Modern chemical disinfectants and antiseptics. Part II

Authors

DOI:

https://doi.org/10.24959/ophcj.21.231998

Keywords:

antiseptics, disinfectants, microorganisms, viruses, spores, resistance

Abstract

Aim. To generalize and systematize information on the properties of modern chemical disinfectants and antiseptic agents (DA and AA) – peroxide compounds, surfactants, salts of heavy metals and metals of variable valence in the highest oxidation state, alcohols, phenols and quaternary ammonium salts.
Results and discussion. The classification of DA and AA by the chemical structure was performed. The spectrum of their activity, directions and forms of DA and AA were given. Toxicity and the impact on the environment were described.
Conclusions. The results of the study conducted allow us to state that modern DA and AA of a wide spectrum of action are peracetic acid and, to a certain extent, hydrogen peroxide. However, they are unstable in dilute solutions. Other reagents are chemically stable, but they are characterized by a weak or average action against spores and viruses. The most effective DA and AA are mixtures
(combinations) of compounds belonging to different classes. The examples of these combinations are “surfactants + biguanidine derivatives”; “quaternary ammonium salts + phenol derivatives”; “surfactants + aldehydes”; “quaternary ammonium salts + hydrogen peroxide”. These mixtures combine the advantages and compensate for the disadvantages of individual DA and AA.

Supporting Agency

  • The research was performed in accordance with the topic of the National University of Food Technologies on the topic “Chemical design and properties study of compounds of heterocyclic nature” (the state registration No. 0119U103520).

Downloads

Download data is not yet available.

