N-acylation of amino-9,10-anthraquinones by the system of strong carboxylic acid – ammonium thiocyanate

V. I. Zvarych, M. V. Stasevych, V. V. Lunin, V. P. Novikov, M. V. Vovk


The significance of the acylation reaction of amines is presented in the literary reference information. The products of the reaction of the corresponding amides are important intermediates in obtaining practically useful compounds. It has been shown that the most common methods of acylfunctionalization of amines are acetylation, trifluoroacetylation and formylation, usually acid anhydrides or chlorides are used as acylating reagents in these reactions in the presence of highly toxic and expensive catalysts. The authors have developed an approach to the synthesis of a number of N-acylated amino-9,10-anthraquinones, which is based on the use of a new acylation system consisting of a strong organic acid and ammonium thiocyanate. It has been determined that 1-amino-9,10-anthraquinone and its derivatives in the presence of the two-fold excess of ammonium thiocyanate can be acetylated only by formic and trifluoroacetic acids. 2-Amino-9,10-anthraquinone additionally can be acetylated by mercaptoacetic and acetic acids. The scheme of the reaction discovered has been proposed, it involves in situ generation of ammonium acetate from carboxylic acid and ammonium thiocyanate, which serves as the acylating reagent.


amino-9,10-anthraquinones; carboxylic acids; ammonium thiocyanate; ammonium acetate; acylation

Full Text:



Pearson A. L., Roush W. J. Handbook of Reagents for Organic Synthesis: Activating Agents and Protecting Groups. John Wiley and Sons: Chichester, UK, 1999, pp.9-16.

Greene T. W., Wuts P. G. M. Protective Groups in Organic Synthesis, 3-rd ed: Wiley; New York, 1999, 150 p.

Kobayashi K., Nagato S., Kawahita M. et al. Chem. Lett., 2011, Vol. 24, pp.575-576.

Chen B. C., Bendorz M. S., Zhao R. et al. Tetrahedron Lett., 2000, Vol. 41, pp.5453-5456.

Lei M., Ma L., Hu L. Tetrahedron Lett., 2010, Vol. 51, pp.4186-4288.

Hofle G., Steglish W., Vorbruggen H. Angew Chem. Int. Ed., 1978, Vol. 17, pp.569-583.

Saravanon P., Singh V. K. Tetrahedron Lett., 1999, Vol. 40, pp.2611-2614.

Vedejs E., Diver S. T. J. Amer. Chem. Soc., 1993, Vol. 115, pp.3358-3354.

Yadav V. K., Babu U. G., Mittal M. Tetrahedron., 2001, Vol. 57, pp.7047-7051.

Shallenberg E. E., Calvin M. J. Amer. Chem. Soc., 1955, Vol. 77, pp.2779-2783.

Staab N. A., Walther G., Rohr W. Chem. Ber., 1962, Vol. 95, pp.2073-2075.

Keumi T., Shimada M., Kitajima H. Bull. Chem.Soc. Jpn., 1990, Vol. 63, pp.2252-2256.

Forbus T. R., Taylor S. L., Martin J. C. J. Org. Chem., 1987, Vol. 52, pp.4156-4159.

Waki J., Mainhofer J. J. Org. Chem., 1977, Vol. 42, pp.2019-2020.

Chen F. M., Benoiton N. L. Synthesis., 1979, No.9, pp.709-710.

Chandra S. A. C., Kumar A. R., Sathaian G. Tetrahedron Lett., 2009, Vol. 50, pp.7099-7081.

Basanagonda M., Kulkarni M. V., Kalkhambkar R. G., Kulkarni G. M. Synt. Commun., 2008, Vol. 38, pp.2929-2940.

Brachmachari G., Laskar S., Sarkar S. Ind. J. Chem. B., 2010, Vol. 49, pp.1274-1281.

Brachmachari G., Laskar S., Sarkar S. J. Chem. Res., 2010, No.5, pp.288-295.

Zhan J., Gunatilaka A. A. L. Bioorg. Med. Chem., 2008, Vol. 16, pp.5085-5089.

Niu H-T., Su D., Jiang X. et al. Org. Biomol. Chem., 2008, No.6, pp.3038-3040.

Saeed A., Javed I. J. Chem. Soc. Chem. Commun., 1987, No.2, pp.114-115;

Kazankov M. V., Ginodman L. G., Mustafina M. Ya. Zhurnal Organicheskoi Khimii, 1981, Vol. 17, No.2, pp.306-313.

Patent DE626788. I. G. Farbenind. 1933, Fortschr. Teerfarbenfabr. Verw. Industriezweige, Vol. 22, p.1027.

Kurzer F. Org. Synth. Coll. Vol. 4, Wiley, New York, 1963, рр.180.

Prasad H. S., Srinivasa G. R., Gowda D. C. Synt. Commun., 2005, Vol. 35, pp.1189-1195.

GOST Style Citations

DOI: https://doi.org/10.24959/ophcj.15.845

Abbreviated key title: Ž. org. farm. hìm.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)