1,2,3-Triazole-4(5)-amines – Convenient Synthetic Blocks for the Construction of Triazolo-Annulated Heterocycles





4(5)-amino-1,2,3-triazoles, triazolo[4,5-b]pyridines, triazolo[4,5-d]pyridines, triazoloannelated azepines, cyclocondensation


Aim. To analyze and summarize the synthetic potential of 1,2,3-triazole-4(5)-amines as efficient building blocks in the synthesis of triazolo-annulated pyridine, azine and azepine systems.
Results and discussion. Original literature sources revealing the synthetic potential of 4(5)-amino functionalized 1,2,3-triazoles as convenient and available building blocks for the preparation of triazolo-annulated pyridines, azines and azepines were analyzed and systematized. Condensation of 1,2,3-triazole-4(5)-amines with methylene active compounds was shown to be a powerful tool for the synthesis of versatile triazolo[4,5-b]pyridines. In turn, the cyclocondensation based on 5-amino-1,2,3-triazole-4-carboxylic acids and their structurally modified derivatives was proven to be a general way for obtaining a number of triazolo[4,5-d]pyrimidine systems. Few representatives of triazolo-annulated pyridazines, 1,3-oxazines and 1,3-thiazines were synthesized by the intramolecular cyclization of the corresponding 4-aryl(carboxy-, aminomethyl)-5-amino-1,2,3-triazoles. The cyclocondensation involving 4,5-diamino-, 4-carbofunctionalized 5-amino-1,2,3-triazoles and 4-amino-5-thiocarboxamido-1,2,3-triazoles was successful for the construction of di-, oxa- and thiazepino-annulated triazoles.
Conclusions. The analysis, systematization and summary of the literature regarding the synthetic potential of 1,2,3-triazole-4(5)-amines conclusively demonstrate that these structures are easily available and convenient molecular blocks for the construction of triazolo-annulated pyridine, azine and azepine systems that are important for synthetic and biomedical research.


Teng, R.; Oliver, S.; Hayes, M. A.; Butler, K. Absorption, Distribution, Metabolism, and Excretion of Ticagrelor in Healthy Subjects. Drug Metab. Dispos. 2010, 38 (9), 1514-1521. https://doi.org/10.1124/dmd.110.032250.

El-Gazzar, M. G.; Nafie, N. H.; Nocentini, A.; Ghorab, M. M.; Heiba, H. I.; Supuran, C. T. Carbonic anhydrase inhibition with a series of novel benzenesulfonamide-triazole conjugates. J. Enzyme Inhib. Med. Chem. 2018, 33 (1), 1565-1574. https://doi.org/10.1080/14756366.2018.1513927.

Pastor, J.; Oyarzabal, J.; Saluste, G.; Alvarez, R. M.; Rivero, V.; Ramos, F.; Cendón, E.; Blanco-Aparicio, C.; Ajenjo, N.; Cebriá, A.; Albarrán, M. I.; Cebrián, D.; Corrionero, A.; Fominaya, J.; Montoya, G.; Mazzorana, M. Hit to lead evaluation of 1,2,3-triazolo[4,5-b]pyridines as PIM kinase inhibitors. Bioorg. Med. Chem. Lett. 2012, 22 (4), 1591-1597. https://doi.org/10.1016/j.bmcl.2011.12.130.

Xu, J.; Xie, X.; Ye, N.; Zou, J.; Chen, H.; White, M. A.; Shi, P.-Y.; Zhou, J. Design, Synthesis, and Biological Evaluation of Substituted 4,6-Dihydrospiro[[1,2,3]triazolo[4,5-b]pyridine-7,3′-indoline]-2′,5(3H)-dione Analogues as Potent NS4B Inhibitors for the Treatment of Dengue Virus Infection. J. Med. Chem. 2019, 62 (17), 7941-7960. https://doi.org/10.1021/acs.jmedchem.9b00698.

