The synthesis and biological assessment of [[1,2,4]triazolo[4,3-a]pyridine-3-yl]acetamides with an 1,2,4-oxadiazol cycle in positions 6, 7 and 8

Authors

  • V. R. Karpina "National University of Pharmacy", Ukraine
  • S. S. Kovalenko "National University of Pharmacy", Ukraine
  • S. M. Kovalenko "V. N. Karazin Kharkiv National University", Ukraine
  • O. V. Zaremba "V. N. Karazin Kharkiv National University", Ukraine
  • O. V. Silin National University of Pharmacy, Ukraine
  • T. Langer University of Vienna, Austria

DOI:

https://doi.org/10.24959/ophcj.19.965

Keywords:

triazolopyridine, (1, 2, 4-oxadiazol-5-yl)-[1, 4]triazolo[4, 3-a]pyridine, 1, 4-oxadiazole

Abstract

Fused heterocyclic 1,2,4-triazoles have provided much attention due to variety of their interesting biological properties.

Aim. To develop the method for the synthesis of novel 2-[(1,2,4-oxadiazol-5-yl)-[1,2,4]triazolo[4,3-a]pyridine-3-yl]acetamides and conduct the biological assessment of the compounds synthesized.

Results and discussion. A diverse set of acetamides newly synthesized consists of 32 analogs bearing an 1,2,4-oxadiazole cycle in positions 6, 7 and 8. A convenient scheme of the synthesis starts from commercially available 2-chloropyridine-3-, 2-chloropyridine-4-, 2-chloropyridine-5-carboxylic acids with amidoximes to form the corresponding 2-chloro-[3-R1-1,2,4-oxadiazol-5-yl]pyridines, then follows the reaction of  hydrazinolysis with an excess of hydrazine hydrate. The process continues via the ester formation with the pyridine ring closure, then the amide formations of the end products are obtained by hydrolysis into acetic acid.

Experimental part. A series of new 2-[6-(1,2,4-oxadiazol-5-yl)-, 2-[7-(1,2,4-oxadiazol-5-yl)-, 2-[8-(1,2,4-oxadiazol-5-yl)-[1,2,4]triazolo[4,3-a]pyridine-3-yl]acetamides were obtained in good yields, and their structures were proven by the method of 1H NMR spectroscopy. The prognosis and study of their pharmacological activity were also conducted.

Conclusions. The synthetic approach of obtaining the representatives of 2-[(1,2,4-oxadiazol-5-yl)-[1,2,4]triazolo[4,3-a]pyridine-3-yl]acetamides previously unknown can be used as an applicable method for the synthesis of diverse functionalized [1,2,4]triazolo[4,3-a]pyridine derivatives.

Downloads

Download data is not yet available.