References

  1. Брицун, В. М.; Сімурова, Н. В.; Попова, І. В.; Сімуров О. В. Сучасні хімічні дезінфектанти та антисептики. Частина І. Журнал органічної та фармацевтичної хімії 2021, 19 (3), 3-14. https://doi.org/10.24959/ophcj.21.231997.
  2. Harris D. C. Quantative Chemical Analysis, 7th ed.; W. H. Freeman and Company: New York, 2007.
  3. Russell, A. D. Mechanisms of antimicrobial action of antiseptics and disinfectants: an increasingly important area of investigation. J. Antimicrob. Chemother. 2002, 49 (4), 597-599. https://doi.org/10.1093/jac/49.4.597.
  4. McDonnell, G. E. Antisepsis, Disinfection, and Sterilization: Types, Action and Resistance, 2nd Ed.; ASM press: Washington, 2017.
  5. Desinfection, Sterilization, Preservation, 5th ed.; Block, S. S., Ed; Lippincott Williams & Wilkins: Philadelphia, 2001.
  6. McDonnell, G.; Russell, A. D. Antiseptics and Disinfectants: Activity, Action, and Resistance. Clinical Microbiology Reviews 1999, 12 (1), 147-180. https://doi.org/10.1128/CMR.12.1.147.
  7. Jiang, Y.; Goodwill, J. E.; Tobiason, J. E.; Reckhow, D. A. Comparison of ferrate and ozone pre-oxidation on disinfection byproduct formation from chlorination and chloramination. Water Res. 2019, 156, 110-124. https://doi.org/10.1016/j.watres.2019.02.051.
  8. Jamil, A.; Farooq, S.; Hashmi, I. Ozone Disinfection Efficiency for Indicator Microorganisms at Different pH Values and Temperatures. Ozone: Science & Engineering 2017, 39 (6), 407-416. https://doi.org/10.1080/01919512.2017.1322489.
  9. Megahed, A.; Aldridge, B.; Lowe, J. The microbial killing capacity of aqueous and gaseous ozone on different surfaces contaminated with dairy cattle manure. PLOS ONE 2018, 13 (5), e0196555. https://doi.org/10.1371/journal.pone.0196555.
  10. Lazarova, V.; Liechti, P.-A.; Savoye, P.; Hausler, R. Ozone disinfection: main parameters for process design in wastewater treatment and reuse. Journal of Water Reuse and Desalination 2013, 3 (4), 337-345. https://doi.org/10.2166/wrd.2013.007.
  11. Junior, J. G. de B.; Faroni, L. R. D’A.; Cecon, P. R.; Benevenuto, W. C. A. do N.; Júnior, A. A. B.; Heleno, F. F. Efficacy of ozone in the microbiological disinfection of maize grains. Braz. J. Food Technol. 2018, 21, e2017022. https://doi.org/10.1590/1981-6723.02217.
  12. Horvath, M.; Bilitzky, L.; Huttner, J. Ozone; Topics in inorganic and general chemistry, monograph 20; Elsevier: New York, 1985.
  13. Jing, J. L.; Thong, P. Y.; Bose R. C.; McCarthy, J. R. Hand Sanitizers: A Review on Formulation Aspects, Adverse Effects, and Regulations. Int. J. Environ. Res. Public Health 2020, 17 (9), 3326. https://doi.org/10.3390/ijerph17093326.
  14. Rutala, W. A.; Weber, D. J. Disinfectants used for environmental disinfection and new room decontamination technology. American Journal of Infection Control 2013, 41 (5), S36-S41. https://doi.org/10.1016/j.ajic.2012.11.006.
  15. Pawar, A.; Garg, S.; Mehta, S.; Dang, R., Breaking the Chain of Infection: Dental Unit Water Quality Control. Journal of Clinical and Diagnostic Research 2016 10 (7), ZC80-ZC84. https://doi.org/10.7860/JCDR/2016/19070.8196.
  16. Slaviero, L.; Avruscio, G.; Vindigni, V.; Tocco-Tussardi, I. Antiseptics for burns: a review of the evidence. Ann Burns Fire Disasters 2018, 31 (3), 198-203.
  17. Lineback, C. B.; Nkemngong, C. A.; Wu, S. T.; Li, X.; Teska, P. J.; Oliver, H. F. Hydrogen peroxide and sodium hypochlorite disinfectants are more effective against Staphylococcus aureus and Pseudomonas aeruginosa biofilms than quaternary ammonium compounds. Antimicrobial Resistance & Infection Control 2018, 7 (1), 154. https://doi.org/10.1186/s13756-018-0447-5.
  18. Soto, A. F.; Mendes, E. M.; Arthur, R. A.; Negrini, T. d. C.; Lamers, M. L.; Mengatto, C. M. Antimicrobial effect and cytotoxic activity of vinegar-hydrogen peroxide mixture: A possible alternative for denture disinfection. Journal of Prosthetic Dentistry 2019, 121 (6), 966.e1-966.e6. https://doi.org/10.1016/j.prosdent.2019.02.019.
  19. Schumb, W. C.; Satterfield, C. N.; Wentworth, R. L. Hydrogen Peroxide; American Chemical Society Monograph Series. no. 128; Reinhold publishing corporation: New-York, 1955.
  20. Song, X.; Vossebein, L.; Zille, A. Efficacy of disinfectant-impregnated wipes used for surface disinfection in hospitals: a review. Antimicrobial Resistance & Infection Control 2019, 8 (1), 139. https://doi.org/10.1186/s13756-019-0595-2.
  21. Boyce, J. M. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Antimicrobial Resistance & Infection Control 2016, 5 (1), 10. https://doi.org/10.1186/s13756-016-0111-x.
  22. Falagas, M. E.; Thomaidis, P. C.; Kotsantis, I. K.; Sgouros, K.; Samonis, G.; Karageorgopoulos, D. E. Airborne hydrogen peroxide for disinfection of the hospital environment and infection control: a systematic review. Journal of Hospital Infection 2011, 78 (3), 171-177. https://doi.org/10.1016/j.jhin.2010.12.006.
  23. Piskin, N.; Celebi, G.; Kulah, C.; Mengeloglu, Z.; Yumusak, M. Activity of a dry mist-generated hydrogen peroxide disinfection system against methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii. Am J Infect Control 2011, 39 (9), 757-762. https://doi.org/10.1016/j.ajic.2010.12.003.
  24. Totaro, M.; Casini, B.; Profeti, S.; Tuvo, B.; Privitera, G.; Baggiani, A. Role of Hydrogen Peroxide Vapor (HPV) for the Disinfection of Hospital Surfaces Contaminated by Multiresistant Bacteria. Pathogens 2020, 9 (5), 408.
