The study of fatty acids of Pimpinella anisum herb

Authors

  • U. A. Umarov National University of Pharmacy of the Ministry of Health of Ukraine, Ukraine
  • S. V. Kolisnyk National University of Pharmacy of the Ministry of Health of Ukraine, Ukraine https://orcid.org/0000-0002-4920-6064
  • O. O. Altukhov National University of Pharmacy of the Ministry of Health of Ukraine, Ukraine
  • M. Fathullaeva Tashkent Pharmaceutical Institute, Uzbekistan
  • А. А. Shabilalov Tashkent Pharmaceutical Institute, Uzbekistan
  • A. S. Gazieva Tashkent Pharmaceutical Institute, Uzbekistan

DOI:

https://doi.org/10.24959/ophcj.20.208401

Keywords:

Pimpinella anisum, fatty acids, gas chromatography-mass spectrometry

Abstract

Aim. To study the qualitative composition and the quantitative content of fatty acids in Pimpinella anisum herb.

Results and discussion. As a result of the study, 11 fatty acids were found in the herb of Pimpinella anisum. Of them, saturated fatty acids are represented by 9 compounds, while unsaturated ones by 2 compounds. Among saturated fatty acids, palmitic acid (11.20 mg/g) predominates; unsaturated α-linolenic and linoleic acids are contained in approximately equal amounts – 5.23 and 4.99 mg/g, respectively.

Experimental part. Pimpinella anisum herb grown and harvested at the flowering stage in the summer of 2019 in the Kharkiv region, Ukraine, was used for the analysis. Chromatographic separation was performed on an Agilent 6890N/5973inert gas chromato-mass spectrometric system (Agilent Technologies, USA). The capillary column was HP-5ms (30 m × 0.25 mm × 0.25 mm, Agilent Technologies, USA). Detection was performed in a SCAN mode in the m/z range of 38-400. Fatty acid methyl esters were identified using the NIST 02 mass spectrum library. The quantitative analysis was performed by adding the internal standard solution to the test samples.

Conclusions. The qualitative composition and the quantitative content of fatty acids in the herb of Pimpinella anisum have been determined by gas chromatography-mass spectrometry. The presence of 11 fatty acids has been determined. The data obtained will be useful for creating herbal products based on Pimpinella anisum.

Received: 21.07.2020
Revised: 03.10.2020
Accepted: 27.11.2020

Supporting Agency

  • The article is a fragment of complex scientific works of National University of Pharmacy on the topic «Pharmacognostic study of a medicinal plant raw materials and development of phytotherapeutic remedies based on it» (№0114U000946)

Downloads

Download data is not yet available.

