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Abstract
The literature review discusses and systematizes synthetic approaches to medium-sized cycles and macrocycles based on 
ring expansion reactions of bi- or polycyclic systems via C-N bond cleavage. Ring expansion reactions of bicyclic ammonium 
salts proceed via thermal decomposition or the action of strong bases. Bi- or polycyclic systems containing a common amine 
group can be reduced with strong reducing reagents, e.g. lithium aluminum hydride. Ammonium derivatives are much more 
prone to nucleophilic attack and quite often are used as starting materials for the synthesis of medium-sized cycles. Bicyclic 
systems containing a common aminal or amidine group are used for the synthesis of medium-sized rings and macrocycles via 
cleavage of the endocyclic C-N bond. Various methods of their activation and reduction are discussed in the review.
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Реакції розширення циклу, які супроводжуються розривом C-N зв’язку, в синтезі циклів 
середнього розміру та макроциклів
Анотація
В огляді літератури описано та систематизовано синтетичні підходи до одержання циклів середнього розміру та ма-
кроциклів, які засновані на реакціях розширення циклу бі- або поліциклічних систем, що супроводжуються розривом 
C-N зв’язку. Реакції розширення циклу біциклічних солей амонію протікають шляхом їх термічного розкладання або 
дії на них сильних основ. Бі- або поліциклічні системи, що містять спільну аміногрупу, можна відновити сильними 
реагентами, як-от літій алюмогідрид. Похідні амонію значно більш схильні до нуклеофільної атаки, і їх досить часто 
використовують як вихідні матеріали для синтезу циклів середнього розміру. Біциклічні системи, що містять спільну 
групу аміналю або амідину, використовують для синтезу циклів середнього розміру та макроциклів шляхом розриву 
ендоциклічного зв’язку C-N. В огляді наведено різні способи їх активації та методи розщеплення.
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■ Introduction

Cyclic systems containing medium rings 
(i.e., 8 – 12 membered cycles) are important 
structural components of various natural mole- 
cules, as well as biologically active compounds. 
However, despite their presence in many impor- 
tant natural products, medium-sized rings are  
underrepresented in marketed drugs and drug 
development programs, mainly due to a lack of 
synthetic methods. While synthetic approaches 
to 5-, 6-, and 7-membered rings are typically ba- 
sed on cyclization and cycloaddition reactions, 
these strategies are often ineffective for medium- 
sized rings due to negative entropic factors and  
transannular interactions. The kinetic and ther- 
modynamic barriers associated with their synthe- 
sis are generally higher than for rings of other 
sizes, that is, they are large enough for the cy-
clization of a linear precursor to occur with sig-
nificant loss of entropy, yet still small enough to 
experience destabilizing transannular interac-
tions and strain [1]. Therefore, relatively fewer 
methods based on conventional cyclization or cyc- 
loaddition reactions are used to prepare medium- 
sized rings from acyclic precursors. Nevertheless,  
some elegant cycloaddition and annulation ap-
proaches have proven to be useful for the synthe- 
sis of these structures, particularly metal-cataly- 
zed intramolecular cyclization [2 – 5], metathesis 
reactions [6], and click chemistry [7]. However, 
a more effective strategy is the ring expansion 
method, which allows for avoiding negative ef-
fects associated with the cyclization of medium-
sized and macrocycle derivatives [8]. The sim-
plest class of ring expansion reactions is based 

on the cleavage of an endocyclic bond in a fused 
bi- or polycyclic system. There are two mechani- 
stically related approaches underlying this stra- 
tegy for constructing medium-sized cycles and mac- 
rocycles. One of them is the successive ring expan-
sion methodology (SuRE-approach), which has  
been widely used in the synthesis of medium- and  
macrocyclic lactams, lactones, and ketones [9] in 
the 1970s (Scheme 1). This approach is based on 
the sequential introduction of linear fragments  
into existing cyclic systems 1, forming a condensed 
bicyclic system 3 in situ. Further fragmentation 
leads to the ring expansion affording monocyclic 
compounds with larger ring sizes 4.

Another approach mechanistically linked to  
the SuRE-method involves cleavage of an endo- 
cyclic bond in condensed bi- or polycyclic systems 3  
previously synthesized (Scheme 1). This approach  
is more efficient for generating medium-sized 
cycles and macrocycles, but it requires the start-
ing substrates, which synthesis is not always a 
trivial task.

