Noncovalent interactions in crowded olefinic radical cations

Authors

  • Andrey A. Fokin National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine https://orcid.org/0000-0002-6381-8948
  • Vladislav V. Bahonsky National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Justus-Liebig University Giessen, Institute of Organic Chemistry, Germany
  • Tetyana V. Koso Justus-Liebig University Giessen, Institute of Organic Chemistry University of Helsinki, Materials Chemistry Division, Department of Chemistry, Faculty of Science, Finland
  • Ngo T. Hoc National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Justus-Liebig University Giessen, Institute of Organic Chemistry, Germany
  • Michael Serafin Justus-Liebig University Giessen, Institute of Inorganic and Analytical Chemistry, Germany
  • Tetyana S. Zhuk National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine https://orcid.org/0000-0001-5184-704X
  • Volodymyr M. Rodionov National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine https://orcid.org/0000-0003-3447-0898
  • Peter R. Schreiner Institute of Organic Chemistry, Justus-Liebig University, Giessen, Germany, Germany https://orcid.org/0000-0002-3608-5515

DOI:

https://doi.org/10.24959/ophcj.20.189679

Keywords:

hyperconjugation, ionization potentials, noncovalent interactions, olefins, radical cations

Abstract

Aim. To study the effect of electronic (α- and β-hyperconjugations) and steric (noncovalent interactions) factors on the structures of olefinic radical cations.

Results and discussion. The effect of intramolecular dispersion interactions on the structures of crowded alkenes in the neutral and ionized forms has been studied at the density functional theory (DFT) level with and without dispersion corrections included, as well as at the MP2 theory level with medium size basis sets. The results obtained are compared to the available experimental data. An excellent agreement has been found between the experimental and MP2/DFT-computed geometries of sesquihomoadamantene, adamantylidene adamantane, bis-2,2,5,5-tetramethylcyclopentylidene, bis-D3-homocub-4-ylidene, and bis-CS-homocub-8-ylidene in the neutral and ionized forms. The experimental ionization potentials are better reproduced with the DFT-methods.

Experimental part. The structure and composition of compounds were proved by the methods of 1H and 13C NMR-spectroscopy, and GC-MS-analysis. Elemental analysis was performed for the compounds obtained.

Conclusions. The twisting of the olefinic moieties in the sesquihomoadamantene and adamantylidene adamantane radical cations is determined by the balance between the σ-π-hyperconjugation and residual one-electron π-bonding and is close to that of the prototypical ethylene radical cation (29°). The twisting reaches 55° for the bis-2,2,5,5-tetramethylcyclopentylidene radical cation due to substantial steric repulsions between methyl groups. At the same time, the ionized states of bis-D3-homocub-4-ylidene and bis-CS-homocub-8-ylidene retain their planarity due to β-CC-hyperconjugation and intramolecular dispersion attractions.

 

Received: 26.12.2019
Revised: 17.01.2020
Accepted: 27.02.2020

Supporting Agency

  • The research was supported by DFG under grant number SCHR 597/27-2 (SPP 1807 ”Dispersion”)

Downloads

Download data is not yet available.

