Functionalizations of Diamantane Dimers

Authors

DOI:

https://doi.org/10.24959/ophcj.20.199807

Keywords:

Diamantane dimers, halogenation, nitroxylation, phenylation

Abstract

Aim. To develop preparative methods for functionalization of diamantane dimers.

Results and discussion. The reaction of 1,1′-bisdiamantane with bromine and the subsequent hydrolysis gives 6-hydroxy-1,1′-bіsdіamantane with a yield of 56 %. The reactions of 4,4′-bisdiamantane with nitric acid or liquid bromine followed by hydrolysis leads to a mixture of hydroxy derivatives and 1,1′-dihydroxy-4,4′-bisdiamantane after isomerization in sulfuric acid (with a yield of 73 %). Thus, the reactivity of bisdiamantanes with electrophiles is determined by the higher stability of the carbocations in the medial positions of the cages as shown by DFT computations. Whereas medial bridgehead substitutions dominate in reactions of 4,4′-bisdiamantane with elec­trophiles, the arylation with benzene in the presence of tert-butyl bromide and aluminum chloride gives bis-apical derivative – 9,9’-diphenyl-4,4’-bisdiamantane.

Experimental part. The structure of 6-hydroxy-1,1′-bіsdіamantane was confirmed by X-ray diffraction analysis. The substitution pattern in 1,1′-dihydroxy-4,4′-bisdamantane was confirmed by 2D-NMR spectra. The arylation of 4,4′-bisdiamantane with benzene proceeds as bis-apical substitution to give highly symmetric 9,9’-di­phenyl-4,4’-bisdiamantane in 47 %.

Conclusions. It has been shown that the medial bridgehead substitution dominates in the reactions of bisdia­mantanes with strong electrophiles, and only the arylation of 4,4′-bisdiamantane proceeds as a bis-apical substitution.

Received: 31.03.2020
Revised: 05.05.2020
Accepted: 29.05.2020

Supporting Agency

  • The work in Giessen was supported in part by the U.S. Department of Energy (Contract No. DE-AC02-76SF00515)

Downloads

Download data is not yet available.