  25. World Health Organization. https://www.who.int/publications/i/item/cleaning-and-disinfection-of-environmental-surfaces-inthe-context-of-covid-19 (accessed Sep 14, 2021), WHO reference number – WHO/2019-nCoV/Disinfection/2020.1.
  26. Souza, V. G. C.; Lopes, D. F.; Machado, F. C.; Fabri, R. L.; Apolônio, A. C. M. The Novel Coronavirus: An Alert for Pacifiers’ Disinfection. Pesquisa Brasileira em Odontopediatria e Clínica Integrada 2020, 20, e0071. https://doi.org/10.1590/pboci.2020.070.
  27. Doll, M.; Morgan, D. J.; Anderson, D.; Bearman, G. Touchless Technologies for Decontamination in the Hospital: a Review of Hydrogen Peroxide and UV Devices. Current Infectious Disease Reports 2015, 17 (9), 44. https://doi.org/10.1007/s11908-015-0498-1.
  28. Weber, D. J.; Rutala, W. A.; Anderson, D. J.; Chen, L. F.; Sickbert-Bennett, E. E.; Boyce, J. M. Effectiveness of ultraviolet devices and hydrogen peroxide systems for terminal room decontamination: Focus on clinical trials. Am J Infect Control 2016, 44 (5 Suppl), e77-84. https://doi.org/10.1016/j.ajic.2015.11.015.
  29. Møretrø, T.; Fanebust, H.; Fagerlund, A.; Langsrud, S. Whole room disinfection with hydrogen peroxide mist to control Listeria monocytogenes in food industry related environments. International Journal of Food Microbiology 2019, 292, 118-125. https://doi.org/10.1016/j.ijfoodmicro.2018.12.015.
  30. Casu, C. Spray of hydrogen peroxide for infection prevention and control of SARS COV 2 infection: could this be possible? Pan African Medical Journal 2020, 35 (2), 72-73. https://doi.org/10.11604/pamj.supp.2020.35.2.23284.
  31. Hathaway, H. J.; Patenall, B. L.; Thet, N. T.; Sedgwick, A. C.; Williams, G. T.; Jenkins, A. T. A.; Allinson, S. L.; Short, R. D. Delivery and quantification of hydrogen peroxide generated via cold atmospheric pressure plasma through biological material. J. Phys. D: Appl. Phys. 2019, 52 (50), 505203. https://doi.org/10.1088/1361-6463/ab4539.
  32. Cai, C.; Floyd, E. L. Effects of Sterilization with Hydrogen Peroxide and Chlorine Dioxide Solution on the Filtration Efficiency of N95, KN95, and Surgical Face Masks. JAMA Network Open 2020, 3 (6), e2012099. https://doi.org/10.1001/jamanetworkopen.2020.12099.
  33. Al-Sayah, M. H. Chemical disinfectants of COVID-19: an overview. Journal of Water and Health 2020, 18 (5), 843-848. https://doi.org/10.2166/wh.2020.108.
  34. Mathew, E. N.; Muyyarikkandy, M. S.; Bedell, C.; Amalaradjou, M. A. Efficacy of Chlorine, Chlorine Dioxide, and Peroxyacetic Acid in Reducing Salmonella Contamination in Wash Water and on Mangoes Under Simulated Mango Packinghouse Washing Operations. Frontiers in Sustainable Food Systems 2018, 2 (18). https://doi.org/10.3389/fsufs.2018.00018.
  35. Becker, B.; Brill, F. H. H.; Todt, D.; Steinmann, E.; Lenz, J.; Paulmann, D.; Bischoff, B.; Steinmann, J. Virucidal efficacy of peracetic acid for instrument disinfection. Antimicrobial Resistance & Infection Control 2017, 6 (1), 114. https://doi.org/10.1186/s13756-017-0271-3.
  36. Zoellner, C.; Aguayo-Acosta, A.; Siddiqui, M. W.; Dávila-Aviña, J. E., Chapter 2 - Peracetic Acid in Disinfection of Fruits and Vegetables. In Postharvest Disinfection of Fruits and Vegetables, Siddiqui, M. W., Ed. Academic Press: 2018; pp 53-66. https://doi.org/10.1016/B978-0-12-812698-1.00002-9.
  37. Banach, J. L.; van Bokhorst-van de Veen, H.; van Overbeek, L. S.; van der Zouwen, P. S.; Zwietering, M. H.; van der Fels-Klerx, H. J. Effectiveness of a peracetic acid solution on Escherichia coli reduction during fresh-cut lettuce processing at the laboratory and industrial scales. International Journal of Food Microbiology 2020, 321, 108537. https://doi.org/10.1016/j.ijfoodmicro.2020.108537.
  38. Shen, X.; Sheng, L.; Gao, H.; Hanrahan, I.; Suslow, Trevor V.; Zhu, M.-J. Enhanced Efficacy of Peroxyacetic Acid Against Listeria monocytogenes on Fresh Apples at Elevated Temperature. Frontiers in Microbiology 2019, 10 (1196). https://doi.org/10.3389/fmicb.2019.01196.
  39. Kitis, M. Disinfection of wastewater with peracetic acid: a review. Environment International 2004, 30 (1), 47-55. https://doi.org/10.1016/S0160-4120(03)00147-8.
  40. Beber de Souza, J.; Queiroz Valdez, F.; Jeranoski, R. F.; Vidal, C. M. d. S.; Cavallini, G. S. Water and Wastewater Disinfection with Peracetic Acid and UV Radiation and Using Advanced Oxidative Process PAA/UV. International Journal of Photoenergy 2015, 2015, 860845. https://doi.org/10.1155/2015/860845.
  41. Maehara, Y.; Miyoshi, S.-I. Antibacterial Activities of Surfactants in the Laundry Detergents and Isolation of the Surfactant Resistant Aquatic Bacteria. Biocontrol Science 2017, 22 (4), 229-232. https://doi.org/10.4265/bio.22.229.
  42. Falk, N. A. Surfactants as Antimicrobials: A Brief Overview of Microbial Interfacial Chemistry and Surfactant Antimicrobial Activity. Journal of Surfactants and Detergents 2019, 22 (5), 1119-1127. https://doi.org/10.1002/jsde.12293.
  43. Aoun, G.; Saadeh, M.; Berberi, A. Effectiveness of Hexetidine 0.1% Compared to Chlorhexidine Digluconate 0.12% in Eliminating Candida Albicans Colonizing Dentures: A Randomized Clinical In Vivo Study. J Int Oral Health 2015, 7 (8), 5-8.
  44. Afennich, F.; Slot, D. E.; Hossainian, N.; Van der Weijden, G. A. The effect of hexetidine mouthwash on the prevention of plaque and gingival inflammation: a systematic review. International journal of dental hygiene 2011, 9 (3), 182-90. https://doi.org/10.1111/j.1601-5037.2010.00478.x.
