A novel luminol-based chemiluminescence method for detecting acetylcholine





Acetylcholine, chemiluminescence method


Aim. To develop а new simple non-enzymatic method for the determination of acetylcholine (ACh) by the chemiluminescent reaction of luminol under conditions of the enzymatic hydrolysis of acetylcholine (pH 8.5).
Experimental part. The method proposed is based on the perhydrolysis reaction of ACh by the excess of
hydrogen peroxide with the formation of peracetic acid. The latter was further determined by the activation effect of the luminol chemiluminescent oxidation reaction in the presence of hydrogen peroxide. The analytical signal was the summary luminescence (Σ) registered within certain time.
Results and discussion. The pH range of the analytically applicable system was from 8.2 to 8.5. The effect of ACh + H2O2 incubation period on the reaction progress was also studied. The increase of the incubation period enhanced the sensitivity of the method (the limit of detection (LOD)), but because of practical reasons (especially the detection speed) and practical experience the incubation period was set to 30 min. The linear dependence was observed in the acetylcholine chloride concentration range of (0.8 – 2.8) × 10-4 mol/L. While determining acetylcholine chloride in the concentration range of (1.1 – 2.2) × 10-4 mol/L the relative standard deviation (RSD) did not
exceed 3 % ((X – μ) × 100 %/μ = –0.5…+0.5 %). The Limit of Quantitation (LOQ, 10S) was 7.7 × 10-5 mol/L.
Conclusions. A new non-enzymatic kinetic method for the chemiluminescent determination of ACh in aqueous solutions and the pharmaceutical formulation Acetylcholinchlorid Injeel® has been proposed. This method is simple, fast, inexpensive, and thus appropriate for the routine ACh quality control in the laboratories of hospitals, pharmaceutical industries and research institutions.
Key words: acetylcholine; chemiluminescence method


Picciotto, M. R.; Higley, M. J.; Mineur, Yann S. Acetylcholine as a Neuromodulator: Cholinergic Signaling Shapes Nervous System Function and Behavior. Neuron 2012, 76 (1), 116 – 129. https://doi.org/10.1016/j.neuron.2012.08.036.

Berridge, M. J. Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia. Prion 2013, 7 (1), 2 – 13. https://doi.org/10.4161/pri.21767.

VIDAL. Справочник лекарственных средств. Acetylcholine chloride. https://www.vidal.ru/drugs/molecule/1181 (accessed Dec 17, 2020).

European Pharmacopoeia, 9th Ed.; Euroрean Department for the Quality of Medicines: Strasbourg, 2016.

The United States pharmacopeia USP35, the national formulary NF30; United States Pharmacopeial Convention, Inc.: Rockville, MD, 2012.

Hestrin, S. The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine, and its analytical application. J. Biol. Chem. 1949, 180 (1), 249 – 261. https://doi.org/10.1016/S0021-9258(18)56740-5.

Uutela, P.; Reinilä, R.; Piepponen, P.; Ketola, R. A.; Kostiainen, R. Analysis of acetylcholine and choline in microdialysis samples by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19 (20), 2950 – 2956. https://doi.org/10.1002/rcm.2160.

Lin, S.; Liu, C.-C.; Chou, T.-C. Amperometric acetylcholine sensor catalyzed by nickel anode electrode. Biosens. Bioelectron. 2004, 20 (1), 9 – 14. https://doi.org/10.1016/j.bios.2004.01.018.

Alfonta, L.; Katz, E.; Willner, I. Sensing of Acetylcholine by a Tricomponent-Enzyme Layered Electrode Using Faradaic Impedance Spectroscopy, Cyclic Voltammetry, and Microgravimetric Quartz Crystal Microbalance Transduction Methods. Anal. Chem. 2000, 72 (5), 927 – 935. https://doi.org/10.1021/ac990439d.

Kharitonov, A. B.; Zayats, M.; Lichtenstein, A.; Katz, E.; Willner, I. Enzyme monolayer-functionalized field-effect transistors for biosensor applications. Sensors and Actuators B: Chemical 2000, 70 (1), 222 – 231. https://doi.org/10.1016/S0925-4005(00)00573-6.