References

  1. Subramanian, K.; Wong, Y. M.; Kang, W. P.; Davidson, J. L.; Choi, B. K.; Howell, M. Nanocarbon field emission devices. Phys. Status Solidi A 2006, 203 (12), 3042–3048. https://doi.org/10.1002/pssa.200671104.
  2. Shenderova, O. A.; Zhirnov, V. V.; Brenner, D. W. Carbon Nanostructures. Crit. Rev. Solid State Mater. Sci. 2002, 27 (3–4), 227–356. https://doi. org/10.1080/10408430208500497.
  3. Cerofolini, G. F.; Arena, G.; Camalleri, M.; Galati, C.; Reina, S.; Renna, L.; Mascolo, D.; Nosik, V. Strategies for nanoelectronics. Microelectron. Eng. 2005, 81 (2), 405–419. https://doi.org/10.1016/j.mee.2005.03.041.
  4. Achatz, P.; Garrido, J. A.; Williams, O. A.; Bruno, P.; Gruen, D. M.; Kromka, A.; Steinmüller, D.; Stutzmann, M. Structural, optical, and electronic proper¬ties of nanocrystalline and ultrananocrystalline diamond thin films. Phys. Status Solidi A 2007, 204 (9), 2874–2880. https://doi.org/10.1002/ pssa.200776337.
  5. Kuznetsov, V. L.; Chuvilin, A. L.; Moroz, E. M.; Kolomiichuk, V. N.; Shaikhutdinov, S. K.; Butenko, Y. V.; Mal’kov, I. Y. Effect of explosion conditions on the structure of detonation soots: Ultradisperse diamond and onion carbon. Carbon 1994, 32 (5), 873–882. https://doi.org/10.1016/0008- 6223(94)90044-2.
  6. Schrand, A. M.; Hens, S. A. C.; Shenderova, O. A. Nanodiamond Particles: Properties and Perspectives for Bioapplications. Crit. Rev. Solid State Mater. Sci. 2009, 34 (1–2), 18–74. https://doi.org/10.1080/10408430902831987.
  7. Drummond, N. D. Diamondoids display their potential. Nat. Nanotechnol. 2007, 2 (8), 462–463. https://doi.org/10.1038/nnano.2007.232.
  8. Yang, W. L.; Fabbri, J. D.; Willey, T. M.; Lee, J. R. I.; Dahl, J. E.; Carlson, R. M. K.; Schreiner, P. R.; Fokin, A. A.; Tkachenko, B. A.; Fokina, N. A.; Meevasana, W.; Mannella, N.; Tanaka, K.; Zhou, X. J.; van Buuren, T.; Kelly, M. A.; Hussain, Z.; Melosh, N. A.; Shen, Z.-X. Monochromatic Electron Photoemission from Diamondoid Monolayers. Science 2007, 316 (5830), 1460–1462. https://doi.org/10.1126/science.1141811.
  9. Dahl, J. E.; Liu, S. G.; Carlson, R. M. K. Isolation and Structure of Higher Diamondoids, Nanometer-Sized Diamond Molecules. Science 2003, 299 (5603), 96–99. https://doi.org/10.1126/science.1078239.
  10. Dahl, J. E. P.; Moldowan, J. M.; Peakman, T. M.; Clardy, J. C.; Lobkovsky, E.; Olmstead, M. M.; May, P. W.; Davis, T. J.; Steeds, J. W.; Peters, K. E.; Pepper, A.; Ekuan, A.; Carlson, R. M. K. Isolation and Structural Proof of the Large Diamond Molecule, Cyclohexamantane (C26H30). Angew. Chem., Int. Ed. 2003, 42 (18), 2040–2044. https://doi.org/10.1002/anie.200250794.
  11. Zimmermann, T.; Richter, R.; Knecht, A.; Fokin, A. A.; Koso, T. V.; Chernish, L. V.; Gunchenko, P. A.; Schreiner, P. R.; Möller, T.; Rander, T. Explor¬ing covalently bonded diamondoid particles with valence photoelectron spectroscopy. J. Chem. Phys. 2013, 139 (8), 084310. https://doi.org/ 10.1063/1.4818994.
  12. Schreiner, P. R.; Chernish, L. V.; Gunchenko, P. A.; Tikhonchuk, E. Y.; Hausmann, H.; Serafin, M.; Schlecht, S.; Dahl, J. E. P.; Carlson, R. M. K.; Fokin, A. A. Overcoming lability of extremely long alkane carbon–carbon bonds through dispersion forces. Nature 2011, 477 (7364), 308–311. https:// doi.org/10.1038/nature10367.
  13. Fokin, A. A.; Chernish, L. V.; Gunchenko, P. A.; Tikhonchuk, E. Y.; Hausmann, H.; Serafin, M.; Dahl, J. E. P.; Carlson, R. M. K.; Schreiner, P. R. Stable Alkanes Containing Very Long Carbon–Carbon Bonds. J. Am. Chem. Soc. 2012, 134 (33), 13641–13650. https://doi.org/10.1021/ja302258q.
  14. Reinhardt, H. F. Biadamantane and Some of Its Derivatives. J. Org. Chem. 1962, 27 (9), 3258–3261. https://doi.org/10.1021/jo01056a066.
  15. Ulman, A. Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 1996, 96 (4), 1533–1554. https://doi.org/10.1021/cr9502357.
  16. Dameron, A. A.; Charles, L. F.; Weiss, P. S. Structures and Displacement of 1-Adamantanethiol Self-Assembled Monolayers on Au{111}. J. Am. Chem. Soc. 2005, 127 (24), 8697–8704. https://doi.org/10.1021/ja042621o.
  17. Kitagawa, T.; Idomoto, Y.; Matsubara, H.; Hobara, D.; Kakiuchi, T.; Okazaki, T.; Komatsu, K. Rigid Molecular Tripod with an Adamantane Frame¬work and Thiol Legs. Synthesis and Observation of an Ordered Monolayer on Au(111). J. Org. Chem. 2006, 71 (4), 1362–1369. https://doi.org/ 10.1021/jo051863j.