  45. Coaguila-Llerena, H.; Rodrigues, E. M.; Tanomaru-Filho, M.; Guerreiro-Tanomaru, J. M.; Faria, G. Effects of Calcium Hypochlorite and Octenidine Hydrochloride on L929 And Human Periodontal Ligament Cells. Braz. Dent. J. 2019, 30 (3), 213-219. https://doi.org/10.1590/0103-6440201902280.
  46. Koburger, T.; Hübner, N. O.; Braun, M.; Siebert, J.; Kramer, A. Standardized comparison of antiseptic efficacy of triclosan, PVP-iodine, octenidine dihydrochloride, polyhexanide and chlorhexidine digluconate. The Journal of antimicrobial chemotherapy 2010, 65 (8), 1712-1719. https://doi.org/10.1093/jac/dkq212.
  47. Nikolić, N.; Kienzl, P.; Tajpara, P.; Vierhapper, M.; Matiasek, J.; Elbe-Bürger, A. The Antiseptic Octenidine Inhibits Langerhans Cell Activation and Modulates Cytokine Expression upon Superficial Wounding with Tape Stripping. Journal of Immunology Research 2019, 2019, 5143635. https://doi.org/10.1155/2019/5143635.
  48. Melhorn, S.; Staubach, P. Octenidindihydrochlorid. Der Hautarzt 2018, 69 (5), 427-429. https://doi.org/10.1007/s00105-018-4139-0.
  49. Hübner, N. O.; Siebert, J.; Kramer, A. Octenidine Dihydrochloride, a Modern Antiseptic for Skin, Mucous Membranes and Wounds. Skin Pharmacology and Physiology 2010, 23 (5), 244-258. https://doi.org/10.1159/000314699.
  50. Assadian, O. Octenidine dihydrochloride: chemical characteristics and antimicrobial properties. Journal of wound care 2016, 25 (3 Suppl), S3-6. https://doi.org/10.12968/jowc.2016.25.Sup3.S3.
  51. Gastmeier, P.; Kämpf, K.-P.; Behnke, M.; Geffers, C.; Schwab, F. An observational study of the universal use of octenidine to decrease nosocomial bloodstream infections and MDR organisms. J. Antimicrob. Chemother. 2016, 71 (9), 2569-2576. https://doi.org/10.1093/jac/dkw170.
  52. Kethireddy, A.; Nirmala S. Octenidine dihydrochloride (oct): applications in dentistry. International Journal of Pharma and Bio Sciences 2018, 9 (4), 178-196. http://dx.doi.org/10.22376/ijpbs.2018.9.4.b178-196.
  53. Cherian, B.; Gehlot, P. M.; Manjunath, M. K. Comparison of the Antimicrobial Efficacy of Octenidine Dihydrochloride and Chlorhexidine with and Without Passive Ultrasonic Irrigation - An in-vitro Study. Journal of clinical and diagnostic research 2016, 10 (6), Zc71-7. https://doi.org/10.7860/jcdr/2016/17911.8021.
  54. Pavlík, V.; Sojka, M.; Mazúrová, M.; Velebný, V. Dual role of iodine, silver, chlorhexidine and octenidine as antimicrobial and antiprotease agents. PLOS ONE 2019, 14 (1), e0211055. https://doi.org/10.1371/journal.pone.0211055.
  55. Hübner, N. O.; Siebert, J.; Kramer, A. Octenidine Dihydrochloride, a Modern Antiseptic for Skin, Mucous Membranes and Wounds. Skin Pharmacology and Physiology 2010, 23 (5), 244-258. https://doi.org/10.1159/000314699.
  56. Nikolić, N.; Kienzl, P.; Tajpara, P.; Vierhapper, M.; Matiasek, J.; Elbe-Bürger, A. The Antiseptic Octenidine Inhibits Langerhans Cell Activation and Modulates Cytokine Expression upon Superficial Wounding with Tape Stripping. Journal of Immunology Research 2019, 2019, 5143635. https://doi.org/10.1155/2019/5143635.
  57. Meißner, A.; Hasenclever, D.; Brosteanu, O.; Chaberny, I. F. Effect of daily antiseptic body wash with octenidine on nosocomial primary bacteraemia and nosocomial multidrug-resistant organisms in intensive care units: design of a multicentre, cluster-randomised, double-blind, cross-over study. BMJ Open 2017, 7 (11), e016251. https://doi.org/10.1136/bmjopen-2017-016251.
  58. Langner, I.; Kramer, A.; Matthes, R.; Rebert, F.; Kohler, C.; Koban, I.; Hübner, N.-O.; Kohlmann, T.; Patrzyk, M. Inhibition of microbial growth by cold atmospheric plasma compared with the antiseptics chlorhexidine digluconate, octenidine dihydrochloride, and polyhexanide. Plasma Processes and Polymers 2019, 16 (4), 1800162. https://doi.org/10.1002/ppap.201800162.
  59. Stahl, J.; Braun, M.; Siebert, J.; Kietzmann, M. The percutaneous permeation of a combination of 0.1% octenidine dihydrochloride and 2% 2-phenoxyethanol (octenisept®) through skin of different species in vitro. BMC Veterinary Research 2011, 7 (1), 44. https://doi.org/10.1186/1746-6148-7-44.
  60. Htun, H. L.; Hon, P. Y.; Holden, M. T. G.; Ang, B.; Chow, A. Chlorhexidine and octenidine use, carriage of qac genes, and reduced antiseptic susceptibility in methicillin-resistant Staphylococcus aureus isolates from a healthcare network. Clinical Microbiology and Infection 2019, 25 (9), 1154.e1-1154.e7. https://doi.org/10.1016/j.cmi.2018.12.036.
  61. Krishna, B. V. S.; Gibb, A. P. Use of octenidine dihydrochloride in meticillin-resistant Staphylococcus aureus decolonisation regimens: a literature review. Journal of Hospital Infection 2010, 74 (3), 199-203. https://doi.org/10.1016/j.jhin.2009.08.022.
  62. Rodin, A. V. Selection of local antiseptic for treatment and prevention of wound infection. Ambulatory surgery 2019, 3-4, 47-57 (in Russian). https://doi.org/10.21518/1995-1477-2019-3-4-47-56.
  63. Harke, H. P., Disinfectants. Ullmanns Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2007. https://doi.org/10.1002/14356007.a08_551.
  64. Barillo, D. J.; Barillo, A. R.; Korn, S.; Lam, K.; Attar, P. S. The antimicrobial spectrum of Xeroform®. Burns 2017, 43 (6), 1189-1194. https://doi.org/10.1016/j.burns.2016.10.023.
  65. Chattopadhyay, A.; Chang, K.; Nguyen, K.; Galvez, M. G.; Legrand, A.; Davis, C.; McGoldrick, R.; Long, C.; Pham, H.; Chang, J. An Inexpensive Bismuth-Petrolatum Dressing for Treatment of Burns. Plastic and reconstructive surgery. Global open 2016, 4 (6), e737. https://doi.org/10.1097/gox.0000000000000741.
