The study of polyphenolic compounds of Pimpinella anisum herb and determination of their antioxidant activity




polyphenolic compounds; anise; herb; high performance liquid chromatography; antioxidant activity


Aim. To study the qualitative composition and quantitative content of the polyphenolic compounds in Pimpinella anisum herb and determine their antioxidant activity.
Results and discussion. Among the polyphenolic compounds contained in anise herb, chlorogenic acid
(4.409 mg/g) predominates. Signifcant amounts of catechins (3.104 mg/g), apigenin derivatives (3.077 mg/g) and luteolin (1.864 mg/g) also accumulate in the herb. Minor amounts of myricetin (0.105 mg/g) and naringenin (0.019 mg/g) derivatives, rutin (0.189 mg/g), quercetin (0.028 mg/g), apigenin (0.009 mg/g) and hesperetin (0.002 mg/g) are present. According to the research results, the antioxidant activity of polyphenolic compounds of anise herb with reference to ascorbic acid was found to be 67.76 ± 0.05 mmol/g. Rutin exhibited the antioxidant activity at the level of 3979.59 ± 0.08 mmol/g.
Experimental part. Pimpinella anisum herb collected during the flowering stage in the summer of 2019 in
the Kharkiv region (Ukraine) was used for analysis. The analysis of 70 % ethanolic extract from anise herb was performed by high performance liquid chromatography using a Prominence LC-20 Shimadzu chromatographic system (Japan) with a SPD-20AV spectrophotometric detector, an Agilent Technologies Microsorb-MV-150 column (reversedphase, C18 modifed silica gel, length – 150 mm, diameter – 4.6 mm, particles size – 5 μm). Identifcation of substances in the extract was carried out by comparing the retention time and the spectral characteristics of the test substances with the same characteristics of the reference standards. The antioxidant activity was determined by the potentiometric method (pH meter – Hanna 2550, with redox electrode EZDO PO50) with reference to ascorbic acid.
Conclusions. The qualitative composition and quantitative content of polyphenolic compounds in the ethanolic extract of anise herb have been determined by high performance liquid chromatography. The total content of polyphenolic compounds is 17.576 mg/g. The antioxidant activity of polyphenolic compounds of anise herb with reference to ascorbic acid has been found to be 67.76 ± 0.05 mmol/g.
Key words: polyphenolic compounds; anise; herb; high performance liquid chromatography; antioxidant activity


Pimenov, M. G.; Leonov, M. V. The Genera of the Umbelliferae: A nomenclator; Royal Botanic Gardens, Kew: London, 1993.

Orav, A.; Raal, A.; Arak, E. Essential oil composition of Pimpinella anisum L. fruits from various European countries. Natural Product Research 2008, 22 (3), 227 – 232.

Iannarelli, R.; Caprioli, G.; Sut, S.; Dall’Acqua, S.; Fiorini, D.; Vittori, S.; Maggi, F. Valorizing overlooked local crops in the era of globalization: the case of aniseed (Pimpinella anisum L.) from Castignano (central Italy). Industrial Crops and Products 2017, 104, 99 – 110.

Fujimatu, E.; Ishikawa, T.; Kitajima, J. Aromatic compound glucosides, alkyl glucoside and glucide from the fruit of anise. Phytochemistry 2003, 63 (5), 609 – 616.

Bettaieb Rebey, I.; Bourgou, S.; Aidi Wannes, W.; Hamrouni Selami, I.; Saidani Tounsi, M.; Marzouk, B.; Fauconnier, M. L.; Ksouri, R. Comparative assessment of phytochemical profiles and antioxidant properties of Tunisian and Egyptian anise (Pimpinella anisum L.) seeds. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology 2018, 152 (5), 971 – 978.


Al-Saadi, S. A. A.; Al-Derawi, K. H.; Abd Al-azem, D. Variation in Essential Oil Content and Composition (Pimpinella anisum L.). Journal of Biology, Agriculture and Healthcare 2016, 6 (2), 43 – 57.

Leung, A. Y.; Foster, S. Encyclopedia of Common Natural Ingredients Used in Food, Drugs and Cosmetics, 2nd Ed.; John Wiley & Sons: New York, NY, 1996.

Bown, D. DuMont’s grosse Kräuter–Enzyklopädie; Du Mont Buchverlag: Köln, 1998.