  18. Lopatina, Y. Y.; Vorobyova, V. I.; Fokin, A. A.; Schreiner, P. R.; Marchenko, A. A.; Zhuk, T. S. Structures and Dynamics in Thiolated Diamantane Derivative Monolayers. J. Phys. Chem. C 2019, 123 (45), 27477–27482. https://doi.org/10.1021/acs.jpcc.9b06625.
  19. Kobayashi, S.; Matsuzawa, T.; Matsuoka, S.-i.; Tajima, H.; Ishizone, T. Living Anionic Polymerizations of 4-(1-Adamantyl)styrene and 3-(4-Vinylphenyl)- 1,1‘-biadamantane. Macromolecules 2006, 39 (18), 5979–5986. https://doi.org/10.1021/ma060977+.
  20. Chernish, L. V.; Gunchenko, P. A.; Barabash, A. V.; Goreslavets, V. C.; Yurchenko, A. G.; Fokin, A. A. Selective synthesis of mono-derivatives of 1,1-diada¬mantane. J. Org. Pharm. Chem. 2008, 6, 48–51.
  21. Barabash, A. V.; Butova, E. D.; Kanyuk, I. M.; Schreiner, P. R.; Fokin, A. A. Beyond the Corey Reaction II: Dimethylenation of Sterically Congested Ketones. J. Org. Chem. 2014, 79 (21), 10669–10673. https://doi.org/10.1021/jo502021x.
  22. Fokin, A. A.; Zhuk, T. S.; Blomeyer, S.; Pérez, C.; Chernish, L. V.; Pashenko, A. E.; Antony, J.; Vishnevskiy, Y. V.; Berger, R. J. F.; Grimme, S.; Logemann, C.; Schnell, M.; Mitzel, N. W.; Schreiner, P. R. Intramolecular London Dispersion Interaction Effects on Gas-Phase and Solid-State Structures of Diamondoid Dimers. J. Am. Chem. Soc. 2017, 139 (46), 16696–16707. https://doi.org/10.1021/jacs.7b07884.
  23. Frisch, M. J. T.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Cari¬cato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams- Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision B.01, Gaussian, Inc.: Wallingford CT, 2016.
  24. Fokin, A. A.; Tkachenko, B. A.; Gunchenko, P. A.; Gusev, D. V.; Schreiner, P. R. Functionalized Nanodiamonds Part I. An Experimental Assessment of Diamantane and Computational Predictions for Higher Diamondoids. Chem. – Eur. J. 2005, 11 (23), 7091–7101. https://doi.org/10.1002/ chem.200500031.
  25. Fokin, A. A.; Shubina, T. E.; Gunchenko, P. A.; Isaev, S. D.; Yurchenko, A. G.; Schreiner, P. R. H-Coupled Electron Transfer in Alkane C−H Activations with Halogen Electrophiles. J. Am. Chem. Soc. 2002, 124 (36), 10718–10727. https://doi.org/10.1021/ja0265512.
  26. Osawa, E.; Engler, E. M.; Godleski, S. A.; Inamoto, Y.; Kent, G. J.; Kausch, M.; Schleyer, P. v. R. Application of force field calculations to organic chemistry. 10. Bridgehead reactivities of ethanoadamantane. Bromination and solvolysis of bromides. J. Org. Chem. 1980, 45 (6), 984–991. https://doi.org/ 10.1021/jo01294a014.
  27. Fokin, A. A.; Peleshanko, S. A.; Gunchenko, P. A.; Gusev, D. V.; Schreiner, P. R. Hydrocarbon Activation with Cerium (IV) Ammonium Nitrate: Free Radical versus Oxidative Pathways. Eur. J. Org. Chem. 2000, 2000 (19), 3357–3362. https://doi.org/10.1002/1099-0690(200010)2000:19<3357::AID-EJOC3357>3.0.CO;2-R.
  28. Jirgensons, A.; Kauss, V.; Kalvinsh, I.; Gold, M. R. A Practical Synthesis of tert-Alkylamines via the Ritter Reaction with Chloroacetonitrile. Synthe¬sis 2000, 2000 (12), 1709–1712. https://doi.org/10.1055/s-2000-8208.
  29. Klimochkin, Y. N.; Abramov, O. V.; Moiseev, I. K.; Vologin, M. F.; Leonova, M. V.; Bagrii. E. I. Reactivity of cage hydrocarbons in the nitroxylation reaction. Pet. Chem. 2000, 40, 415–418.
  30. Fokina, N. A.; Tkachenko, B. A.; Merz, A.; Serafin, M.; Dahl, J. E. P.; Carlson, R. M. K.; Fokin, A. A.; Schreiner, P. R. Hydroxy Derivatives of Diamantane, Triamantane, and [121]Tetramantane: Selective Preparation of Bis-Apical Derivatives. Eur. J. Org. Chem. 2007, 2007 (28), 4738–4745. https:// doi.org/10.1002/ejoc.200700378.
  31. Pannier, N.; Maison, W. Rigid C3-Symmetric Scaffolds Based on Adamantane. Eur. J. Org. Chem. 2008, 2008 (7), 1278–1284. https://doi.org/ 10.1002/ejoc.200701003.
  32. Karlen, S. D.; Ortiz, R.; Chapman, O. L.; Garcia-Garibay, M. A. Effects of Rotational Symmetry Order on the Solid State Dynamics of Phenylene and Diamantane Rotators. J. Am. Chem. Soc. 2005, 127 (18), 6554–6555. https://doi.org/10.1021/ja042512+.
  33. Gund, T. M.; Nomura, M.; Williams, V. Z.; Schleyer, P. v. R.; Hoogzand, C. The functionalization of diamantane (congressane). Tetrahedron Lett. 1970, 11 (56), 4875–4878. https://doi.org/10.1016/S0040-4039(00)99732-6.

Downloads

Published

2020-06-18

How to Cite

(1)
Gunchenko, P. A.; Chernish, L. V.; Tikhonchuk, E. Y.; Becker, J.; Schreiner, P. R.; Fokin, A. A. Functionalizations of Diamantane Dimers. J. Org. Pharm. Chem. 2020, 18, 16-22.

Issue

Section

Original Researches