  66. Vitale, L. C.; Livingston, J.; Curtis, E.; Oag, K.; Shanti, C. M.; Klein, J. D. 726 The Use of Xeroform Dressings for Partial Thickness Scald Burn Injuries in a Verified Pediatric Burn Center. Journal of Burn Care & Research 2020, 41 (Supplement_1), S194-S195. https://doi.org/10.1093/jbcr/iraa024.310.
  67. Iliescu Nelea, M.; Paek, L.; Dao, L.; Rouchet, N.; Efanov, J. I.; Édouard, C.; Danino, M. A. In-situ characterization of the bacterial biofilm associated with Xeroform™ and Kaltostat™ dressings and evaluation of their effectiveness on thin skin engraftment donor sites in burn patients. Burns 2019, 45 (5), 1122-1130. https://doi.org/10.1016/j.burns.2019.02.024.
  68. Benhalima, L.; Amri, S.; Bensouilah, M.; Ouzrout, R.; Antibacterial effect of copper sulfate against multi-drug resistant nosocomial pathogens isolated from clinical samples. Pakistan Journal of Medical Sciences 2019, 35 (5), 1322-1328. https://doi.org/10.12669/pjms.35.5.336.
  69. Febre, N.; Silva, V.; Baez, A.; Palza, H.; Delgado, K.; Aburto, I.; Silva, V. Antibacterial activity of copper salts against microorganisms isolated from chronic infected wounds. Revista médica de Chile 2016, 144 (12), 1523-1530. https://doi.org/10.4067/S0034-98872016001200003.
  70. Gritsch, L.; Lovell, C.; Goldmann, W. H.; Boccaccini, A. R. Fabrication and characterization of copper(II)-chitosan complexes as antibiotic-free antibacterial biomaterial. Carbohydr. Polym. 2018, 179, 370-378. https://doi.org/10.1016/j.carbpol.2017.09.095.
  71. Vincent, M.; Duval, R. E.; Hartemann, P.; Engels-Deutsch, M. Contact killing and antimicrobial properties of copper. Journal of Applied Microbiology 2018, 124 (5), 1032-1046. https://doi.org/10.1111/jam.13681.
  72. Zakharova, O. V.; Godymchuk, A. Y.; Gusev, A. A.; Gulchenko, S. I.; Vasyukova, I. A.; Kuznetsov, D. V. Considerable Variation of Antibacterial Activity of Cu Nanoparticles Suspensions Depending on the Storage Time, Dispersive Medium, and Particle Sizes. BioMed Research International 2015, 2015, 412530. https://doi.org/10.1155/2015/412530.
  73. Montero, D. A.; Arellano, C.; Pardo, M.; Vera, R.; Gálvez, R.; Cifuentes, M.; Berasain, M. A.; Gómez, M.; Ramírez, C.; Vidal, R. M. Antimicrobial properties of a novel copper-based composite coating with potential for use in healthcare facilities. Antimicrobial Resistance & Infection Control 2019, 8 (1), 3. https://doi.org/10.1186/s13756-018-0456-4.
  74. Shcherbakov, A. B.; Korchak, G. I.; Surmasheva, E. V.; Skorohod, I. M. Preparaty serebra: vchera, segodnya i zavtra [Silver preparations: yesterday, today and tomorrow]. Farmacevticheskij zhurnal 2006, 5, 45-57 (in Russian).
  75. Politano, A.D.; Campbell, K.T.; Rosenberger, L.H.; Sawyer R.G. Use of Silver in the Prevention and Treatment of Infections: Silver Review. Surgical Infections 2013, 14 (1), 8-20. https://doi.org/10.1089/sur.2011.097.
  76. Pandian, S. R. K.; Deepak, V.; Kalishwaralal, K.; Viswanathan, P.; Gurunathan, S. Mechanism of bactericidal activity of Silver Nitrate. Braz. J. Microbiol. 2010, 41 (3). https://doi.org/10.1590/S1517-83822010000300033.
  77. Jung, W. K.; Koo, H. C.; Kim, K. W.; Shin, S.; Kim, S. H.; Park, Y. H. Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus aureus and Escherichia coli. Applied and Environmental Microbiology 2008, 74 (7), 2171-2178. https://doi.org/10.1128/AEM.02001-07.
  78. Li, R.; Chen, J.; Cesario, T. C.; Wang, X.; Yuan, J. S.; Rentzepis, P. M. Synergistic reaction of silver nitrate, silver nanoparticles, and methylene blue against bacteria. Proceedings of the National Academy of Sciences 2016, 113 (48), 13612-13617. https://doi.org/10.1073/pnas.1611193113.
  79. Wakshlak, R. B.-K.; Pedahzur, R.; Avnir, D. Antibacterial activity of silver-killed bacteria: the “zombies” effect. Scientific reports 2015, 5 (1), 9555. https://doi.org/10.1038/srep09555.
  80. Culver, A.; Geiger, C.; Simon, D. Safer products and practices for disinfecting and sanitazing surfaces. https://sfenvironment.org/sites/default/files/fliers/files/sfe_th_safer_products_and_practices_for_disinfecting.pdf (accessed Sep 17, 2021).
  81. Adhya, A.; Bain, J.; Ray, O.; Hazra, A.; Adhikari, S.; Dutta, G.; Ray, S.; Majumdar, B. K. Healing of burn wounds by topical treatment: A randomized controlled comparison between silver sulfadiazine and nano-crystalline silver. Journal of basic and clinical pharmacy 2014, 6 (1), 29-34. https://doi.org/10.4103/0976-0105.145776.
  82. Gupta, S.; Kumar, N.; Tiwari, V. Silver sulfadiazine versus sustained-release silver dressings in the treatment of burns: A surprising result. Indian Journal of Burns 2017, 25 (1), 38-43. https://doi.org/10.4103/ijb.ijb_22_17.
  83. Mehta, M. A.; Shah, S.; Ranjan, V.; Sarwade, P.; Philipose, A. Comparative study of silver-sulfadiazine-impregnated collagen dressing versus conventional burn dressings in second-degree burns. Journal of Family Medicine and Primary Care 2019, 8 (1), 215-219. https://doi.org/10.4103/jfmpc.jfmpc_291_18.
  84. Mohseni, M.; Shamloo, A.; Aghababaei, Z.; Vossoughi, M.; Moravvej, H. Antimicrobial Wound Dressing Containing Silver Sulfadiazine with High Biocompatibility: In Vitro Study. Artificial Organs 2016, 40 (8), 765-773. https://doi.org/10.1111/aor.12682.
  85. Darres, A.; Delaval, R.; Fournier, A.; Tournier, E. The Effectiveness of Topical Cerium Nitrate-Silver Sulfadiazine Application on Overall Outcome in Patients with Calciphylaxis. Dermatology 2019, 235 (2), 120-129. https://doi.org/10.1159/000493975.
