Interaction between palladium(II) ions and asparagine in aqueous solutions

O. M. Kozachkova, I. P. Kutsenko, N. V. Tsarik, V. I. Pekhnyo

Abstract


The interaction between Pd(II) and asparagines (Asn) in aqueous solutions with the physiological concentration of chloride ions (0.15 mol/L KCl) has been studied by election spectroscopy and pH potentiometry depending on the ratio of Pd(II):Asn and pH. The formation of equimolar and bisligand complexes has been found where the Asn molecule is coordinated to the central metal ion in a bidentate fashion either by the amine group nitrogen atom and the carboxyl group oxygen atom or by the nitrogen atoms of the amine group and the deprotonated amide group. In the case of bidentate coordination of Asn in complexes with the ratio of metal : ligand = 1 : 1, the Pd(II) coordination sphere is complemented by two chloride ions. The composition of the first coordination sphere of Pd(II) complexes has been characterized on the basis of the position of the absorption band maximum in the electronic spectra of solutions. By the PSEQUAD programme the formation constants of Pd(II) asparaginate complexes: lgβ [PdLCl2]- = 19.36 (2); lgβ [PdLH-1Cl2]2- = 13.63 (1); lgβ [PdL2] = 25,99 (2); lgβ [PdL2H-1]- = 19.97 (4); lgβ [PdL2H-2]2- = 12.78 (4) have been calculated taking into account the concentration of chloride ions. Based on the equilibrium concentration distribution diagrams constructed for the complexes it has been shown that at the physiological values of pH and the chloride ion concentration the complexes [PdLH-1Cl2]2- in the ratio of metal : ligand = 1 : 1 and [PdL2H-1]-, [PdL2H-2]2- in the ratio of metal : ligand = 1 : 2 predominate in solutions.


Keywords


complexes of Pd(II); asparagine; constants of complex formation; inner coordination sphere of complexes

References


Abu-Surrah A. S., Kettunen M. Curr. Med. Chem., 2006, Vol. 13, No.11, рр.1337-1357.

Ho Y. P., Au-Yeung S. C. F., To K. K. W. Med. Res. Rev., 2003, Vol. 23, No.5, рр.633-655.

Wheate N. J., Walker S., Craig G. E., Oun R. Dalton Trans., 2010, Vol. 39, No.35, рр.8113-8127.

Kontek R., Matlawska-Wasowska K., Kalinowska-Lis U., Kontek B., Ochocki J. Acta Pol. Pharm., 2011, Vol. 68, No.1, рр.127-136.

Abu-Surrah A. S., Al-Sa’doni H. H., Abdalla M. Y. Cancer Therapy, 2008, Vol. 6, рр.1-10.

Gorbacheva P. B., Tikhomirov A. G., Dederer L. Yu., Ivanova N. A., Erofeeva O. S., Ochertyanova L. I., Efimenko I. A. Pharm. Chem. J., 2008, Vol. 42, No.2, pp.3-5.

Chornen’ka N. V., Pekhn’o V. I., Volkov S. V. Reports of the National Academy of Sciences of Ukraine, 2010, No.5, pp.156-160.

Farooq O., Ahmad N., Malik A. V. J. Electroanal. Chem., 1973, Vol. 48, pp.475-479.

Graham R. D., Williams D. R. J. Chem. Soc. Dalton Trans., 1974, No.11, pp.1123-1125.

Tewari R. C., Srivastava M. N. Acta Chim. Acad. Sci. Hung., 1974, Vol. 83, No.3-4, pp.259-263.

Liver E. Electronic Spectroscopy of Inorganic Compounds. – Moscow: Mir, 1978, p.445.

Yatsimirskii K. B., Kozachkova A. N. Proceedings of the Ukrainian Academy of Sciences, Section B, 1989, No.11, pp.57-61.

Zolotov Y. A., Varshal G. M., Ivanov V. M. Analytical chemistry of platinum group metals, Moscow: Editorial URSS, 2003, p.529.

Elding L. I. Inorg. Chim. Acta, 1972, Vol. 6, No.4, pp.647-651.

Yatsimirskii K. B., Mosin V. V., Kozachkova A. N. Russian J. of Coord. Chem., 1993, Vol. 19, No.10, pp.793-796.

Zekany L., Nagypal I. Computational methods for the determination of formation constants Ed. D. J. Leggett, New York: Plenum Press, 1985, p.354.


GOST Style Citations






DOI: https://doi.org/10.24959/ophcj.15.848

Abbreviated key title: Ž. org. farm. hìm.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)