Nettekoven, M.; Adam, J.-M.; Bendels, S.; Bissantz, C.; Fingerle, J.; Grether, U.; Grüner, S.; Guba, W.; Kimbara, A.; Ottaviani, G.; Püllmann, B.; Rogers-Evans, M.; Röver, S.; Rothenhäusler, B.; Schmitt, S.; Schuler, F.; Schulz-Gasch, T.; Ullmer, C. Novel Triazolopyrimidine-Derived Cannabinoid Receptor 2 Agonists as Potential Treatment for Inflammatory Kidney Diseases. ChemMedChem 2016, 11 (2), 179-189. https://doi.org/10.1002/cmdc.201500218.

Gigante, A.; Canela, M.-D.; Delang, L.; Priego, E.-M.; Camarasa, M.-J.; Querat, G.; Neyts, J.; Leyssen, P.; Pérez-Pérez, M.-J. Identification of [1,2,3]Triazolo[4,5-d]pyrimidin-7(6H)-ones as Novel Inhibitors of Chikungunya Virus Replication. J. Med. Chem. 2014, 57 (10), 4000-4008. https://doi.org/10.1021/jm401844c.

Li, Z.-H.; Liu, X.-Q.; Geng, P.-F.; Suo, F.-Z.; Ma, J.-L.; Yu, B.; Zhao, T.-Q.; Zhou, Z.-Q.; Huang, C.-X.; Zheng, Y.-C.; Liu, H.-M. Discovery of [1,2,3]Triazolo[4,5-d]pyrimidine Derivatives as Novel LSD1 Inhibitors. ACS Med. Chem. Lett. 2017, 8 (4), 384-389. https://doi.org/10.1021/acsmedchemlett.6b00423.

Mohamed, A. M.; Al-Qalawi, H. R. M.; El-Sayed, W. A.; Arafa, W. A. A.; Alhumaimess, M. S.; Hassan, A. K. Anticancer activity of newly synthesized triazolopyrimidine derivatives and their nucleoside analogs. Acta Poloniae Pharmaceutica – Drug Research 2015, 72 (2), 307–318.

Li, Z.-H.; Liu, X.-Q.; Zhao, T.-Q.; Geng, P.-F.; Guo, W.-G.; Yu, B.; Liu, H.-M. Design, synthesis and preliminary biological evaluation of new [1,2,3]triazolo[4,5-d]pyrimidine/thiourea hybrids as antiproliferative agents. Eur. J. Med. Chem. 2017, 139, 741-749. https://doi.org/10.1016/j.ejmech.2017.08.042.

Chakrabarti, J. K.; Hotten, T. M.; Pullar, I. A.; Steggles, D. J. Heteroarenobenzodiazepines. 6. Synthesis and pharmacological evaluation of CNS activities of [1,2,3]triazolo[4,5-b][1,5]-, imidazolo[4,5-b][1,5]-, and pyrido[2,3-b][1,5]benzodiazepines. 10-Piperazinyl-4H-1,2,3-triazolo[4,5-b][1,5]benzodiazepines with neuroleptic activity. J. Med. Chem. 1989, 32 (10), 2375-2381. https://doi.org/10.1021/jm00130a025.

Chan, W. L.; Ding, M.; Zou, B. (NOVARTIS AG). Spiropyrazolopyridine derivatives and uses thereof for the treatment of viral infections. WO2014167528 A1, Oct 16, 2014.

Zhou, J.; Shi, P.-Y.; Xu, J.; Xie, X. Substituted 4,6-dihydrospiro[[1,2,3]triazolo[4,5-b]pyridine-7,3’-indoline]-2’,5(3H)-dione analogues. US2021047329 A1, Feb 18, 2021.

L'Abbe, G.; Vandendriessche, A.; Weyns, N. ChemInform Abstract: A New General Synthetic Method of [1,2,3]Triazolo[4,5-b]pyridines. ChemInform 1988, 19 (14). https://doi.org/10.1002/chin.198814219.