Since synthetic methods based on the SuRE-
approach have been extensively analyzed in re-
cently published reviews [8, 10], this literature 
review discusses and systematizes approaches 
to the synthesis of derivatives of medium-sized 
cycles and macrocycles based on ring expansion 
reactions of bi- or polycyclic systems with the 
C-N bond cleavage.

■ C-N bond cleavage in bicyclic amines

In the synthesis of medium-sized cycles and 
macrocycles, reactions involving the cleavage of 
C-N bonds are frequently used. This approach 
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Scheme 1. The strategy for constructing medium-sized cycles and macrocycles



ISSN 2308-8303 (Print) / 2518-1548 (Online) 28

Журнал органічної та фармацевтичної хімії 2024, 22 (2)

requires the prior activation of starting mate-
rials 5 via the acylation or nitrogen atom qua-
ternization. The subsequent fragmentation of 
activated substrates and the formation of mono-
cyclic compounds 6 can occur via the reductive 
cleavage or the action of nucleophilic reagents 
(Scheme 2).

The historically first example of the C-N 
cleavage in the synthesis of a medium-sized cy-
cle is the work by Clemo in 1932 where ammo-
nium salt 7 was used to prepare a 10-membered 
derivative 8 via the Hofmann elimination in the 
presence of Ag2O (Scheme 3) [11]. However, the 
cleavage of the C-N bond occurs non-selectively, 
with piperidine derivative 9 being a side pro- 
duct [12].

The presence of a benzyl substituent adjacent 
to the carbon atom makes the elimination pro-
cess more straightforward (Scheme 4) [13].

This approach has been more extensively 
studied using indolizidine derivatives [14, 15] 
(Scheme 5). It involves the oxidation of com-
pounds 12 with mercuric acetate and the subse- 
quent introduction of a substituent at the carbon  
atom by the reaction of iminium salts 13 with or-
ganometallic reagents (2-pycolyl lithium, Grig-
nard reagents, and Reformatsky-type enolate).  
The subsequent alkylation of indolizidines 14 with  
methyl iodide and treatment of the resulting am- 
monium salts 15 with bases, such as sodium eth-
oxide, sodium amide, or n-butyl lithium, leads to  
the ring expansion product – 1-azacyclononane 17.  

The authors assumed that the C-N bond cleavage 
occurred via the β-elimination with the forma-
tion of carbanion 16 as an intermediate. In the  
presence of a carboxyl group (R2 = CO2Et), the for- 
mation of regioisomer 18 is observed, resulting 
from the isomerization of compound 17 into the 
thermodynamically more stable endocyclic olefin.

The authors [15] emphasize that the cleavage  
of the C-N bond can also occur via the β-elimi- 
nation induced by the thermal decarboxylation 
of betaine 19 (Scheme 6). According to this mo- 
dification, derivative 20 with an exocyclic dou-
ble bond was formed, which could not be ob-
tained by the treatment of salts 15 with sodium 
ethylate.
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Scheme 2. The C-N bond cleavage in bicyclic amines
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Thus, ring expansion reactions in bicyclic am- 
monium salts 15 to form unsaturated derivati- 
ves can occur via the thermal decomposition or 
the action of strong bases.

It is worth mentioning a series of studies de- 
voted to the synthesis of nitrogen-containing he- 
terocycles with medium-sized ring 22 via the  
cleavage of C-N bonds in quarternary salts of indo- 
lizidine and quinolizidine 21 (Scheme 7) [14 – 18].  
It was demonstrated that the endocyclic C-N bond  
could be easily cleaved under reductive conditions  
(methods A – C) and upon the action of a nucleo-
philic Grignard reagent (method D).

An original approach to the synthesis of 9-in-
dolizidines suitable for their further transforma- 
tion into 1-azacyclononanes via the cleavage of 
the C-N bond was demonstrated [16]. Nitrile 23 
was used as the starting compound, wherein the 
CN-group can be easily substituted with a vinyl  
or acetylenyl residue upon treatment with the 

corresponding Grignard reagents, forming indo- 
lizidines 24 and 25 (with the yields of 94 % and  
96 %, respectively) (Scheme 8). The reaction of  
N-alkylated derivative 25 with lithium aluminum  
hydride leads to the formation of a mixture of 
regioisomers 26 and 27 in ratios depending on 
the solvent and concentration of the reactants. 
Meanwhile, the reaction product of the acetyle- 
ne derivative 24 with lithium aluminum hydride  
in THF or ether is allene 28 with the yield of 96 %.