References

  1. Giese, B. Long-Distance Charge Transport in DNA: The Hopping Mechanism. Acc. Chem. Res. 2000, 33 (9), 631-636. https://doi.org/10.1021/ar990040b.
  2. Genereux, J. C.; Barton, J. K. Mechanisms for DNA Charge Transport. Chem. Rev. 2010, 110 (3), 1642-1662. https://doi.org/10.1021/cr900228f.
  3. Barrow, S. J.; Kasera, S.; Rowland, M. J.; del Barrio, J.; Scherman, O. A. Cucurbituril-Based Molecular Recognition. Chem. Rev. 2015, 115 (22), 12320-12406. https://doi.org/10.1021/acs.chemrev.5b00341.
  4. Mulliken, R. S. Conjugation and hyperconjugation: a survey with emphasis on isovalent hyperconjugation. Tetrahedron 1959, 5 (2), 253-274. https://doi.org/10.1016/0040-4020(59)80110-1.
  5. Wu, J. I. C.; Wang, C.; McKee, W. C.; von Ragué Schleyer, P.; Wu, W.; Mo, Y. On the large σ-hyperconjugation in alkanes and alkenes. J. Mol. Model. 2014, 20 (6), 2228 (20 p). https://doi.org/10.1007/s00894-014-2228-2.
  6. Abrams, M. L.; Valeev, E. F.; Sherrill, C. D.; Crawford, T. D. The Equilibrium Geometry, Harmonic Vibrational Frequencies, and Estimated ab Initio Limit for the Barrier to Planarity of the Ethylene Radical Cation. J. Phys. Chem. A 2002, 106 (11), 2671-2675. https://doi.org/10.1021/jp0134143.
  7. Chen, S.-C.; Liu, M.-C.; Huang, T.-P.; Chin, C.-H.; Wu, Y.-J. Photodissociation and infrared spectra of ethylene cations in solid argon. Chem. Phys. Lett. 2015, 630, 96-100. https://doi.org/10.1016/j.cplett.2015.04.050.
  8. Willitsch, S.; Hollenstein, U.; Merkt, F. Ionization from a double bond: Rovibronic photoionization dynamics of ethylene, large amplitude torsional motion and vibronic coupling in the ground state of C2H4+. J. Chem. Phys. 2004, 120 (4), 1761-1774. https://doi.org/10.1063/1.1635815.
  9. All computations were performed with the GAUSSIAN09 program suit (Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc.: Wallingford CT, 2013.).
  10. Rauk, A.; Sorensen, T. S.; Maerker, C.; Carneiro, J. W. d. M.; Sieber, S.; Schleyer, P. v. R. Axial and Equatorial 1-Methyl-1-cyclohexyl Cation Isomers Both Have Chair Conformations but Differ in C−C and C−H Hyperconjugation Modes. J. Am. Chem. Soc. 1996, 118 (15), 3761-3762. https://doi.org/10.1021/ja9531900.
  11. Kochi, J. K.; Rathore, R.; Zhu, C.; Lindeman, S. V. Structural Characterization of Novel Olefinic Cation Radicals: X-ray Crystallographic Evidence of σ–π Hyperconjugation. Angew. Chem. Int. Ed. 2000, 39 (20), 3671-3674. https://doi.org/10.1002/1521-3773(20001016)39:20<3671::aid-anie3671>3.0.co;2-d.
  12. Geluk, H. W. Synthesis of Adamantylideneadamantane. Synthesis 1970, 1970 (12), 652-653. https://doi.org/10.1055/s-1970-21658.
  13. Rathore, R.; Lindeman, S. V.; Zhu, C. J.; Mori, T.; Schleyer, P. v. R.; Kochi, J. K. Steric Hindrance as a Mechanistic Probe for Olefin Reactivity: Variability of the Hydrogenic Canopy over the Isomeric Adamantylideneadamantane/Sesquihomoadamantene Pair (A Combined Experimental and Theoretical Study). J. Org. Chem. 2002, 67 (15), 5106-5116. https://doi.org/10.1021/jo0200724.
