New derivatives of isonicotinic acid hydraside as potential antitubercular agents

Authors

  • N. B. Goncharenko Clinicodiagnostic laboratory of the territorial medical Association "Phthisiology", Ukraine
  • V. V. Blagodatnyi Shupyk National Medical Academy of Postgraduate Education, Ukraine
  • V. V. Kovalishyn Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Ukraine
  • І. M. Kopernyk Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Ukraine
  • O. P. Kozachenko Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Ukraine
  • V. S. Brovarets Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Ukraine
  • L. О. Metelytsia Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Ukraine

DOI:

https://doi.org/10.24959/ophcj.15.831

Keywords:

QSAR, Mycobacterium tuberculosis, H37RV, HR, isoniazide derivatives

Abstract

The appearance of multidrug-resistant strains of Mycobacterium tuberculosis (Mtb) is a stimulus for searching new and efficient antitubercular drugs. Despite the appearance of new antitubercular drugs, isoniazid is still the key and most effective component in all multitherapeutic regimens recommended by the WHO. This paper describes the QSAR design, synthesis and in vitro evaluation of the antitubercular activity of several potent isoniazid derivatives against Mtb strain (H37Rv) and resistant strain (HR). The QSAR method was applied using Artificial Neural Networks. The predictive ability of the regression model was estimated through leave-one-out cross-validation coefficient q2. The inhibition activities of 440 virtual compounds against Mtb were evaluated by the QSAR model developed, and seven isoniazid derivatives were selected and synthesized. In the biological research the multidrug-resistant strain of Mtb with resistance to isoniazid and rifampicin was used. All compounds synthesized with the predicted high activity showed antimycobacterial activity against Mtb strain H37Rv. “The compound-leader” – N1-(3-nitrophenylmethylidene)-pyridine-4-karbohidrazide revealing the activity against multiresistant strain (HR) of Mtb is identified as an original object for further research as an potential antimycobacterial agent.

Downloads

Download data is not yet available.

References

  1. Petrenko V. M. Ukrayns`kyj Pul`monologichnyj zhurnal – Ukrainian Pulmonology Journal, 2007, No.3, pp.35-39.
  2. World Health Organization. Global Tuberculosis Control: WHO Report 2012, Geneva: World Health Organization, WHO/CDS/CPC/TB/99.259.
  3. Panin I. V., Dobin V. L., Kochetkova G. V., Zamurueva E. V. Mezhdisciplinarnye aspectydifferencial`noj diagnostiki s lechenija bol`nyh tuberculezom, 2012, pp.54-55.
  4. Cubillos-Ruiz A., Morales J., Zambrano M. M. Bio. Med. Central. Research Notes, 2008, doi:10.1186/1756-0500-1-110.
  5. Levyc`ka N. A., Bajora Y. I.,Nikolaevs`kyj V. V., Asmolov O. K. Ukrayns`kyj Pul`monologichnyj zhurnal – Ukrainian Pulmonology Journal, 2003, No.4, pp.17-19.
  6. Ostroverha Y. A, Berenazhna L. V., Koval` J. B., Lozyns`ka H. R., Romanec` O. M. Profilaktyka tuberkul`ozu. Metodychnyj posibnyk. L`viv, 2012, p.168.
  7. Strachunskij L. S., Belousov Y. B., Kozlov C. N. Prakticheskoe rukovodstvo po nfekcionnoj himioterapii. Smolensk, 2002, p.586.
  8. Kovalishyn V., Kopernyk I., Chumachenko S., Shablykin O., Kondratyuk K., Pil’o S., Prokopenko V., Brovarets V., Metelytsia L. Computational Biology and Bioinformatics, 2014, Vol. 2, No.2, pp.25-32.
  9. Kovalishyn V., De Sousa J. A., Ventura C., Leitao R. E., Martins F. Chemometrics and Intelligent Laboratory Systems, 2011, Vol. 107, pp.69-74.
  10. https://www.chemaxon.com/, (accessed in January, 2014).
  11. http://www.talete.mi.it/products/dragon_description.htm (accessed in March 2014).
  12. Tetko I. V. J. Chem. Inf. Comput. Sci. Vol., 2002, No.42, pp.717-728.
  13. Kovalishyn V., Tanchuk V., Charochkina L., Semenuta I., Prokopenko V. Journal of Molecular Graphics and Modeling, 2012, Vol. 32, pp.32-38.
  14. Tetko I. V., Villa A. E. P. Neural Networks, 1997, No.10, pp.1361-1374.
  15. Cramer R. D., Patterson D. E., Bunce J. D. J. Am. Chem. Soc., 1988, Vol. 110, No.18, pp.5959-5967.
  16. Tropsha A. Mol. Inf., 2010, No.29, pp.476-488.
  17. Tetko I. V., Villa A. E. P., Aksenova T. I. et al. J. Chem. Inf. Comput. Sci., 1998, Vol. 38, pp.676-684.
  18. Kovalishyn V. V., Tetko I. V., Luik A. I., Kholodovych V. V., Villa A. E. P., Livingstone D. J. J. Chem. Inf. Comp. Sci., 1998, No.38, pp.651-659.
  19. Lo Monte F., Kramer T., Gu J., Brodrecht M., Pilakowski J., Fuertes A., Dominguez J.M., Plotkin B., Eldar-Finkelman H., Schmidt B. European Journal of Medicinal Chemistry, 2013, Vol. 61, pp.26-40.
  20. Rao V. S., Chandra Sekhar K. V. G. Synthetic Communications, 2004, Vol. 34, No.12, pp.2153-2157.
  21. Martins F., Santos S., Ventura C., Elvas-Leitao R., Santos L., Vitorino S., ReisM., Miranda V., Correia H., Aires-De-Sousa J., Kovalishyn V., Latino D., Ramos J., Viveiros M. European Journal of Medicinal Chemistry, 2014, Vol. 81, pp.119-138.
  22. Sah, Peoples. Journal of the American Pharmaceutical Association, 1954, Vol. 43, pp.513-514.
  23. Todoriko L. D., Eremenchuk I. V., Chornous V. O., Grozav A. M. Pul`monologichnyj zhurnal – Ukrainian Pulmonology Journal, 2012, No.1, pp.8-12.
  24. Rafiq Y., Jabeen K., Hasan R. PLOS ONE Journal Information, 2012, doi:10.1371/journal.pone.0050551, http://www.plosone.org/

Published

2015-03-12

How to Cite

(1)
Goncharenko, N. B.; Blagodatnyi, V. V.; Kovalishyn, V. V.; Kopernyk І. M.; Kozachenko, O. P.; Brovarets, V. S.; Metelytsia L. О. New Derivatives of Isonicotinic Acid Hydraside As Potential Antitubercular Agents. J. Org. Pharm. Chem. 2015, 13, 59-62.

Issue

Section

Original Researches