Chen, Z.; Ren, X.; Meng, X.; Chen, D.; Yan, C.; Ren, J.; Yuan, Y.; Tang, F. Optical detection of choline and acetylcholine based on H2O2-sensitive quantum dots. Biosens. Bioelectron. 2011, 28 (1), 50 – 55. https://doi.org/10.1016/j.bios.2011.06.041.

Ternaux, J.-P.; Chamoin, M.-C. Enhanced chemiluminescent assays for acetylcholine. J. Biolumin. Chemilumin. 1994, 9 (2), 65 – 72. https://doi.org/10.1002/bio.1170090205.

Fan, W.; Zhang, Z. Determination of Acetylcholine and Choline in Rat Brain Tissue by FIA with Immobilized Enzymes and Chemiluminescence Detection. Microchem. J. 1996, 53 (3), 290 – 295. https://doi.org/10.1006/mchj.1996.0043.

Şen, S.; Gülce, A.; Gülce, H. Polyvinylferrocenium modified Pt electrode for the design of amperometric choline and acetylcholine enzyme electrodes. Biosens. Bioelectron. 2004, 19 (10), 1261 – 1268. https://doi.org/10.1016/j.bios.2003.11.011.

Guerrieri, A.; Lattanzio, V.; Palmisano, F.; Zambonin, P. G. Electrosynthesized poly(pyrrole)/poly(2-naphthol) bilayer membrane as an effective anti-interference layer for simultaneous determination of acethylcholine and choline by a dual electrode amperometric biosensor. Biosens. Bioelectron. 2006, 21 (9), 1710 – 1718. https://doi.org/10.1016/j.bios.2005.08.005.

Carballo, R.; Dall’Orto, V. C.; Rezzano, I. Poly[Ni(II)Protoporphyrin IX] Modified Electrode for Amperometric Detection of Acetylcholine (Ach) and Choline (Ch). Anal. Lett. 2007, 40 (10), 1962 – 1971. https://doi.org/10.1080/00032710701484343.

Keski-Rahkonen, P.; Lehtonen, M.; Ihalainen, J.; Sarajärvi, T.; Auriola, S. Quantitative determination of acetylcholine in microdialysis samples using liquid chromatography/atmospheric pressure spray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21 (18), 2933 – 2943. https://doi.org/10.1002/rcm.3162.

Prokai, L.; Fryčák, P.; Stevens, S. M.; Nguyen, V. Measurement of Acetylcholine in Rat Brain Microdialysates by LC–Isotope Dilution Tandem MS. Chromatographia 2008, 68 (1), 101 – 105. https://doi.org/10.1365/s10337-008-0697-0.

Zhang, M.-Y.; Hughes, Z. A.; Kerns, E. H.; Lin, Q.; Beyer, C. E. Development of a liquid chromatography/tandem mass spectrometry method for the quantitation of acetylcholine and related neurotransmitters in brain microdialysis samples. J. Pharm. Biomed. Anal. 2007, 44 (2), 586 – 593. https://doi.org/10.1016/j.jpba.2007.02.024.

Schebb, N. H.; Fischer, D.; Hein, E.-M.; Hayen, H.; Krieglstein, J.; Klumpp, S.; Karst, U. Fast sample preparation and liquid chromatography–tandem mass spectrometry method for assaying cell lysate acetylcholine. J. Chromatogr. A 2008, 1183 (1), 100 – 107. https://doi.org/10.1016/j.chroma.2008.01.033.

Kunec-Vajić, E.; Weber, K. Acetylcholine as an activator of oxidation reactions. Experientia 1967, 23 (6), 432 – 433. https://doi.org/10.1007/BF02142159.

Kunec-Vajić, E. The activating action of acetylcholine and pilocarpine on the oxidation of luminol. Experientia 1973, 29 (8), 1010 – 1012. https://doi.org/10.1007/BF01930434.

Morel, N.; Israel, M. Applications to the Study of Acetylcholine Release of the Choline Oxidase Acetylcholine Assay. In Neurocytochemical Methods, Calas, A.; Eugène, D., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 1991; pp 169 – 182.