Gordeev, M. F.; Komkov, A. V.; Bogdanov, V. S.; Dorokhov, V. A. Synthesis of derivatives of 5-amino-4-acyl-1,2,3-triazole, 8-azapurine, and 1,2,3-triazolo[4,5-b]pyridin-7-one using N,N-acetals of acylketenes and tosylazide. Bulletin of the Academy of Sciences of the USSR, Division of chemical science 1990, 39 (6), 1256-1261. https://doi.org/10.1007/BF00962394.

Al-Mousawi, S. M.; Moustafa, M. S. 2-Arylhydrazononitriles as building blocks in heterocyclic synthesis: A novel route to 2-substituted-1,2,3-triazoles and 1,2,3-triazolo[4,5-b]pyridines. Beilstein J. Org. Chem. 2007, 3 (12). https://doi.org/10.1186/1860-5397-3-12.

Ibrahim, H. M.; Behbehani, H.; Makhseed, S.; Elnagdi, M. H. Acylation of Heteroaromatic Amines: Facile and Efficient Synthesis of a New Class of 1,2,3-Triazolo[4,5-b]pyridine and Pyrazolo[4,3-b]pyridine Derivatives. Molecules 2011, 16 (5), 3723-3739. https://doi.org/10.3390/molecules16053723.

Frasson, I.; Spanò, V.;Di Martino, S.; Nadai, M.; Doria, F.; Parrino, B.; Carbone, A.; Cascioferro, S. M.; Diana, P.; Cirrincione, G.; Freccero, M.; Barraja, P.; Richter, S. N.; Montalbano, A. Synthesis and photocytotoxic activity of [1,2,3]triazolo[4,5-h][1,6]naphthyridines and [1,3]oxazolo[5,4-h][1,6]naphthyridines. Eur. J. Med. Chem. 2019, 162, 176-193. https://doi.org/10.1016/j.ejmech.2018.10.071.

Vydzhak, R. N.; Panchishin, S. Y.; Brovarets, V. S. Application of Nickel Complexes with 1,3-Dicarbonyl Compounds for Synthesis of Fused 4-Aminopyridine-Based Systems. Russ. J. Gen. Chem. 2020, 90 (8), 1439-1446. https://doi.org/10.1134/S1070363220080101.

Syrota, N. А.; Kemskiy, S. V.; Bol’but, A. V.; Chernobaev, I. I.; Vovk, M. V. An efficient method for accessing carboannulated and functionalized [1,2,3]triazolo[4,5-b]pyridines. Chem. Heterocycl. Comp. 2020, 56 (8), 1048-1053. https://doi.org/10.1007/s10593-020-02771-9.

Syrota, N.; Kemskii, S.; Vovk, M. Convenient variant of the synthesis of 5-oxo-4,5-dihydro-1H-[1,2,3]triazolo[4,5-b]pyridine-6-carboxylic acid. Visnyk of the Lviv University. Series Chemistry 2021, 62, 191-196. https://doi.org/10.30970/vch.6201.191.

Buckle, D. R.; Smith, H. Triazolo[4,5-b]quinolines and prophylaxis of allergic diseases with them. US4223032A, Sep 16, 1980.

Ried, W.; Guryn, R.; Laoutidis, J. Synthese neuer 8-Azapurine. Liebigs Ann. Chem. 1990, 1990 (8), 819-820. https://doi.org/10.1002/jlac.1990199001152.

He, X.; Yang, K.; Liu, H.; Ellis, D. A. Azolopyrimidines as inhibitors of cannabinoid 1 activity. WO2007120454 A1, Oct 25, 2007.

Liu, H.; He, X.; Choi, H.-S.; Yang, K.; Woodmansee, D.; Wang, Z.; Ellis, D. A.; Wu, B.; He, Y.; Nguyen, T. N. Compounds and compositions as inhibitors of cannabinoid receptor 1 activity. WO2006047516 A2, May 4, 2006.

Abbas Temerik, H. H.; Younes, M. I.; Metwally, S. A. Synthesis and reactions of triazine azide towards nucleophilic reagents. Collect. Czech. Chem. Commun. 1993, 58 (12), 3017–3023. https://doi.org/10.1135/cccc19933017.