  86. WHO Model Formulary 2008; Stuart, M. C.; Kouimtzi, M.; Hill, S. R., Eds.; WHO Press: Geneva, 2008.
  87. Dash, S.; Bhojani, J.; Sharma, S. A Rare Case of Anal and Perianal Chemical Burn in a Child due to Potassium Permanganate Crystals. Drug Safety - Case Reports 2018, 5 (1), 10. https://doi.org/10.1007/s40800-018-0072-5.
  88. British National Formulary, 69th Ed.; Pharmaceutical Press: London, 2015.
  89. Лєвін, М. Г.; Брицун, В. М.; Мелешко, Р. А.; Терещенко, О. М. Сучасні аспекти нормування і контроля профілю домішок в лікарських препаратах. Фармакологія та лікарська токсикологія 2018, 12 (4-5), 74-88.
  90. ICH Guideline Q3D (R1) on elemental impurities. https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-32.pdf (accessed Sep 10, 2021).
  91. Boyce, J. M. Alcohols as Surface Disinfectants in Healthcare Settings. Infection Control & Hospital Epidemiology 2018, 39 (3), 323-328. https://doi.org/10.1017/ice.2017.301.
  92. Graziano, M. U.; Graziano, K. U.; Pinto, F. M. G.; de Moraes Bruna, C. Q.; de Souza, R. Q.; Lascala, C. A. Effectiveness of disinfection with alcohol 70% (w/v) of contaminated surfaces. Revista Latino-Americana de Enfermagem 2013, 21 (2). https://doi.org/10.1590/S0104-11692013000200020.
  93. Ribeiro, M. M.; Neumann, V. A.; Padoveze, M. C.; Graziano, K. U. Efficacy and effectiveness of alcohol in the disinfection of semi-critical materials: a systematic review. Revista Latino-Americana de Enfermagem 2015, 23 (4), 741-752. https://doi.org/10.1590/0104-1169.0266.2611.
  94. Hirose, R.; Nakaya, T.; Naito, Y.; Daidoji, T.; Watanabe, Y.; Yasuda, H.; Konishi, H.; Itoh, Y. Viscosity is an important factor of resistance to alcohol-based disinfectants by pathogens present in mucus. Scientific reports 2017, 7 (1), 13186. https://doi.org/10.1038/s41598-017-13732-2.
  95. Bondurant, S.; McKinney, T.; Bondurant, L.; Fitzpatrick, L. Evaluation of a benzalkonium chloride hand sanitizer in reducing transient Staphylococcus aureus bacterial skin contamination in health care workers. American Journal of Infection Control 2020, 48 (5), 522-526. https://doi.org/10.1016/j.ajic.2019.08.030.
  96. Matthews, D.; Atkinson, R.; Shephard, A. Spectrum of bactericidal action of amylmetacresol/2,4-dichlorobenzyl alcohol lozenges against oropharyngeal organisms implicated in pharyngitis. International journal of general medicine 2018, 11, 451-456. https://doi.org/10.2147/ijgm.s184406.
  97. Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial Properties of Polyphenols: Characterization and QSAR (Quantitative Structure–Activity Relationship) Models. Frontiers in Microbiology 2019, 10 (829). https://doi.org/10.3389/fmicb.2019.00829.
  98. Alves, M. J.; Ferreira, I. C.; Froufe, H. J.; Abreu, R. M.; Martins, A.; Pintado, M. Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. J Appl Microbiol 2013, 115 (2), 346-57. https://doi.org/10.1111/jam.12196.
  99. Macé, S.; Truelstrup Hansen, L.; Rupasinghe, H. P. V. Anti-Bacterial Activity of Phenolic Compounds against Streptococcus pyogenes. Medicines 2017, 4 (2), 25. https://doi.org/10.3390/medicines4020025.
  100. Sabbineni, J. Phenol – An effective antibacterial Agent. Journal of Medicinal & Organic Chemistry 2016, 3 (2), 182-191.
  101. Chemical bonds and bond energy; Sanderson, R. T., Ed.; Physical Chemistry, book series; Academic Press: New York, 1976; Vol. 21.
  102. Miller, L. G.; Tan, J.; Eells, S. J.; Benitez, E.; Radner, A. B. Prospective Investigation of Nasal Mupirocin, Hexachlorophene Body Wash, and Systemic Antibiotics for Prevention of Recurrent Community-Associated Methicillin-Resistant Staphylococcus aureus Infections. Antimicrob. Agents Chemother. 2012, 56 (2), 1084-1086. https://doi.org/10.1128/AAC.01608-10.
  103. Luk, E.; Jager, M. Chemische Lebensmittelkonservierung [Russian translation]; GIORD: Saint Petersburg, 1998.
  104. Hahn, S.; Kielhorn, J.; Koppenhofer, J.; Wibbertmann, A. Resorcinol. Concise International Chemical Assessment Document, 71; WHO Press: Geneva, 2006.
  105. Ali, B.; ElMahdy, N.; Elfar, N. N. Microneedling (Dermapen) and Jessner’s solution peeling in treatment of atrophic acne scars: a comparative randomized clinical study. Journal of Cosmetic and Laser Therapy 2019, 21 (6), 357-363. https://doi.org/10.1080/14764172.2019.1661490.
  106. Kantouch, A.; El-Sayed, A. A.; Salama, M.; El-Kheir, A. A.; Mowafi, S. Salicylic acid and some of its derivatives as antibacterial agents for viscose fabric. Int. J. Biol. Macromol. 2013, 62, 603-607. https://doi.org/10.1016/j.ijbiomac.2013.09.021.
  107. Marchese, A.; Orhan, I. E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S. F.; Gortzi, O.; Izadi, M.; Nabavi, S. M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016, 210, 402-414. https://doi.org/10.1016/j.foodchem.2016.04.111.
  108. Kachur, K.; Suntres, Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. Critical Reviews in Food Science and Nutrition 2020, 60 (18), 3042-3053. https://doi.org/10.1080/10408398.2019.1675585.
  109. Kumari, S.; Kumaraswamy, R. V.; Choudhary, R. C.; Sharma, S. S.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Thymol nanoemulsion exhibits potential antibacterial activity against bacterial pustule disease and growth promotory effect on soybean. Scientific reports 2018, 8 (1), 6650. https://doi.org/10.1038/s41598-018-24871-5.