A similar approach based on the activation 
of bicyclic systems with a nitrogen atom via the 
N-alkylation has also been successfully applied 
to derivatives of benzoindolizidines and benzo- 
quinolizidines 29 (Scheme 9) [19 – 21]. The qua-
ternary ammonium salts 30 underwent reduc-
tive cleavage with metallic lithium in liquid am-
monia (Emde-Birch reaction). In this case, the 
yield of 10-membered cyclic derivatives 31 (n = 1)  
was nearly quantitative due to the selective 
cleavage of the C-N bond [20, 21]. At the same  
time, the formation of 9-membered derivatives 31  
(n = 0) occurred selectively only in the presence of an 
activating phenyl substituent (R3 = Ph, X = bond).  
This result is explained [19] by forming a more 
stable benzhydryl carbanion under the Emde-
Birch reaction conditions.

Another example of the successful implemen-
tation of the above-mentioned approach is the  
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Scheme 6. The thermal decarboxylation of betaine 19
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synthesis of 9- and 10-membered derivatives of  
pyrrole 34 [22]. The treatment of salts 33 with 
metallic sodium in liquid ammonia leads to the  
cleavage of the endocyclic C-N bond affording the  
target medium-sized heterocycles 34 (Scheme 10).

The application of the Emde-Birch reaction  
for the synthesis of bicyclic structures with me-
dium-sized rings is also known (Scheme 11).  
1-Azabicyclo[4.4.4]tetradec-5-ene 36 was obtained  
by cleaving the endocyclic C-N bond in 35 with 
sodium in liquid ammonia in the presence of tert- 
butanol in the yield of 58 % [23]. Another example 
is the synthesis of manxine (1-azabicyclo[3.3.3]
undecane) 38 by cleaving azapropellane 37 [24].

In the above-mentioned examples the activa- 
tion of endocyclic C-N bonds in bicyclic com-
pounds was achieved via the quaternization of 
the nitrogen atom, and the resulting quaternary 
ammonium salts were used as starting materials 
in the ring expansion reactions. However, there 
are other methods for cleaving the C-N bond 
where a sequential action of an electrophile (on 
the nitrogen atom) and a nucleophile (on the car-
bon atom) occurs (Scheme 12) [25 – 43]. This ap-
proach is illustrated by a ring expansion of well-
known derivatives of tetrahydro-β-carboline 39. 
The cleavage of the endocyclic C-N bond is often 
a key step in the synthesis of various alkaloids 
featuring an indole fragment. It is worth noting 
that in all cases the derivatives of tetrahydro-β-
carboline 39 are initially treated with alkylating  

(RX, BrCN) or acylating (RCO2Cl, (RСO)2O) re- 
agents to increase the electrophilicity of the start-
ing compounds.

Electrophiles and nucleophiles that could be 
used for this synthetic approach are presented 
in Table 1. The main feature of this method is 
the use of a wide range of reagents. It allows for  
synthesizing functionalized derivatives of medium- 
sized rings 40, which can be used as building 
blocks for constructing biologically active com-
pounds. 

The ability of the C-N bond in derivatives of 
tetrahydro-β-carboline 39 for cleavage can be ex- 
plained by an additional stabilization provided 
by the indole fragment 43 formed in the first step  
of quaternary salt 42 (Scheme 13) [33]. It is known  
that the C-N bond cleavage in bi- and polycyclic  
compounds induced by cyanogen bromide is a well- 
known approach for the synthesis of medium-
sized cycles and macrocycles and is a modifica-
tion of the von Braun reaction.
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Table 1. The type of electrophile and nucleophile in the ring 
expansion of tetrahydro-β-carboline derivatives

No. Electrophile, Е Nucleophile, Nu Reference
1 RCO2Cl H- [25 – 27]
2 RCO2Cl ROH, RNH2 [28 – 32]
3 BrCN ROH, H2O [33 – 36]
4 (RСO)2O RCOO- [37, 38]
5 RX Li or Na, NH3 [39 – 41]
6 RX CN- [134, 135]
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Another example is a ring expansion reaction  
under the action of ethyl chloroformate/lithium 
aluminum hydride (Scheme 14) [17]. The reac- 
tion produces a mixture of N-methylamines 47 – 48  
in the ratio of 40:60. The formation of diene 48 
is explained by the elimination of hydrogen from 
an intermediate carbamate or quaternary salt. 
The authors did not determine the exact posi-
tion of the endocyclic double bond.

