6587–6590. https://doi.org/10.1016/j.tetlet.2004.07.037

29. Unaleroglu, C. Gadolinium triflate catalyzed alkylation of pyrroles : efficient synthesis of 3–oxo–2,3–dihydro–1H–pyrrolizine derivatives / C. Unaleroglu, A. Yazici // Tetrahedron. – 2007. – Vol. 63, Issue 25. – P. 5608–5613. https://doi.org/10.1016/j.tet.2007.04.018

30. Clauson–Kaas, N. PreparationofCis– and trans 2,5–dimethoxy–2–(acetamidomethyl)–2,5–dihydrofuran, of cis– and trans 2,5–dimethoxy–2–(acetamidomethyl)–tetrahydrofuran and of 1–phenyl–2–(acetamidomethyl)–pyrrole / N. Clauson–Kaas, Z. Tyle // Acta Chem. Scand. – 1952. – Vol. 6. – P. 667–670. https://doi.org/10.3891/acta.chem.scand.06-0667

31. The Preparation of pyrroles from furans / N. Clauson–Kaas N. Elming et al. // ActaChem. Scand. – 1952. – Vol. 6. – P. 867–874. https://doi.org/10.3891/acta.chem.scand.06-0867

32. Cинтез 3–амино–3–фенил–4,4,4–трифтормасляной кислоты (β–трифторометил–β–фенил–β–аланина) / М. Е. Колычева, И. И. Герус, Ю. Л. Ягупольский, В. П. Кухарь // Журн. орг. химии. – 1991. – Т. 27, Вып. 1. – C. 117–121.

33. Jefford, C. W. Short, enantiospecific syntheses of indolizidines 209 B and 209 D, and piclavine A from diethyl–L–glutamate / C. W. Jefford, K. Sienkiewicz, S. R. Thornton // Helv. Chim. Acta. – 1995. – Vol. 78, Issue 6. – P. 1511–1524. https://doi.org/10.1002/hlca.19950780610




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: Ž. org. farm. hìm.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)