References

  1. Sadana, A. K., Mirza, Y., Aneja, K. R., & Prakash, O. (2003). Hypervalent iodine mediated synthesis of 1–aryl/hetryl–1,2,4–triazolo[4,3–a] pyridines and 1–aryl/hetryl 5–methyl–1,2,4–triazolo[4,3–a]quinolines as antibacterial agents. European Journal of Medicinal Chemistry, 38 (5), 533–536. https://doi.org/10.1016/s0223-5234(03)00061-8
  2. Prakash, O., Hussain, K., Aneja, D. K., Sharma, C., & Aneja, K. R. (2011). A facile iodine(III)–mediated synthesis of 3–(3–aryl–1–phenyl–1H–pyrazol–4–yl)–[1,2,4]triazolo[4,3–a]pyridines via oxidation of 2–((3–aryl–1–phenyl–1H–pyrazol–4–yl)methylene)–1–(pyridin–2–yl)hydrazines and their antimicrobial evaluations. Organic and Medicinal Chemistry Letters, 1 (1), 1.https://doi.org/10.1186/2191-2858-1-1
  3. Lawson, E. C., Hoekstra, W. J., Addo, M. F., Andrade–Gordon, P., Damiano, B. P., Kauffman, J. A., … Maryanoff, B. E. (2001). 1,2,4–Triazolo[3,4–a]pyridine as a novel, constrained template for fibrinogen receptor (GPIIb/IIIa) antagonists. Bioorganic & Medicinal Chemistry Letters, 11 (19), 2619–2622. https://doi.org/10.1016/s0960-894x(01)00529-7
  4. Chao C., Haibing D., Haibing G., Feng H., Lei J., Fang L., Yuan M., Huixin W., Yao–Chang X., Hongping Y., Ji Y. Z. (2013). 6–substituted 3–(quinolin–6–yl–thio)–[1,2,4]triazolo[4,3–a]pyradines as tyrosine kinase. Patent WO 2013038362 A1. 21.03.2013.
  5. Alcaraz L., Panchal T.A., Jennings A.S.R., Cridland A., Hurley C. (2014). Derivatives of [1,2,4]triazolo[4,3–a]pyridine as p38–MAP kinase inhibitors. Patent WO2014194956 A1. 11.12.2014.
  6. Jerome, K. D., Rucker, P. V., Xing, L., Shieh, H. S., Baldus, J. E., Selness, S. R., … McClure, K. F. (2010). Continued exploration of the triazolopyridine scaffold as a platform for p38 MAP kinase inhibition. Bioorganic & Medicinal Chemistry Letters, 20 (2), 469–473. https://doi.org/10.1016/j.bmcl.2009.11.114
  7. Kalgutkar, A. S., Hatch, H. L., Kosea, F., Nguyen, H. T., Choo, E. F., McClure, K. F., … Letavic, M. A. (2006). Preclinical pharmacokinetics and metabolism of 6–(4–(2,5–difluorophenyl)oxazol–5–yl)–3–isopropyl–[1,2,4]–triazolo[4,3–a]pyridine, a novel and selective p38α inhibitor: identification of an active metabolite in preclinical species and human liver microsomes. Biopharmaceutics & Drug Disposition, 27 (8), 371–386. https://doi.org/10.1002/bdd.520
  8. Liu, X.–H., Xu, X.–Y., Tan, C.–X., Weng, J.–Q., Xin, J.–H., & Chen, J. (2014). Synthesis, crystal structure, herbicidal activities and 3D–QSAR study of some novel 1,2,4–triazolo[4,3–a]pyridine derivatives. Pest Management Science, 71 (2), 292–301. https://doi.org/10.1002/ps.3804
  9. Guan, L.–P., Zhang, R.–P., Sun, Y., Chang, Y., & Sui, X. (2012). Synthesis and Studies on the Anticonvulsant Activity of 5–alkoxy–[1,2,4]triazolo[4,3–a]pyridine Derivatives. Arzneimittelforschung, 62 (08), 372–377. https://doi.org/10.1055/s-0032-1314821
  10. Cid–Núñez J. M., Trabanco–Suárez A. A., Lavreysen H., Ceusters M. (2015). 1,2,4–triazolo[4,3–a]pyridine compounds and their use as positive allosteric modulators of mGluR2 receptors. Patent WO2015032790 A1. 12.03.2015.
  11. Lavreysen, H., Langlois, X., Donck, L. V., Nuñez, J. M. C., Pype, S., Lütjens, R., & Megens, A. (2015). Preclinical evaluation of the antipsychotic potential of the mGlu2–positive allosteric modulator JNJ–40411813. Pharmacology Research & Perspectives, 3 (2), e00097. https://doi.org/10.1002/prp2.97
  12. Nandini, R. P., Deepnandan, S. D. (2010). Studies of Antipsychotic drugs as potential schizophrenia agents. J. Chem. Pharm. Res., 2 (1), 458–472.
  13. Padalkar, V. S., Patil, V. S., Phatangare, K. R., Umape, P. G., & Sekar, N. (2011). Efficient Synthesis of 3–Substituted 1,2,4–Triazolo[4,3–a]pyridine by [Bis(Trifluroacetoxy)iodo]benzene–Catalyzed Oxidative Intramolecular Cyclization of Heterocyclic Hydrazones. Synthetic Communications, 41 (6), 925–938. https://doi.org/10.1080/00397911003707162
  14. Katritzky, A. R., Rees, C. W., Scriven, E. F. V. (1996). The Structure, Reactions, Synthesis, and Uses of Heterocyclic Compounds. Pergamon: Oxford, New York, 8, 367–388.
  15. Wang, Y., Sarris, K., Sauer, R. D., Djuric, S. W. (2007). Simple oxidation of pyrimidinylhydrazones to triazolopyrimidines and their inhibition of Shiga toxin trafficking. Tetrahedron Lett., 48, 2237–2240.
  16. Bourgeois, P., Cantegril, R., Chěne, A., Gelin, J., Mortier, J., & Moyroud, J. (1993). An Improved Synthesis of 3–Substituted 1,2,4–Triazolo[4,3–a]pyridines and 1,2,4–Triazolo[4,3–b]pyridazines. Synthetic Communications, 23 (22), 3195–3199. https://doi.org/10.1080/00397919308011179
  17. Crljenak, S., Tabakovic, I., Jeremic, D., Gaon, I., Enzell, C. R., & Inoue, K. (1983). Electrochemical Synthesis of Heterocyclic Compounds. XV. Anodic Synthesis of s–Triazolo[4,3–a]pyridine Derivatives. Acta Chemica Scandinavica, 37b, 527–535. https://doi.org/10.3891/acta.chem.scand.37b-0527

Downloads

Published

2019-03-13

How to Cite

(1)
Karpina, V. R.; Kovalenko, S. S.; Kovalenko, S. M.; Zaremba, O. V.; Silin, O. V.; Langer, T. The Synthesis and Biological Assessment of [[1,2,4]triazolo[4,3-a]pyridine-3-yl]acetamides With an 1,2,4-Oxadiazol Cycle in Positions 6, 7 and 8. J. Org. Pharm. Chem. 2019, 17, 28-35.

Issue

Section

Original Researches