The cleavage of C-N bonds in heterocyclic salts  
is possible not only under conditions of the reduc- 
tive cleavage, but also under the action of nucleo- 
philic reagents. Bremner and Winzenberg disco- 
vered a photosolvolysis reaction of benzoindoli- 
zidines and benzoquinolizidines, as well as their 
oxo-analogs (Scheme 15) [44 – 46]. They demon- 
strated that the synthesis of 9- and 10-membered 
heterocyclic systems 50 could be achieved by the  
ultraviolet irradiation of alcohol or water solu- 
tions of salts 49. It is worth noting that the course 
of the reaction and the yield critically depends 
on the structure of the starting material.

For example, the irradiation of quaternary 
salt 51 leads to the formation of the cleavage pro- 
duct with a much better yield (49 %) compared to 
salt 52 (2 %). It is noteworthy that the starting 
salt 52 was recovered unchanged after the reac-
tion (82 %). The authors suggest that the reason 
for such different reactivity of quaternary salts 
51-52 under conditions of the photosolvolysis 
reaction is the stability of intermediate carboca- 
tions 53 – 54 (Figure 1). In the case of cation 54, 

there is a more effective overlap between the va-
cant p-orbital of the carbon atom and the lone 
pair of the nitrogen atom compared to carboca-
tion 53, which likely results in the formation of 
the starting salt in the reaction mixture.

■ The C-N bond cleavage in bicyclic  
    amidines and aminals

One method for synthesizing medium-sized 
cycles and macrocycles is the cleavage of bicyclic 
systems containing a common aminal or amidi- 
ne moiety 55 (Scheme 16). This type of reaction 
can serve as a convenient method for obtaining 
medium-sized cycles with one or more hetero- 
atoms in ring 56. The cleavage of the C-N bond 
can occur under the action of nucleophiles. It is 
known that aminals are unstable in the absence 
of an electron-withdrawing substituent in the 
α-position and easily undergo hydrolysis in the 
presence of acid. Another approach to the break-
ing of the C-N bond is the reductive cleavage.  
It is worth noting that in the case of amidines, 
the reaction proceeds via the formation of inter-
mediate aminal derivatives.

Aminals, which have two nitrogen atoms con-
nected by a sp3-hybridized carbon, are primarily 
used for synthesizing medium-sized and macro-
cyclic heterocycles. For example, the treatment 
of derivative 58 with hydrochloric acid in diox-
ane leads to the formation of the N-unsubstitut-
ed derivative of 1,5-diazocine 59 (Scheme 17). 
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Meanwhile, the hydrogenation of compound 58 
using the Adams catalyst allows for obtaining 
N-methylated derivative 57 (Scheme 17) [47].

Another example is the cleavage of polynu-
clear aminals with a common sp3-carbon atom. 
The sequential treatment with an alkylating agent 
and an aqueous acid solution of tricyclic ortho- 
amide 60 leads to the formation of 1,4,7-triazona- 
ne 62 with the yield of 79 % (Scheme 18) [48 – 51].

A bicyclic quaternary salts of amidines can 
also form medium-sized rings when reacted with 
other nucleophiles. For example, an approach to 

the nitrile derivative 1,4,7-triazacyclononane 65 
by the nucleophilic cleavage of the benzylated 
quaternary salt of octahydroimidazolo[1,2-a]- 
pyrazine 64 with sodium cyanide was developed 
(Scheme 19) [52].

Another example involves the cleavage of 1,2- 
polymethylene imidazolium salts 66 with potas-
sium cyanide leading to functionalized diazoci- 
nes 67 and diazocanes 68 (Scheme 20) [53].

It has been shown that the hydrolytic cleav-
age of bicyclic amidines 69 can occur via two 
pathways involving the concurrent cleavage of 
two C-N bonds and critically depends on the size 
of the saturated cycle (Scheme 21) [54]. For in-
stance, alkaline hydrolysis of derivative 69 (n = 2)  
leads to the formation of 11-membered azalac- 
tam 71 by cleaving the endocyclic C-N bond. 
Conversely, reducing the size of the saturated 
cycle (n = 1) results in derivatives 70.

Recently, it has been discovered that the hy-
drolysis of DBU (72) leads to the formation of  
caprolactam derivative 73 (Scheme 22). However,  
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a small amount of 11-membered azalactam 74 
was also found in the reaction mixture; it was 
confirmed by 1H NMR [55].