  14. Gerson, F.; Lopez, J.; Krebs, A.; Rüger, W. Radical Cations of Sterically Hindered Bicycloalkylidenes: An Experimental Contribution Concerning the Planarity of the Ethylene Radical Cation. Angew. Chem., Int. Ed. Engl. 1981, 20 (1), 95-96. https://doi.org/10.1002/anie.198100951.
  15. Gunchenko, P. A.; Novikovskii, A. A.; Byk, M. V.; Fokin, A. A. Structure and transformations of diamantane radical cation: Theory and experiment. Russ. J. Org. Chem. 2014, 50 (12), 1749-1754. https://doi.org/10.1134/s1070428014120057.
  16. Shubina, T. E.; Fokin, A. A. Hydrocarbon σ-radical cations. WIREs Computational Molecular Science 2011, 1 (5), 661-679. https://doi.org/10.1002/wcms.24.
  17. Novikovskii, A. A.; Gunchenko, P. A.; Prikhodchenko, P. G.; Serguchev, Y. A.; Schreiner, P. R.; Fokin, A. A. Comparative theoretical and experimental analysis of hydrocarbon σ-radical cations. Russ. J. Org. Chem. 2011, 47 (9), 1293-1299. https://doi.org/10.1134/S1070428011090053.
  18. Gunchenko, P. A.; Makukhina, A. M.; Novikovskii, A. A.; Yurchenko, A. G.; Serafin, M.; Schreiner, P. R.; Fokin, A. A. Structure and transformations of the homoadamantane radical-cation. Theor. Exp. Chem. 2009, 45 (4), 246-251. https://doi.org/10.1007/s11237-009-9089-2.
  19. Fokin, A. A.; Tkachenko, B. A.; Gunchenko, P. A.; Gusev, D. V.; Schreiner, P. R. Functionalized Nanodiamonds Part I. An Experimental Assessment of Diamantane and Computational Predictions for Higher Diamondoids. Chem. Eur. J. 2005, 11 (23), 7091-7101. https://doi.org/10.1002/chem.200500031.
  20. Zhuk, T. S.; Koso, T.; Pashenko, A. E.; Hoc, N. T.; Rodionov, V. N.; Serafin, M.; Schreiner, P. R.; Fokin, A. A. Toward an Understanding of Diamond sp2-Defects with Unsaturated Diamondoid Oligomer Models. J. Am. Chem. Soc. 2015, 137 (20), 6577-6586. https://doi.org/10.1021/jacs.5b01555.
  21. Grimme, S. n-Alkane Isodesmic Reaction Energy Errors in Density Functional Theory Are Due to Electron Correlation Effects. Org. Lett. 2010, 12 (20), 4670-4673. https://doi.org/10.1021/ol1016417.
  22. Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120 (1), 215-241. https://doi.org/10.1007/s00214-007-0310-x.
  23. Fokin, A. A.; Chernish, L. V.; Gunchenko, P. A.; Tikhonchuk, E. Y.; Hausmann, H.; Serafin, M.; Dahl, J. E. P.; Carlson, R. M. K.; Schreiner, P. R. Stable Alkanes Containing Very Long Carbon–Carbon Bonds. J. Am. Chem. Soc. 2012, 134 (33), 13641-13650. https://doi.org/10.1021/ja302258q.
  24. Schreiner, P. R.; Chernish, L. V.; Gunchenko, P. A.; Tikhonchuk, E. Y.; Hausmann, H.; Serafin, M.; Schlecht, S.; Dahl, J. E. P.; Carlson, R. M. K.; Fokin, A. A. Overcoming lability of extremely long alkane carbon–carbon bonds through dispersion forces. Nature 2011, 477 (7364), 308-311. https://doi.org/10.1038/nature10367.