L'Abbe, G.; Godts, F.; Toppet, S.; Van Meervelt, L.; King, G. S. D. ChemInform Abstract: Synthesis and Crystal Structure of Bis[1,2,3]triazolo[1,5-a:4′,5′-d]pyrimidin-9-ones. ChemInform 1988, 19 (1). https://doi.org/10.1002/chin.198801243.

Zhao, J.-F.; Xie, C.; Ding, M.-W.; He, H.-W. A Selective synthesis of 3,6-dihydro-7H-1,2,3-triazolo[4,5-d]pyrimidin-7-ones. Chem. Lett. 2005, 34 (7), 1022–1023. https://doi.org/10.1246/cl.2005.1022.

Zhao, J.-F.; Xie, C.; Ding, M.-W.; He, H.-W. Base-Catalyzed, Efficient Synthesis of 5-Substituted 3,6-Dihydro-7H-1,2,3-triazolo[4,5-d]pyrimidin-7-ones. Synthesis 2005, 2005 (15), 2544-2548. https://doi.org/10.1055/s-2005-872077.

Zhao, J.-F.; Xie, C.; Xu, S.-Z.; Ding, M.-W.; Xiao, W.-J. Iminophosphorane-mediated efficient synthesis of new tricyclic 3,5-dihydro-1,2,3-triazolo[4,5-d]-1,2,4-triazolo[1,5-a]pyrimidin-9-ones. Org. Biomol. Chem. 2006, 4 (1), 130-134. https://doi.org/10.1039/B513715B.

Sun, S.; Chen, L.; Yang, X. A Solution-Phase Parallel Synthesis of 5-Substituted 3,6-Dihydro-7H-1,2,3-triazolo[4,5-d]pyrimidin-7-ones. Chin. J. Chem. 2011, 29 (5), 991-994. https://doi.org/10.1002/cjoc.201190201.

Fang, Z. D.; Wei, X. H. Sequential three-component synthesis of 1,4-bis[triazolo[4,5-d]pyrimidin-7(6H)-one]piperazines. Heterocycles 2012, 85 (11), 2757-2763. https://doi.org/10.3987/COM-12-12564.

Wang, T.; Xu, X.-M.; Ke, X.-X.; Liu, X.-Y.; Luo, J.; Yi, B.-X. Iminophosphorane-Mediated Efficient Synthesis of New Fluorine-Containing Triazolo[4,5-d]pyrimidin-7-ones. Phosphorus, Sulfur Silicon Relat. Elem. 2012, 187 (2), 155-164. https://doi.org/10.1080/10426507.2011.590169.

Wang, T.; Ke, X. X.; Zhou, S. T.; Chen, H. Z. New Efficient Synthesis of 5,6-Disubstituted-3-phenyl-1,2,3-triazolo[4,5-d]pyrimidin-7-ones via a Tandem Aza-Wittig Reaction. Synth. Commun. 2012, 42 (10), 1393-1400. https://doi.org/10.1080/00397911.2010.535940.

Mohamed, A. M.; Abdelwahab, M.; Elnaggar, D.; Abde Hafez, N. A.; Mahmoud, S. F.; El-Bayaa, M.; El-kady, D. S.; Omran, M. M.; El-Sayed, W. A. Synthesis, Cytotoxic Activity and Molecular Modelling of Novel [1,2,3]triazolo[4,5-d]pyrimidine Compounds, their Glycoside Derivatives and Acyclic Analogs. Egypt. J. Chem. 2022, 65 (1), 645-656. https://doi.org/10.21608/ejchem.2021.84371.4127.

Haning, H.; Niewöhner, U.; Schenke, T.; Lampe, T.; Hillisch, A.; Bischoff, E. Comparison of different heterocyclic scaffolds as substrate analog PDE5 inhibitors. Bioorg. Med. Chem. Lett. 2005, 15 (17), 3900-3907. https://doi.org/10.1016/j.bmcl.2005.05.090.