It is worth noting that in the hydrolysis of 
DBU, the yield of medium ring 76 is significant-
ly higher (60 %) in the presence of an alkylating 
agent due to the formation of an intermediate 
quaternary salt (Scheme 23). However, the for-
mation of caprolactam derivative 75 is also ob-
served [56].

Much more examples of the reductive cleav-
age of amidines are known in the literature com- 
pared to aminals since the synthesis of the lat-
ter is often more difficult. Moreover, amidines 

are frequently used as starting materials for ob- 
taining aminals. It is important to note that, un-
like the hydrolysis of bicyclic amidines, the re-
ductive cleavage of these compounds (and there-
fore, the formation of medium-sized cycles) is an 
irreversible process, and the selectivity of the reac-
tion is not strongly dependent on the size of the 
saturated cycle. The reductive cleavage of ami- 
nals and amidines is closely interconnected since  
this process for amidines occurs via the forma-
tion of an intermediate of bi- or polycyclic struc-
ture with an aminal fragment.

Yamamoto and colleagues demonstrated the 
possibility of applying the reductive cleavage  
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reaction of bicyclic derivatives of aminals and ami- 
dines 77 using DIBAL-H and proposed a mecha-
nism for this reaction (Scheme 24) [57].

It has been shown that the DIBAL-H induced 
cleavage is an effective synthetic approach not only 
for the synthesis of medium-sized but also mac-
rocyclic compounds 78 in high yields (Table 2).

Other examples of the reductive cleavage of 
bicyclic aminals are provided, for instance, in the 
works [58 – 62].

However, for 1,2-fused benzimidazoles, the 
reaction outcome largely depends on the size of 
the saturated ring (Scheme 25). Thus, for 7- and 
8-membered derivatives 79 (n = 3, 4), the main 
product of the reaction is diazacycloalkanes 83, 
whereas the reduction of 6- and 5-membered de- 
rivatives 79 (n = 1, 2) yields approximately the  
equimolar mixture of 83 and 84 due to the com-
petitive cleavage of C-N or C=N bonds in inter-
mediate 80. The result obtained could be explained 
by steric hindrance in the formation of N,N′-bis-
amides 81 (path 1) in the case of n = 1, 2 [63].

The method developed by Yamamoto is high-
ly effective in the synthesis of medium-sized and 
macrocyclic derivatives of diazaheterocycles. 
However, the use of a strong reducing agent like 
DIBAL-H imposes certain limitations on the 
starting compounds with functional groups and 
technical difficulties in carrying out the reaction. 
The activation of aminals or amidines via the 
formation of quaternary salts allows the use of 
less hazardous reducing agents, such as lithium 
aluminum hydride (LiAlH4), and in many cases, 

the reductive cleavage of bicyclic compounds is 
achieved using sodium borohydride (NaBH4) in 
water or alcohols.

An example of the application of lithium alu-
minum hydride LiAlH4 is the synthesis of bicy-
clic diamines with a medium-ring fragment by 
reducing derivatives 85 (Scheme 26) [64 – 66]. 
It has been shown that the reduction of salts 85  
with LiAlH4 in DME at room temperature leads  
to the formation of bicyclic [5.4.2], [5.5.2], [5.4.3],  
and [5.5.3] diamines 86 in high yields. It is worth  
noting that the authors have successfully applied 
this strategy for the synthesis of derivatives of 
7 – 12-membered rings.

Another example of the LiAlH4 application 
is the approach to synthesizing analogs of azac-
rown ethers by cleaving tricyclic ortho-amides, 
which was first proposed by Weisman and co-
workers (Scheme 27) [67 – 82]. The reduction of 
tricyclic guanidine salts 87 (n = 1, 2) with LiAlH4  
in THF leads to the formation of ortho-amides 88  
with the yield of 75 %, while derivative 87 (n = 3)  
gives a mixture of products due to the reduction 
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Scheme 24. The reductive cleavage of bicyclic aminals and amidines derivatives
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of the C=N and C-N bond, resulting in 88 and 89.  
In all cases, the acidic hydrolysis of orthoami- 
des 88 and 89 obtained allows the formation of 
monocyclic triamines 90 in nearly quantitative 
yields [68].