  25. Fokin, A. A.; Zhuk, T. S.; Blomeyer, S.; Pérez, C.; Chernish, L. V.; Pashenko, A. E.; Antony, J.; Vishnevskiy, Y. V.; Berger, R. J. F.; Grimme, S.; Logemann, C.; Schnell, M.; Mitzel, N. W.; Schreiner, P. R. Intramolecular London Dispersion Interaction Effects on Gas-Phase and Solid-State Structures of Diamondoid Dimers. J. Am. Chem. Soc. 2017, 139 (46), 16696-16707. https://doi.org/10.1021/jacs.7b07884.
  26. Fokin, A. A.; Gerbig, D.; Schreiner, P. R. σ/σ- and π/π-Interactions Are Equally Important: Multilayered Graphanes. J. Am. Chem. Soc. 2011, 133 (50), 20036-20039. https://doi.org/10.1021/ja206992j.
  27. Grimme, S.; Mück-Lichtenfeld, C.; Erker, G.; Kehr, G.; Wang, H.; Beckers, H.; Willner, H. When Do Interacting Atoms Form a Chemical Bond? Spectroscopic Measurements and Theoretical Analyses of Dideuteriophenanthrene. Angew. Chem. Int. Ed. 2009, 48 (14), 2592-2595. https://doi.org/10.1002/anie.200805751.
  28. Nelsen, S. F.; Kapp, D. L. Thermodynamics of electron removal from binorbornylidene and sesquibicyclooctene. J. Org. Chem. 1985, 50 (8), 1339-1341. https://doi.org/10.1021/jo00208a050.
  29. Mollere, P. D.; Houk, K. N.; Bomse, D. S.; Morton, T. H. Photoelectron spectra of sterically congested alkenes and dienes. J. Am. Chem. Soc. 1976, 98 (16), 4732-4736. https://doi.org/10.1021/ja00432a007.
  30. Zimmermann, T.; Richter, R.; Knecht, A.; Fokin, A. A.; Koso, T. V.; Chernish, L. V.; Gunchenko, P. A.; Schreiner, P. R.; Möller, T.; Rander, T. Exploring covalently bonded diamondoid particles with valence photoelectron spectroscopy. J. Chem. Phys. 2013, 139 (8), 084310 (6 p.). https://doi.org/10.1063/1.4818994.
  31. Krebs, A.; Rüger, W.; Nickel, W.-U.; Wilke, M.; Burkert, U. Sterisch gehinderte Alkene, V. Octamethylcycloalkylidencycloalkane und verwandte Verbindungen — Eigenschaften und Ergebnisse von Kraftfeld-rechnungen. Chem. Ber. 1984, 117 (1), 310-321. https://doi.org/10.1002/cber.19841170122.
  32. de Meijere, A.; Wenck, H.; Zöllner, S.; Merstetter, P.; Arnold, A.; Gerson, F.; Schreiner, P. R.; Boese, R.; Bläser, D.; Gleiter, R.; Kozhushkov, S. I. Synthesis, Spectroscopic, and Structural Properties of Spirocyclopropanated Bicyclobutylidenes and Their Radical Cations. Chem. Eur. J. 2001, 7 (24), 5382-5390. https://doi.org/10.1002/1521-3765(20011217)7:24<5382::aid-chem5382>3.0.co;2-y.
  33. Marchand, A. P.; Reddy, G. M.; Deshpande, M. N.; Watson, W. H.; Nagl, A.; Lee, O. S.; Osawa, E. Synthesis and reactions of meso- and dl-D3-trishomocubylidene-D3-trishomocubane. J. Am. Chem. Soc. 1990, 112 (9), 3521-3529. https://doi.org/10.1021/ja00165a041.
  34. McMurry, J. E. Titanium-induced dicarbonyl-coupling reactions. Acc. Chem. Res. 1983, 16 (11), 405-411. https://doi.org/10.1021/ar00095a003.
  35. McMurry, J. E.; Fleming, M. P.; Kees, K. L.; Krepski, L. R. Titanium-induced reductive coupling of carbonyls to olefins. J. Org. Chem. 1978, 43 (17), 3255-3266. https://doi.org/10.1021/jo00411a002.
  36. Lerman, B. M.; Galin, F. Z.; Umanskaya, L. I.; Tolstikov, G. A. Syntheses of monofunctional cage compounds. Zh. Org. Khim. 1978, 14, 2536–2541.