  110. Khaldi, Z.; Ouk, T.-S.; Zerrouki, R. Synthesis and antibacterial properties of thymol and carvacrol grafted onto lignocellulosic kraft fibers. Journal of Bioactive and Compatible Polymers 2018, 33 (5), 558-570. https://doi.org/10.1177/0883911518783227.
  111. Du, E.; Gan, L.; Li, Z.; Wang, W.; Liu, D.; Guo, Y. In vitro antibacterial activity of thymol and carvacrol and their effects on broiler chickens challenged with Clostridium perfringens. Journal of Animal Science and Biotechnology 2015, 6 (1), 58. https://doi.org/10.1186/s40104-015-0055-7.
  112. Kim, S. A.; Moon, H.; Lee, K.; Rhee, M. S. Bactericidal effects of triclosan in soap both in vitro and in vivo. J. Antimicrob. Chemother. 2015, 70 (12), 3345-3352. https://doi.org/10.1093/jac/dkv275.
  113. Macri, D. Worldwide use of triclosan: Can dentistry do without this antimicrobial? Contemporary Clinical Dentistry 2017, 8 (1), 7-8. https://doi.org/10.4103/ccd.ccd_225_17.
  114. Westfall, C.; Flores-Mireles, A. L.; Robinson, J. I.; Lynch, A. J. L.; Hultgren, S.; Henderson, J. P.; Levin, P. A. The Widely Used Antimicrobial Triclosan Induces High Levels of Antibiotic Tolerance In Vitro and Reduces Antibiotic Efficacy up to 100-Fold In Vivo. Antimicrob. Agents Chemother. 2019, 63 (5), e02312-18. https://doi.org/10.1128/AAC.02312-18.
  115. Weatherly, L. M.; Gosse, J. A. Triclosan exposure, transformation, and human health effects. Journal of Toxicology and Environmental Health, Part B 2017, 20 (8), 447-469. https://doi.org/10.1080/10937404.2017.1399306.
  116. Alfhili, M. A.; Lee, M.-H. Triclosan: An Update on Biochemical and Molecular Mechanisms. Oxidative Medicine and Cellular Longevity 2019, 2019, 1607304. https://doi.org/10.1155/2019/1607304.
  117. Yu, J. J.; Manus, M. B.; Mueller, O.; Windsor, S. C.; Horvath, J. E.; Nunn, C. L. Antibacterial soap use impacts skin microbial communities in rural Madagascar. PLOS ONE 2018, 13 (8), e0199899. https://doi.org/10.1371/journal.pone.0199899.
  118. Al-Dabbagh, S. Y. A.; Ali, H. H.; Khalil, I. I.; Hamad, M. A. A Study of some antibiotics, disinfectants and antiseptic efficacy against some species of pathogenic bacteria. Assiut Veterinary Medical Journal 2015, 61 (147), 210-217. https://doi.org/10.21608/avmj.2015.170256.
  119. Rutala, W. A.; Weber, D. J. Disinfection and sterilization: An overview. American Journal of Infection Control 2013, 41 (5), S2-S5. https://doi.org/10.1016/j.ajic.2012.11.005.
  120. Riza, A.; Isnandar, I.; Syaflida, R.; Jasmine, J. Comparison of Chloroxylenol 4.8% and Povidone Iodine 7.5% on Total Bacteria Count Post WHO Routine Hand Washing on Clinical Students at the Department of Oral Surgery, Faculty of Dentistry, Universitas Sumatera Utara March-May 2018. Journal of Dentomaxillofacial Science 2019, 4 (3), 142-144. https://doi.org/10.15562/jdmfs.v0i0.796.
  121. Sadakane, K.; Ichinose, T. Effect of the Hand Antiseptic Agents Benzalkonium Chloride, Povidone-Iodine, Ethanol, and Chlorhexidine Gluconate on Atopic Dermatitis in NC/Nga Mice. International Journal of Medical Sciences 2015, 12 (2), 116-125. https://doi.org/10.7150/ijms.10322.
  122. Gerba, C. P.; Müller, V. Quaternary Ammonium Biocides: Efficacy in Application. Applied and Environmental Microbiology 2015, 81 (2), 464-469. https://doi.org/10.1128/AEM.02633-14.
  123. Gadea, R.; Fernández Fuentes, M.; Pérez Pulido, R.; Gálvez, A.; Ortega, E. Effects of exposure to quaternary-ammonium-based biocides on antimicrobial susceptibility and tolerance to physical stresses in bacteria from organic foods. Food microbiology 2017, 63, 58-71. https://doi.org/10.1016/j.fm.2016.10.037.
  124. Jiménez-Munguía, I.; Volynsky, P. E.; Batishchev, O. V.; Akimov, S. A.; Korshunova, G. A.; Smirnova, E. A.; Knorre, D. A.; Sokolov, S. S.; Severin, F. F. Effects of Sterols on the Interaction of SDS, Benzalkonium Chloride, and A Novel Compound, Kor105, with Membranes. Biomolecules 2019, 9 (10), 627. https://doi.org/10.3390/biom9100627.
  125. Yegin, Y.; Oh, J. K.; Akbulut, M.; Taylor, T. Cetylpyridinium chloride produces increased zeta-potential on Salmonella Typhimurium cells, a mechanism of the pathogen’s inactivation. npj Science of Food 2019, 3 (1), 21. https://doi.org/10.1038/s41538-019-0052-x.
  126. Jantafong, T.; Ruenphet, S.; Punyadarsaniya, D.; Takehara, K. The study of effect of didecyl dimethyl ammonium bromide on bacterial and viral decontamination. Veterinary World 2018, 11 (5), 706-711. https://doi.org/10.14202/vetworld.2018.706-711.
  127. Chevalier, M.; Sakarovitch, C.; Precheur, I.; Lamure, J.; Pouyssegur-Rougier, V. Antiseptic mouthwashes could worsen xerostomia in patients taking polypharmacy. Acta Odontologica Scandinavica 2015, 73 (4), 267-273. https://doi.org/10.3109/00016357.2014.923108.
  128. Sreevidya, V. S.; Lenz, K. A.; Svoboda, K. R.; Ma, H. Benzalkonium chloride, benzethonium chloride, and chloroxylenol - Three replacement antimicrobials are more toxic than triclosan and triclocarban in two model organisms. Environ. Pollut. 2018, 235, 814-824. https://doi.org/10.1016/j.envpol.2017.12.108.
  129. Pereira, B. M. P.; Tagkopoulos, I.; Vieille, C. Benzalkonium Chlorides: Uses, Regulatory Status, and Microbial Resistance. Applied and Environmental Microbiology 2019, 85 (13), e00377-19. https://doi.org/10.1128/AEM.00377-19.
  130. Choi, H.-Y.; Lee, Y.-H.; Lim, C.-H.; Kim, Y.-S.; Lee, I.-S.; Jo, J.-M.; Lee, H.-Y.; Cha, H.-G.; Woo, H. J.; Seo, D.-S. Assessment of respiratory and systemic toxicity of Benzalkonium chloride following a 14-day inhalation study in rats. Particle and Fibre Toxicology 2020, 17 (1), 5. https://doi.org/10.1186/s12989-020-0339-8.