As mentioned above, the C-N bond can also  
be cleaved with NaBH4. This method has been  
successfully used for the development of synthetic  
methods for cyclam derivatives 93 (Scheme 28)  
[83 – 87]. It has been demonstrated that the treat- 
ment of salts 92 with sodium borohydride NaBH4  
in 95 % ethanol at room temperature for 3 to 16 days  
leads to the formation of derivatives 93 [84].  
Attempts to optimize reaction conditions (increas-
ing temperature, varying solvent volume) resul- 
ted in the formation of a large amount of side 

products. Additionally, attempting to reduce the 
quaternary salt 92 with LiAlH4 in diethyl ether 
also leads to a mixture of unidentified com-
pounds. It is worth emphasizing that the inac-
tivated compounds 91 do not react with NaBH4 
or LiAlH4 and are isolated unchanged after the 
reaction. These compounds can only be reduced 
using the Yamamoto method [57].

Two more examples of the facile reduction of 
quaternary salts 64 and 66 with NaBH4 include 
the synthesis of medium-sized ring derivatives 94  
and 96 (Schemes 29, 30) [52, 53].

The presence of electron-withdrawing substi- 
tuents near one of the nitrogen atoms (typically  
a carbonyl group) in bicyclic amidines or aminals  
is itself an activating factor that significantly  
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Scheme 26. The application of LiAlH4 is the synthesis of bicyclic diamines
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facilitates the progress of reductive cleavage reac- 
tions. As an example, the cleavage of the inter- 
nal C-N bond in an isoindole derivative 97 with-
out prior activation leads to the formation of an 
8-membered derivative 98 (Scheme 31) [88, 89].

It has also been demonstrated that the cleav-
age of the C-N bond can occur in derivatives of 
1,2-fused pyrimidones. The reaction of the reduc- 
tive cleavage of the amidine bond has been suc-
cessfully applied in the synthesis of a wide range 
of spermine and spermidine alkaloids [90 – 96]. 
As an example, the final stage of the synthesis  
of (±)-dihydroperiphylline 100 is the treatment 
of annulated pyrimidone 99 with 3 equivalents of 
sodium cyanoborohydride in acetic acid yielding 
the thirteen-membered heterocycle 100 in the  
yield 93 % (Scheme 32).

The striking difference in the progress of a si- 
milar reductive cleavage for the derivative of pyr- 
rolo[1,2-a]pyrimidine 101 should be noted. Under  

similar conditions, the yield of the expected 9-mem- 
bered azalactam 102 was only 31 % (Scheme 33) 
[94]. As side products, bicyclic aminals 103 and 
104 were formed in the yields of 18 % and 25 %, 
respectively. It is worth mentioning that this is 
the only attempt in synthesizing medium-sized 
cycles by this method [94].

However, a more detailed study of the reductive 
cleavage reaction of derivatives of 1,2-fused pyri-
midines is presented in the work [97]. The authors  
demonstrated that the cleavage of the derivative  
of pyrrolo[1,2-a]pyrimidine 105 (X = bond) and 
the formation of a 9-membered 107 (X = bond) 
azalactam was possible only in the presence of  
a bulky substituent in position C2 of the heterocy-
clic system (Scheme 34). At the same time, the 
use of piperidine, morpholine, and azepane de-
rivatives led to the formation of 10- and 11-mem-
bered azalactams 107 (X = CH2, (CH2)2, O) in the  
yields of 53 – 92 %.
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Scheme 31. The reductive cleavage of an isoindole derivative 97
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At the same time, the use of derivatives of 
2,3-fused dihydrothiadiazines 108 in the ring ex- 
pansion reaction leads to the formation of aza-
sultam derivatives 109 in the yields of 63 – 91 % 
[98]. It is worth noting that this reaction depends  
little on the size or nature of the ring annulated 
to the 1,2,3-thiadiazine core (Scheme 35).

■ Conclusion

There are various approaches to medium-sized  
cycles and macrocycles based on reductive cleavage  

reaction. Two types of bicyclic or polycyclic sys-
tems are used as starting materials – deriva-
tives that contain amine or ammonium common 
fragments and aminal or amidine common frag-
ments. The reductive cleavage proceeds with the  
splitting of the endocyclic C-N bond. Various re-
ducing agents are used for the reaction. A com-
mon approach to facilitate the reaction is the qua- 
ternization of nitrogen or the introduction of ac-
tivating groups. Despite the availability of nu-
merous methods, further efforts are required to 
develop more reliable procedures. 
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