Bissantz, C.; Grether, U.; Kimbara, A.; Nettekoven, M.; Roever, S.; Rogers-Evans, M. Novel [1,2,3]triazolo[4,5-d]pyrimidine derivatives. US2013137676 A1, May 30, 2013.

Adam, J.-M.; Bissantz, C.; Grether, U.; Kimbara, A.; Nettekoven, M.; Roever, S.; Rogers-Evans, M. Novel [1,2,3]triazolo[4,5-d]pyrimidine derivatives. US2013116236 A1, May 9, 2013.

Bissantz, C.; Grether, U.; Kimbara, A.; Nettekoven, M.; Roever, S.; Rogers-Evans, M. [1,2,3]triazolo[4,5-d]pyrimidine derivatives as agonists of the cannabinoid receptor 2 agonists. WO2013076182 A1, May 30, 2013.

Grether, U.; Nettekoven, M.; Rogers-Evans, M.; Schmitt, S.; Stenton, B. J. Triazolo[4,5-d]pyrimidines as agonists of the cannabinoid receptor 2. WO2016071375 A1, May 12, 2016.

Perez Perez, M. J.; Gigante Martinez, A.; Canela Gomez, M. D.; Leyssen, P.; Neyts, J. Novel antiviral compounds. WO2014170368 A1, Oct 23, 2014.

Miyashita, A.; Fujimoto, K.; Okada, T.; Higashino, T. Synthesis of fused pyrimidinones by reaction of aminoarenecarboxamide with esters; preparation of pyrrolo[2,3-d]-, thieno[2,3-d]-, isoxazolo[5,4-d]-, and 1,2,3-triazolo[4,5-d]pyrimidinones, and quinazoles. Hetercycles 1996, 42 (2), 691–699. https://doi.org/10.3987/COM-95-S75.

Saundane, A. R.; Halu, A.; Kirankumar, N. M. Synthesis and biological evaluation of some novel indole analogues containing triazolopyrimidine moiety. Monatshefte für Chemie – Chemical Monthly 2017, 148 (8), 1497-1511. https://doi.org/10.1007/s00706-017-1957-1.

Higashino, T.; Sato, S.; Miyashita, A.; Katori, T. ChemInform Abstract: Studies on Pyrazolo[3,4-d]pyrimidine Derivatives. Part 16. Preparation of Reissert Compounds from Condensed Pyrimidine Systems Catalyzed by Lewis Acids. ChemInform 1988, 19 (23). https://doi.org/10.1002/chin.198823238.

Biagi, G.; Giorgi, I.; Livi, O.; Scartoni, V.; Tonetti, I.; Lucacchini, A. ChemInform Abstract: Xanthine Oxidase Inhibition: Effect of a Linear Carboalkoxy Substituent on C-2 of the Nucleus of 8-Azahypoxanthine. ChemInform 1991, 22 (12). https://doi.org/10.1002/chin.199112243.

Albert, A. v-Triazolo[4,5-d]pyrimidines (8-azapurines). Part 24. The 3-alkyl derivatives. J. Chem. Soc., Perkin Trans. 1 1981, 2344-2351. https://doi.org/10.1039/P19810002344.

Albert, A.; Trotter, A. M. v-Triazolo[4,5-d]pyrimidines (8-azapurines). Part 21. Synthesis of 2-substituted 8-azapurin-6-ones from 4-amino-1,2,3-triazole-5-carboxamides and amidines. J. Chem. Soc., Perkin Trans. 1 1979, 922-925. https://doi.org/10.1039/P19790000922.

Yang, W.; Ma, H.; Yang, Q.; Wang, J.; Liu, Y.; Yang, Q.; Wu, J.; Song, C.; Chang, J. The first example of palladium-catalyzed cascade amidine arylation–intramolecular ester amidation for the synthesis of hypoxanthines: application to the synthesis of 8-azanebularine analogues. Org. Biomol. Chem. 2017, 15 (2), 379-386. https://doi.org/10.1039/C6OB02121B.