  37. Oliver, D. W.; Dekker, T. G.; Snyckers, F. O. Pentacyclo[5.4.0.02,6.03,10.05,9]undecylamines. Synthesis and pharmacology. Eur. J. Med. Chem. 1991, 26 (4), 375-379. https://doi.org/10.1016/0223-5234(91)90097-7.
  38. Tolstikov, G. A.; Lerman, B. M.; Belogaeva, T. A. A Convenient Synthesis of Adamantylideneadamantane. Synth. Commun. 1991, 21 (7), 877-879. https://doi.org/10.1080/00397919108019771.
  39. Schwertfeger, H.; Fokin, A. A.; Schreiner, P. R. Diamonds are a Chemist’s Best Friend: Diamondoid Chemistry Beyond Adamantane. Angew. Chem. Int. Ed. 2008, 47 (6), 1022-1036. https://doi.org/10.1002/anie.200701684.
  40. Gunawan, M. A.; Hierso, J.-C.; Poinsot, D.; Fokin, A. A.; Fokina, N. A.; Tkachenko, B. A.; Schreiner, P. R. Diamondoids: functionalization and subsequent applications of perfectly defined molecular cage hydrocarbons. New J. Chem. 2014, 38 (1), 28-41. https://doi.org/10.1039/c3nj00535f.
  41. Roth, S.; Leuenberger, D.; Osterwalder, J.; Dahl, J. E.; Carlson, R. M. K.; Tkachenko, B. A.; Fokin, A. A.; Schreiner, P. R.; Hengsberger, M. Negative-electron-affinity diamondoid monolayers as high-brilliance source for ultrashort electron pulses. Chem. Phys. Lett. 2010, 495 (1), 102-108. https://doi.org/10.1016/j.cplett.2010.06.063.
  42. Clay, W. A.; Maldonado, J. R.; Pianetta, P.; Dahl, J. E. P.; Carlson, R. M. K.; Schreiner, P. R.; Fokin, A. A.; Tkachenko, B. A.; Melosh, N. A.; Shen, Z.-X. Photocathode device using diamondoid and cesium bromide films. Appl. Phys. Lett. 2012, 101 (24), 241605 (5 p.). https://doi.org/10.1063/1.4769043.
  43. Zhang, J. L.; Ishiwata, H.; Babinec, T. M.; Radulaski, M.; Müller, K.; Lagoudakis, K. G.; Dory, C.; Dahl, J.; Edgington, R.; Soulière, V.; Ferro, G.; Fokin, A. A.; Schreiner, P. R.; Shen, Z.-X.; Melosh, N. A.; Vučković, J. Hybrid Group IV Nanophotonic Structures Incorporating Diamond Silicon-Vacancy Color Centers. Nano Lett. 2016, 16 (1), 212-217. https://doi.org/10.1021/acs.nanolett.5b03515.
  44. Narasimha, K. T.; Ge, C.; Fabbri, J. D.; Clay, W.; Tkachenko, B. A.; Fokin, A. A.; Schreiner, P. R.; Dahl, J. E.; Carlson, R. M. K.; Shen, Z. X.; Melosh, N. A. Ultralow effective work function surfaces using diamondoid monolayers. Nature Nanotechnology 2016, 11 (3), 267-272. https://doi.org/10.1038/nnano.2015.277.
  45. Yan, H.; Narasimha, K. T.; Denlinger, J.; Li, F. H.; Mo, S.-K.; Hohman, J. N.; Dahl, J. E. P.; Carlson, R. M. K.; Tkachenko, B. A.; Fokin, A. A.; Schreiner, P. R.; Hussain, Z.; Shen, Z.-X.; Melosh, N. A. Monochromatic Photocathodes from Graphene-Stabilized Diamondoids. Nano Lett. 2018, 18 (2), 1099-1103. https://doi.org/10.1021/acs.nanolett.7b04645.

Downloads

Published

2020-03-05

How to Cite

(1)
Fokin, A. A.; Bahonsky, V. V.; Koso, T. V.; Hoc, N. T.; Serafin, M.; Zhuk, T. S.; Rodionov, V. M.; Schreiner, P. R. Noncovalent Interactions in Crowded Olefinic Radical Cations. J. Org. Pharm. Chem. 2020, 18, 05-13.

Issue

Section

Original Researches