  131. Turetgen, I.; Vatansever, C. The Efficacy of Nano Silver Sulfadiazine and Nano Benzalkonium Chloride on Heterotrophic Biofilms. Microbiology 2019, 88 (1), 94-99. https://doi.org/10.1134/S0026261719010089.
  132. Romanowski, E. G.; Yates, K. A.; Shanks, R. M.; Kowalski, R. P. Benzalkonium Chloride Demonstrates Concentration-Dependent Antiviral Activity Against Adenovirus In Vitro. Journal of Ocular Pharmacology and Therapeutics 2019, 35 (5), 311-314. https://doi.org/10.1089/jop.2018.0145.
  133. Teng, F.; He, T.; Huang, S.; Bo, C.-P.; Li, Z.; Chang, J.-L.; Liu, J.-Q.; Charbonneau, D.; Xu, J.; Li, R.; Ling, J.-Q. Cetylpyridinium chloride mouth rinses alleviate experimental gingivitis by inhibiting dental plaque maturation. International Journal of Oral Science 2016, 8 (3), 182-190. https://doi.org/10.1038/ijos.2016.18.
  134. de Miranda, S. L. F.; Damaceno, J. T.; Faveri, M.; Figueiredo, L. C.; Soares, G. M. S.; Feres, M.; Bueno-Silva, B. In Vitro Antimicrobial Effect of Cetylpyridinium Chloride on Complex Multispecies. Brazilian Dental Journal 2020, 31 (2). https://doi.org/10.1590/0103-6440202002630.
  135. Rosing, C. K.; Cavagni, J.; Gaio, E. J.; Muniz, F. W. M. G.; Ranzan, N.; Oballe, H. J. R.; Friedrich, S. A.; Severo, R. M.; Stewart, B.; Zhang, Y. P. Efficacy of two mouthwashes with cetylpyridinium chloride: a controlled randomized clinical trial. Brazilian Oral Research 2017, 31, e47. https://doi.org/10.1590/1807-3107bor-2017.vol31.0047.
  136. Fromm-Dornieden, C.; Rembe, J.-D.; Schäfer, N.; Böhm, J.; Stuermer, E. K. Cetylpyridinium chloride and miramistin as antiseptic substances in chronic wound management – prospects and limitations. Journal of Medical Microbiology 2015, 64 (4), 407-414. https://doi.org/10.1099/jmm.0.000034.
  137. Shinu, P.; Singh, V. A.; Nair, A.; Venugopala, K. N.; Akrawi, S. H. Papain-cetylpyridinium chloride and pepsin-cetylpyridinium chloride; two novel, highly sensitive, concentration, digestion and decontamination techniques for culturing mycobacteria from clinically suspected pulmonary tuberculosis cases. PLOS ONE 2020, 15 (8), e0236700. https://doi.org/10.1371/journal.pone.0236700.
  138. Williams, M. D.; Falkinham, J. O. Effect of Cetylpyridinium Chloride (CPC) on Colony Formation of Common Nontuberculous Mycobacteria. Pathogens 2018, 7 (4), 79. https://doi.org/10.3390/pathogens7040079.
  139. Saucedo-Alderete, R. O.; Eifert, J. D.; Boyer, R. R.; Williams, R. C.; Welbaum, G. E. Cetylpyridinium chloride direct spray treatments reduce Salmonella on cantaloupe rough surfaces. Journal of Food Safety 2018, 38 (4), e12471. https://doi.org/10.1111/jfs.12471.
  140. Verma, T.; Sharma, P.; Kumar, P.; Tyagi, K.; Bhatnagar, S.; Raza, M. Evaluation of antimicrobial property of modified acrylic resin–containing cetylpyridinium chloride. journal of orthodontic science 2020, 9 (1), 1. https://doi.org/10.4103/jos.JOS_6_19.
  141. Popkin, D. L.; Zilka, S.; Dimaano, M.; Fujioka, H.; Rackley, C.; Salata, R.; Griffith, A.; Mukherjee, P. K.; Ghannoum, M. A.; Esper, F. Cetylpyridinium Chloride (CPC) Exhibits Potent, Rapid Activity Against Influenza Viruses. Pathogens and Immunity 2017, 2 (2), 253-269. https://doi.org/10.20411/pai.v2i2.200.
  142. Jang, H.; Lim, S. H.; Choi, J. S.; Park, Y. Antibacterial properties of cetyltrimethylammonium bromide-stabilized green silver nanoparticles against methicillin-resistant Staphylococcus aureus. Arch. Pharm. Res. 2015, 38 (10), 1906-1912. https://doi.org/10.1007/s12272-015-0605-8.
  143. Nik Malek, N. A. N.; Azalisa, W. N.; Yieh Lin, C. C. Antibacterial Activity of Cetyltrimethylammonium Bromide Modified Silver-Bentonite. MATEC Web of Conferences 2016, 60, 03005. https://doi.org/10.1051/matecconf/20166003005.
  144. Mahmoud, N. N.; Alkilany, A. M.; Khalil, E. A.; Al-Bakri, A. G. Antibacterial activity of gold nanorods against Staphylococcus aureus and Propionibacterium acnes: misinterpretations and artifacts. 2017, 12, 7311-7322. https://doi.org/10.2147/IJN.S145531.
  145. Kramer, A.; Dissemond, J.; Kim, S.; Willy, C.; Mayer, D.; Papke, R.; Tuchmann, F.; Assadian, O. Consensus on Wound Antisepsis: Update 2018. Skin Pharmacol Physiol 2018, 31 (1), 28-58. https://doi.org/10.1159/000481545.
  146. Aryal, M.; Muriana, P. M. Efficacy of Commercial Sanitizers Used in Food Processing Facilities for Inactivation of Listeria monocytogenes, E. Coli O157:H7, and Salmonella Biofilms. Foods 2019, 8 (12), 639. https://doi.org/10.3390/foods8120639.
  147. Салманов, А. Г.; Марієвський, В. Ф.; Хобзей М. К. Резистентність бактерій до антисептиків та дезінфікуючих засобів. Український медичний часопис 2010, 6, 51-56.
  148. Ksiazczyk, M.; Krzyzewska, E.; Futoma, B.; Bugla-Ploskonska, G. Disinfectants - bacterial cells interactions in the view of hygiene and public health. Postępy Higieny i Medycyny Doświadczalnej 2015, 69, 1042-1005.
  149. U.S. Food & Drug Administration. Antibacterial soap? You can skip it, use plain soap and water. https://www.fda.gov/consumers/consumer-updates/antibacterial-soap-you-can-skip-it-use-plain-soap-and-water (accessed Sep 03, 2021).

Published

2022-03-23

How to Cite

(1)
Britsun, V. M.; Simurova, N. V.; Popova, I. V.; Simurov, O. V. . Modern Chemical Disinfectants and Antiseptics. Part II. J. Org. Pharm. Chem. 2022, 19, 20-32.

Issue

Section

Review Articles