Radaelli, M.; da Silva, B. P.; Weidlich, L.; Hoehne, L.; Flach, A.; da Costa, L. A. M. A.; Ethur, E. M. Antimicrobial activities of six essential oils commonly used as condiments in Brazil against Clostridium perfringens. Brazilian Journal of Microbiology 2016, 47 (2), 424 – 430.

Conforti, F.; Tundis, R.; Marrelli, M.; Menichini, F.; Statti, G. A.; De Cindio, B.; Menichini, F.; Houghton, P. J. Protective Effect of Pimpinella anisoides Ethanolic Extract and Its Constituents on Oxidative Damage and Its Inhibition of Nitric Oxide in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. Journal of Medicinal Food 2010, 13 (1), 137 – 141.

Pontes, V. C. B.; Rodrigues, D. P.; Caetano, A.; Gamberini, M. T. Preclinical investigation of the cardiovascular actions induced by aqueous extract of Pimpinella anisum L. seeds in rats. J. Ethnopharmacol. 2019, 237, 74 – 80.

Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J. P. E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxidants & Redox Signaling 2013, 18 (14), 1818 – 1892.

Khan, H. Y.; Hadi, S. M.; Mohammad, R. M.; Azmi, A. S. Prooxidant anticancer activity of plant-derived polyphenolic compounds: An underappreciated phenomenon. In Functional Foods in Cancer Prevention and Therapy; Kabir, Y., Ed.; Academic Press: 2020; Chapter 12, pp 221 – 236.

Piao, M. J.; Kang, K. A.; Zhen, A. X.; Fernando, P. D. S. M.; Ahn, M. J.; Koh, Y. S.; Kang, H. K.; Yi, J. M.; Choi, Y. H.; Hyun, J. W. Particulate Matter 2.5 Mediates Cutaneous Cellular Injury by Inducing Mitochondria-Associated Endoplasmic Reticulum Stress: Protective Effects of Ginsenoside Rb1. Antioxidants 2019, 8 (9), 383.

Das, L.; Vinayak, M. Long Term Effect of Curcumin in Restoration of Tumour Suppressor p53 and Phase-II Antioxidant Enzymes via Activation of Nrf2 Signalling and Modulation of Inflammation in Prevention of Cancer. PLOS ONE 2015, 10 (4), e0124000.

Zhang, J. F.; Liu, J.; Wu, J. L.; Li, W. F.; Chen, Z. W.; Yang, L. S. Progression of the role of CRYAB in signaling pathways and cancers. Onco Targets Ther. 2019, 12, 4129 – 4139.

Ho, H.-C.; Huang, C.-C.; Lu, Y.-T.; Yeh, C.-M.; Ho, Y.-T.; Yang, S.-F.; Hsin, C.-H.; Lin, C.-W. Epigallocatechin-3-gallate inhibits migration of human nasopharyngeal carcinoma cells by repressing MMP-2 expression. J. Cell. Physiol. 2019, 234 (11), 20915 – 20924.

Khodakov, I. V. The HPLC Method Of Identification Of Polyphenols In Plant Extracts By Example Of Determination Of Isoflavone Composition In Soy Seeds. Methods and objects of chemical analysis 2013, 8 (3), 132 – 142.

Semenistaya, E. N.; Larionov, O. G. Characterization of the composition and antioxidant activity of plant extracts by HPLC with UV and amperometric detection. Khimiko-Farmatsevticheskii Zhurnal 2008, 42 (9), 43 – 48.

Wang, L.-H.; Li, W.-H. General method for determining of flavonoids in medicinal plants and raw cosmetics using HPLC with a photodiode array detector. Khimiko-Farmatsevticheskii Zhurnal 2007, 41 (4), 46 – 51.

Moiseev, D. V.; Buzuk, G. N.; Sheluto, V. L. HPLC identification of flavonoids in plants. Khimiko-Farmatsevticheskii Zhurnal 2011, 45 (1), 35 – 38.

Levitsky, A. P.; Khodakov, I. V.; Raitseva, E. S. Extraction of polyphenols from grape leaves. Food science and technology 2012, 6 (3), 36 – 37.

Вертикова, Е. К.; Ходаков, И. В.; Левицкий, А. П. Метод определения хлорогеновой кислоты. Вісник стоматології 2010, 73 (5), 2 – 5.

Ходаков, И. В.; Макаренко, О. А.; Левицкий, А. П.; Сичкарь, В. И. Сортовые особенности сои украинской селекции по содержанию полифенолов в листьях. Физиология растений и генетика 2014, 46 (1), 27 – 36.