Yang, W.; Peng, Y.; Wang, J.; Song, C.; Yu, W.; Zhou, Y.; Jiang, J.; Wang, Q.; Wu, J.; Chang, J. Design, synthesis, and biological evaluation of novel 2′-deoxy-2′-fluoro-2′-C-methyl 8-azanebularine derivatives as potent anti-HBV agents. Bioorg. Med. Chem. Lett. 2019, 29 (11), 1291-1297. https://doi.org/10.1016/j.bmcl.2019.04.005.

Da Settimo, A.; Livi, O.; Ferrarini, P. L.; Biagi, G. ChemInform Abstract: Synthesis and pharmacological activity of three new 9-aryl-8-azaadenine derivatives. Chemischer Informationsdienst 1980, 11 (30). https://doi.org/10.1002/chin.198030259.

Kislyi, V. P.; Danilova, E. B.; Semenov, V. V. Synthesis of 6-mono- and 5,6-disubstituted 1,2,3-triazolo[4,5-d]pyrimidin-7-ones. Russ. Chem. Bull. 2003, 52 (8), 1770-1776. https://doi.org/10.1023/A:1026004720790.

Maková, B.; Mik, V.; Lišková, B.; Gonzalez, G.; Vítek, D.; Medvedíková, M.; Monfort, B.; Ručilová, V.; Kadlecová, A.; Khirsariya, P.; Gándara Barreiro, Z.; Havlíček, L.; Zatloukal, M.; Soural, M.; Paruch, K.; D'Autréaux, B.; Hajdúch, M.; Strnad, M.; Voller, J. Cytoprotective activities of kinetin purine isosteres. Bioorg. Med. Chem. 2021, 33, 115993. https://doi.org/10.1016/j.bmc.2021.115993.

Bosch, J. A.; Connolly, S.; Eastwood, P. R.; Roberts, R. S.; Gomez, S. S.; Javaloyes, J. F. C. New TRPA1 antagonists. WO2017064068 A1, Apr 20, 2017.

Bianucci, A. M.; Biagi, G.; Coi, A.; Giorgi, I.; Oreste, L.; Pacchini, F.; Scartoni, V.; Lucacchini, A.; Costa, B. Bioisosterism, enantioselectivity, and molecular modeling of new effective N6- and/or N(9)-substituted 2-phenyl adenines and 8-aza analogs: Different binding modes to A1 adenosine receptors. Drug Dev. Res. 2001, 54 (2), 52-65. https://doi.org/10.1002/ddr.1205.

Scheiner, P.; Arwin, S.; Eliacin, M.; Tu, J. 1-Aminohypoxanthine and analogues. J. Heterocycl. Chem. 1985, 22 (5), 1435-1440. https://doi.org/10.1002/jhet.5570220563.

Liang, C. PI3K (delta) selective inhibitors. WO2011041399 A2, Apr 7, 2011.

Fuksova, K.; Havlicek, L.; Krystof, V.; Lenobel, R.; Strnad, M. Azapurine derivatives. WO2004018473 A2, Mar 4, 2004.

Karalkar, N. B.; Khare, K.; Molt, R.; Benner, S. A. Tautomeric equilibria of isoguanine and related purine analogs. Nucleosides, Nucleotides Nucleic Acids 2017, 36 (4), 256-274. https://doi.org/10.1080/15257770.2016.1268694.

Romero, D.; Robinson, S.; Greenwood, J. R.; Harriman, G. C.; Boyce, S. IRAK inhibitors and uses thereof. WO2017004133 A1, Jan 5, 2017.

Reddy, S. S.; Vineel, B. G.; Venkataiah, S.; Naidu, A.; Dubey, P. K. Synthesis of novel (S)-Imidazolo[1,2-c][1,2,3]triazolo[4,5-e]pyrimidine derivatives. Asian J. Chem. 2014, 26 (23), 8110–8114. https://doi.org/10.14233/ajchem.2014.17565.