References

  1. Mumtaz, F.; Zubair, M.; Khan, F.; Niaz, K. Chapter 22 – Analysis of plants lipids. In Recent Advances in Natural Products Analysis; Sanches Silva, A.; Nabavi, S. F.; Saeedi, M.; Nabavi, S. M., Eds.; Elsevier: 2020; pp 677–705. https://doi.org/10.1016/b978-0-12-816455-6.00022-6.
  2. De Carvalho, C.; Caramujo, M. The Various Roles of Fatty Acids. Molecules 2018, 23 (10), 2583. https://doi.org/10.3390/molecules23102583.
  3. Lim, G.-H.; Singhal, R.; Kachroo, A.; Kachroo, P. Fatty Acid– and Lipid-Mediated Signaling in Plant Defense. Annual Review of Phytopathology 2017, 55 (1), 505–536. https://doi.org/10.1146/annurev-phyto-080516-035406.
  4. Mozaffarian, D.; Benjamin, E. J.; Go, A. S.; Arnett, D. K.; Blaha, M. J.; Cushman, M.; Das, S. R.; Ferranti, S. d.; Després, J.-P.; Fullerton, H. J.; Howard, V. J.; Huffman, M. D.; Isasi, C. R.; Jiménez, M. C.; Judd, S. E.; Kissela, B. M.; Lichtman, J. H.; Lisabeth, L. D.; Liu, S.; Mackey, R. H.; Magid, D. J.; McGuire, D. K.; Mohler, E. R.; Moy, C. S.; Muntner, P.; Mussolino, M. E.; Nasir, K.; Neumar, R. W.; Nichol, G.; Palaniappan, L.; Pandey, D. K.; Reeves, M. J.; Rodriguez, C. J.; Rosamond, W.; Sorlie, P. D.; Stein, J.; Towfighi, A.; Turan, T. N.; Virani, S. S.; Woo, D.; Yeh, R. W.; Turner, M. B. Executive Summary: Heart Disease and Stroke Statistics – 2016 Update. A Report From the American Heart Association. Circulation 2016, 133 (4), 447–454. https://doi.org/10.1161/CIR.0000000000000366.
  5. Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annual Review of Food Science and Technology 2018, 9 (1), 345–381. https://doi.org/10.1146/annurev-food-111317-095850.
  6. Calder, P. C.; Bosco, N.; Bourdet-Sicard, R.; Capuron, L.; Delzenne, N.; Doré, J.; Franceschi, C.; Lehtinen, M. J.; Recker, T.; Salvioli, S.; Visioli, F. Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Research Reviews 2017, 40,
  7. –119. https://doi.org/10.1016/j.arr.2017.09.001.
  8. Al-Shammari, K.; Batkowska, J.; GryziDska, M. Effect of Various Concentrations of an Anise Seed Powder (Pimpinella Anisum L.) Supplement on Selected Hematological and Biochemical Parameters of Broiler Chickens. Brazilian Journal of Poultry Science 2017, 19, 41–46. https://doi.org/10.1590/1806-9061-2016-0331.
  9. Iannarelli, R.; Caprioli, G.; Sut, S.; Dall’Acqua, S.; Fiorini, D.; Vittori, S.; Maggi, F. Valorizing overlooked local crops in the era of globalization: the case of aniseed (Pimpinella anisum L.) from Castignano (central Italy). Industrial Crops and Products 2017, 104, 99–110. https://doi.org/10.1016/j.indcrop.2017.04.028.
  10. Bettaieb Rebey, I.; Bourgou, S.; Aidi Wannes, W.; Hamrouni Selami, I.; Saidani Tounsi, M.; Marzouk, B.; Fauconnier, M. L.; Ksouri, R. Comparative assessment of phytochemical profiles and antioxidant properties of Tunisian and Egyptian anise (Pimpinella anisum L.) seeds. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology 2018, 152 (5), 971–978. https://doi.org/10.1080/11263504.2017.1403394.
  11. Alotaibi, M. F. Pimpinella anisum extract attenuates spontaneous and agonist-induced uterine contraction in term-pregnant rats. J. Ethnopharmacol. 2020, 254, 112730. https://doi.org/10.1016/j.jep.2020.112730.
  12. Pontes, V. C. B.; Rodrigues, D. P.; Caetano, A.; Gamberini, M. T. Preclinical investigation of the cardiovascular actions induced by aqueous extract of Pimpinella anisum L. seeds in rats. J. Ethnopharmacol. 2019, 237, 74–80. https://doi.org/10.1016/j.jep.2019.03.050.
  13. Mosavat, S. H.; Jaberi, A. R.; Sobhani, Z.; Mosaffa-Jahromi, M.; Iraji, A.; Moayedfard, A. Efficacy of Anise (Pimpinella anisum L.) oil for migraine headache: A pilot randomized placebo-controlled clinical trial. J. Ethnopharmacol. 2019, 236, 155–160. https://doi.org/10.1016/j.jep.2019.01.047.
  14. Ghlissi, Z.; Kallel, R.; Krichen, F.; Hakim, A.; Zeghal, K.; Boudawara, T.; Bougatef, A.; Sahnoun, Z. Polysaccharide from Pimpinella anisum seeds: Structural characterization, anti-inflammatory and laser burn wound healing in mice. Int. J. Biol. Macromol. 2020, 156, 1530–1538. https://doi.org/10.1016/j.ijbiomac.2019.11.201.
  15. Kolisnyk, S. V.; Umarov, U. A.; Dynnyk, K. V.; Fathullaeva, M.; Shabilalov, A. A.; Gazieva, A. S. The study of the acute toxicity and the laxative effect of pectins from Pimpinella anisum herb. Clinical Pharmacy 2020, 24 (2), 52–55. https://doi.org/10.24959/cphj.20.1528.

Published

2020-12-01

How to Cite

(1)
Umarov, U. A.; Kolisnyk, S. V.; Altukhov, O. O.; Fathullaeva, M.; Shabilalov А. А.; Gazieva, A. S. The Study of Fatty Acids of Pimpinella Anisum Herb. J. Org. Pharm. Chem. 2020, 18, 56-58.

Issue

Section

Original Researches