Complexation of 4-amino-N-hydroxybenzamide with Ru(III), Rh(III) and Pd(II) ions

Yu. L. Zborovskii, I. V. Babichuk, V. V. Orysyk, S. I. Orysyk, V. I. Pekhnyo, M. V. Vovk

Abstract


A series of hydroxamate and hydroximate complexes of Ru(III), Rh(III) and Pd(II) with 4-amino-N-hydroxybenzamide (AHBA) has been synthesized, and their IR, UV-Vis and NMR 1H spectral characteristics have been studied.
It has been found that AHBA interacts with metal ions mainly by the type of O,O’-coordination, wherein the structure of the complexes is largely dependent on the pH of medium. In acidic and weakly acidic media AHBA predominantly forms hydroxamate complexes with coordination of hydroxamic acid in neutral or mono deprotonated states. In NMR 1H spectra of hydroxamate complexes a singlet of NH protones is shifted upfield, which is associated with formation of cyclic metal chelates. In alkaline or near neutral media AHBA reacts as dianion to form anionic type hydroxamate complexes. In NMR 1H spectra of such complexes the singlets of NH and OH are absent. Depending on the nature of the metal, the central ion forms a square-planar [complexes of Pd(II)] or octahedral [complexes of Ru(III)] coordination unit, and it confirms the presence of d-d transition in electronic absorption spectra. The most characteristic of absorption bands in IR-spectra of the complexes are oxime group N–O of stretching vibrations that undergo low frequency offset by Dν = -(24–44) cm-1. The results obtained, as well as analysis of the published data show that increase of pH in the complexation reactions of hydroxamic acids leads to bidentate coordination of AHBA with formation of five-membered metallocycles.


Keywords


4-aminobenzhydroxamic acid; complexation reactions; complexes of Ru(III), Rh(III) and Pd(II); O,O’-coordination

References


Yang X., Yao C. Platinum Metals Review, 2013, Vol. 57, No.1, pp.2-16.

Leung S.-K., Kwok K. Y., Zhang K. Y., Lo K. K.-W. Inorganic Chemistry, 2010, Vol. 49, No.11, pp.4984-4995.

Paul P., Bhattacharya S. The Journal of Chemical Sciences, 2012, Vol. 124, No.6, pp.1165-1173.

Jansen E., Jongbloed L. S., Tromp D. S., Lutz M., de Bruin B., Cornelis J., Elsevier C. J. Chem. Sus. Chem., 2013, Vol. 6, No.9, pp.1737-1744.

Noffke A. L., Habtemariam A., Pizarro A. M., Sadler P. J. Chemical Communications, 2012, Vol. 48, No.43, pp.5219-5246.

Shen Y. F., Xue W. Y. Separation and Purification Technology, 2007, Vol. 56, No.3, pp.278-283.

Leung C.-H., Zhong H.-J., Chan D. S.-H., Ma D.-L. Coordination Chemistry Reviews, 2013, Vol. 257, No.11-12, pp.1764-1776.

Karki S. S., Thota S., Darj S. Y., Balzarini J., de Clercq E. Bioorganic and Medicinal Chemistry, 2007, Vol. 15, No.21, pp.6632-6641.

Che C.-M., Siu F.-M. Current Opinion in Chemical Biology, 2010, Vol. 14, No.2, pp.255-261.

Codd R. Coordination Chemistry Reviews, 2008, Vol. 252, No.12-14, pp.1387-1408.

Gez S., Luxenhofer R., Levina A., Codd R., Lay P. A. Inorganic Chemistry, 2005, Vol. 44, No.8, pp.2934-2943.

Chen Y., Gao Q., Liu Y., Cao Y., Gao D., Liu J. et al. Advances Royal Society of Chemistry, 2014, Vol. 4, No.1, pp.147-153.

Wegkamp A., van Oorschot W., de Vos W. M., Smid E. J. Applied and Environmental Microbiology, 2007, Vol. 73, No.8, pp.2673-2681.

Walsh C. T., Haynes S. W., Ames B. D. Natural Product Reports, 2012, Vol. 29, No.1, pp.37-59.

Kazitsina L. A. Kupletskaya N. B. Primenenie UF-, IK- i YaMR-spektroskopii v organicheskoy himii (Application of the UV, IR and NMR Spectroscopy in Organic Chemistry), 1971, pp.61-95.

Liver E. Elektronnaya spektroskopiya neorganicheskykh soedinenii (Electron spectroscopy of inorganic compounds), 1987, Pt. 1, 494 p.

Gaynor D., Starikova Z. A., Haase W., Nolan K. B. Journal of the Chemical Society, Dalton Transactions, 2001, No.10, pp. 1578-1581.


GOST Style Citations






DOI: https://doi.org/10.24959/ophcj.14.812

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: Ž. org. farm. hìm.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)