Havlicek, L.; Fuksova, K.; Krystof, V.; Orsag, M.; Vojtesek, B.; Strnad, M. 8-Azapurines as new inhibitors of cyclin-dependent kinases. Bioorg. Med. Chem. 2005, 13 (18), 5399-5407. https://doi.org/10.1016/j.bmc.2005.06.007.

Reddy, S. S.; Vineel, B. G.; Venkataiah, S.; Naidu, A.; Dubey, P. K. Novel synthesis of (R)-imidazolo[1,2-c][1,2,3]triazolo[4,5-e]pyrimidines. Asian J. Chem. 2014, 26 (22), 7693–7696. https://doi.org/10.14233/ajchem.2014.17606.

Gigante, A.; Gómez-SanJuan, A.; Delang, L.; Li, C.; Bueno, O.; Gamo, A.-M.; Priego, E.-M.; Camarasa, M.-J.; Jochmans, D.; Leyssen, P.; Decroly, E.; Coutard, B.; Querat, G.; Neyts, J.; Pérez-Pérez, M.-J. Antiviral activity of [1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones against chikungunya virus targeting the viral capping nsP1. Antiviral Res. 2017, 144, 216-222. https://doi.org/10.1016/j.antiviral.2017.06.003.

Hassan, A.; Ali, M. M.; Diaa, M.; Germoush, M. O.; Mohamed, A. M.; El-Sayed, W. Oxidative Stress of Some Triazolopyrimidine Derivatives and their Nucleoside Analogues on Mcf-7 and A549 Cell Lines. Egypt. J. Chem. 2020, 63 (1), 247-253. https://doi.org/10.21608/ejchem.2019.18248.2136.

Albert, A.; Taguchi, H. Synthesis from 1,2,3-triazole intermediates, of 2-amino-7-(also 8-)methyl-8-azapurin-6-ones (N-methylated ‘8-azaguanines’) and related 8-azapurines. J. Chem. Soc. D 1971, 6, 249-250. https://doi.org/10.1039/C29710000249.

Chissick, S. S.; Dewar, M. J. S.; Maitlis, P. M. New Heteroaromatic Compounds. XIV.1 Boron-containing Analogs of Purine, Quinazoline and Perimidine. J. Am. Chem. Soc. 1961, 83 (12), 2708-2711. https://doi.org/10.1021/ja01473a025.

Albert, A. v-Triazolo[4,5-d]pyrimidines (8-azapurines). Part XVI. Preparation of 6-amino-8-azapurines by heating 4-amino-1,2,3-triazole-5-carbonitrile (and its N-alkyl derivatives) with amidines. J. Chem. Soc., Perkin Trans. 1 1975, 4, 345-349. https://doi.org/10.1039/P19750000345.

Baranowski, D.; Framski, G.; Wyszko, E.; Ostrowski, T. Studies on structure of kinetin riboside and its analogues by variable-temperature NMR. J. Mol. Struct. 2019, 1195, 110-118. https://doi.org/10.1016/j.molstruc.2019.05.112.

Albert, A.; Lin, C. J. v-Triazolo[4,5-d]pyrimidines (8-azapurines). Part 18. Three new reactions for synthesizing 8-azapurinethiones from 4-amino-5-cyano-1,2,3-triazoles. J. Chem. Soc., Perkin Trans. 1 1977, (2), 210-213. https://doi.org/10.1039/P19770000210.

Kamel, E. M.; Ahmad, R. A.; Moustafa, O. S. A Convenient and Efficient Conversion of 4-Aminobenzophenone into Some New 1,2,3-Triazole and Benzothiazole Derivatives. J. Chin. Chem. Soc. 2005, 52 (1), 149-153. https://doi.org/10.1002/jccs.200500023.

Ried, W.; Laoutidis, J. Synthese neuer 6,7-heteroanellierter 3H-1,2,3-Triazolo[4,5-d]pyrimidin-derivate (8-Azapurin-derivate). Synthesis 1989, 1989 (10), 739-741. https://doi.org/10.1055/s-1989-27377.

Pokhodylo, N. T.; Shyyka, O. Y. New cascade reaction of azides with malononitrile dimer to polyfunctional [1,2,3]triazolo[4,5-b]pyridine. Synth. Commun. 2017, 47 (11), 1096-1101. https://doi.org/10.1080/00397911.2017.1313427.

Albert, A.; Dunand, A. 1,2,3-Triazolo[4,5-d][1,3]thiazin, ein neues heterocyclisches System. Angew. Chem. 1980, 92 (4), 319–320. https://doi.org/10.1002/ange.19800920424.

Biagi, G.; Giorgi, I.; Livi, O.; Scartoni, V.; Velo, S.; Lucacchini, A.; Senatore, G.; Barili, P. L. 1,2,3-Triazolodiazepines. I. Preparation and benzodiazepine receptor binding of 1-benzyl- and 1-phenethyl-1,2,3-triazolo-[4,5-b][1,4]diazepines. J. Heterocycl. Chem. 1995, 32 (1), 169-176. https://doi.org/10.1002/jhet.5570320127.

Chakrabarti, J. K.; Hotten, T. M.; Steggles, D. J. Benzodiazepine compounds and their use as pharmaceuticals. US4431589, Feb 14, 1984.

Acevedo, O. L.; Krawczyk, S. H.; Townsend, L. B. Total synthesis of (4R)- and (4S)-5,6-dihydro-1-b-D-ribofuranosyl-4H-pyrazolo[3,4-d][1,3]diazepin-4-ol and (8R)- and (8S)-7,8-dihydro-3-b-D-ribofuranosyl-6H-v-triazolo[4,5-d][1,3]diazepin-8-ol: two heterocyclic analogs of the nucleoside antibiotic coformycin. J. Org. Chem. 1986, 51 (7), 1050-1058. https://doi.org/10.1021/jo00357a020.

Kemskiy, S. V.; Syrota, N. A.; Bol’but, A. V.; Dorokhov, V. I.; Vovk, M. V. Synthesis of 5-hydroxy- and 5-sulfanyl-substituted [1,2,3]triazolo[4,5-е][1,4]diazepines. Chem. Heterocycl. Comp. 2018, 54 (8), 789-795. https://doi.org/10.1007/s10593-018-2350-7.

Syrota, N. А.; Kemskiy, S. V.; Bol’but, A. V.; Vovk, M. V. 4-(Boc-amino)-1Н-1,2,3-triazole-5-carboxylic acids – convenient reagents for the synthesis of 1,4,6,7-tetrahydro[1,2,3]triazolo[4,5-е][1,4]diazepine-5,8-diones. Chem. Heterocycl. Comp. 2019, 55 (11), 1092-1097. https://doi.org/10.1007/s10593-019-02583-6.

Weber, K.-H.; Langbein, A.; Daniel, H. Heteroaromaten mit anellierten Siebenringen, I. Oxazepinone und Thiazepinone. Justus Liebigs Ann. Chem. 1978, 1978 (8), 1241-1249. https://doi.org/10.1002/jlac.197819780804.

Syrota, N. A.; Kemskiy, S. V.; Bol’but, A. V.; Chernobaev, I. I.; Liavinets, O. S.; Vovk, M. V. 4-(N-Boc-amino)-1Н-1,2,3-triazolecarbothioamides in the synthesis of a new heterocyclic [1,2,3]triazolo[4,5-e][1,4]thiazepine system. Chem. Heterocycl. Comp. 2021, 57 (7), 841-847. https://doi.org/10.1007/s10593-021-02989-1.




How to Cite

Syrota, N. O.; Kemskiy, S. V.; Saliyeva, L. M.; Vovk, M. V. 1,2,3-Triazole-4(5)-Amines – Convenient Synthetic Blocks for the Construction of Triazolo-Annulated Heterocycles. J. Org. Pharm. Chem. 2022, 20, 27-51.



Review Articles