H2S Donors in creation of innovative drugs

D. V. Kaminskyy, A. P. Kryshchyshyn, O. P. Yelisyeyeva, R. B. Lesyk

Abstract


Fundamental studies have identified a new group of gaseous signaling molecules – the so-called gasotransmitters – NO, CO, and H2S, which are involved in the regulation of a large number of metabolic processes. The results of these studies allowed determining a new direction in medicinal/pharmaceutical chemistry – creation of hydrogen sulfide donor compounds as potential drugs. The article presents the main achievements in the search for new H2S donors: the main stages of H2S metabolism and its biological effects; the classes of compounds that can release hydrogen sulfide based on the nature of sulfur-containing functional groups as well as the mechanism of H2S releasing. Additionally, the characteristic of the most successful direction – creation of the so-called hybrid molecules is given. The latter are compounds bearing fragments of the well known drugs covalently bounded with groups being capable to release H2S.


Keywords


H2S; metabolism; biological effects of H2S; sulfur-containing groups; H2S-donors

References


Lowicka, E. Hydrogen sulfide (H(2)S) – the third gas of interest for pharmacologists / E. Lowicka, J. Beltowski // Pharmacol. Reports. – 2007. –

Vol. 59, Issue 1. – P. 4–24. Available at : http://if pan.krakow.pl/pjp/pdf/2007/1_4.pdf

Li, L. Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation – a tale of three

gases! / L. Li, A. Hsu, P. K. Moore // Pharmacol. & Therapeutics. – 2009. – Vol. 123, Issue 3. – P. 386–400. doi: 10.1016/j.pharmthera.2009.05.005

Pryor, W. A. Free radical biology and medicine : it’s a gas, man! / W. A. Pryor // AJP : Regulatory, Integrative and Comparative Physiol. – 2006. – Vol. 291, Issue 3. – P. R491–R511. doi: 10.1152/ajpregu.00614.2005

Abe, K. The possible role of hydrogen sulfide as an endogenous neuromodulator / K. Abe, H. J. Kimura // Neurosci. – 1996. – Vol. 16, Issue 3. – P. 1066–1071. Available at : http://www.jneurosci.org/content/jneuro/16/3/1066.full.pdf

Brosnan, J. T.The sulfur–containing amino acids : an overview / J. T. Brosnan, M. E. Brosnan // J. Nutrit. – 2006. – Vol. 136, Issue 6. – P. 1636–1640. Available at : http://jn.nutrition.org/content/136/6/1636S.full.pdf+html

Impaired homocysteine metabolism and atherothrombotic disease / P. Durand, M. Prost, N. Loreau et al. // D. Lab. Invest. – 2001. – Vol. 81, Issue 5. – P. 645–672. Available at : http://www.nature.com/labinvest/journal/v81/n5/pdf/3780275a.pdf

Hayes, K. C. Taurine in metabolism / K. C. Hayer, J. A. Sturman // Ann. Rev. Nutr. – 1981. – Vol. 1. – P. 401–425.

Kabil, O. Enzymology of H2S Biogenesis, Decay and Signaling / O. Kabil, R. Banerjee // Antiox. Redox. Signal. – 2014. – Vol. 20, Issue 5. – P. 770–782.

doi: 10.1089/ars.2013.5339

Kimura, H. Hydrogen sulfide : its production and functions / H. Kimura // Exp. Physiol. – 2011. – Vol. 96, Issue 9. – P. 833–835. doi: 10.1113/

expphysiol.2011.057455

Kimura, H. Physiological role of hydrogen sulfide and polysulfide in the central nervous system / H. Kimura // Neurochem. Int. – 2013. – Vol. 63,

Issue 5. – P.492–497. doi: 10.1016/j.neuint.2013.09.003

Dynamic Change of Hydrogen Sulfide After Traumatic Brain Injury and its Effect in Mice / M. Zhang, H. Shan, T. Wang et al. // Neurochem. Res. –

– Vol. 38, Issue 4. – P.714–725.doi: 10.1007/s11064–013–0969–4

Vascular Endothelium Expresses 3–Mercaptopyruvate Sulfurtransferase and Produces Hydrogen Sulfide / N. Shibuya, Y. Mikami, Y. Kimura et al.

// J. Biochem. – 2009. – 146, Issue 5. – P. 623–626. doi: 10.1093/jb/mvp111

Wang, R. Physiological Implications of Hydrogen Sulfide : A Whiff Exploration That Blossomed / R. Wang // Physiol. Rev. – 2012. – Vol. 92, Issue

– P.791–896. doi: 10.1152/physrev.00017.2011

A novel pathway for the production of hydrogen sulfide from D–cysteine in mammalian cells / N. Shibuya, S. Koike, M. Tanaka et al. // Nature

Commun. – 2013. – Vol. 4. – 1366 p. doi: 10.1038/ncomms2371

Jakubowski, H. Synthesis of homocysteine thiolactone by methionyl–tRNA synthetase in cultured mammalian cells / H. Jakubowski, E. Goldman //

FEBS Lett. – 1993. – Vol. 317, Issue 3. – P. 237–240. doi: 10.1016/0014–5793(93)81283–6

Eto, K. The production of hydrogen sulfide is regulated by testosterone and S–adenosyl–l–methionine in mouse brain / K. Eto, H. Kimura // J.

Neurochem. –2002. – Vol. 83, Issue 1. – P.80–86. doi: 10.1046/j.1471–4159.2002.01097.x

Obeid, R. Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia / R. Obeid, W. Herrmann //

FEBS Lett. – 2006. – Vol. 580, Issue 13. – P. 2994–3005. doi: 10.1016/j.febslet.2006.04.088

Kimura, H. Hydrogen Sulfide Is a Signaling Molecule and a Cytoprotectant / H. Kimura, Y. Kimura, N. Shibuya // Antioxid. Redox. Signal. – 2012.

– Vol. 17, Issue 1. – P.45–57. doi: 10.1089/ars.2011.4345

Thioredoxin and dihydrolipoic acid are required for 3–mercaptopyruvate sulfurtransferase to produce hydrogen sulfide / Y. Mikami, N. Shibuya,

Y. Kimura et al. // Biochem. J. – 2011. – Vol. 439, Issue 3. – P. 479–485. doi: 10.1042/BJ20110841

Qian, L. Chemical foundations of hydrogen sulfide biology / L. Qian, J. R. Lancaster // Nitric Oxide. – 2013. – Vol. 35. – P. 21–34. doi: 10.1016/j.

niox.2013.07.001

Zhao, Y. Hydrogen sulfide (H2S) releasing agents : chemistry and biological applications / Y. Zhao, T. D. Biggs, M. Xian // Chem. Comm. – 2014. –

Vol. 50, Issue 8. – P. 11788–11805. doi: 10.1039/C4CC00968A

Natural Products Containing Hydrogen Sulfide Releasing Moieties / M. D. Pluth, T. S. Bailey, M. D. Hammers et al. // Synlett. – 2015. – Vol. 26, Issue 19. – P. 2633–2643. doi: 10.1055/s–0035–1560638

Polysulfides are possible H2S–derived signaling molecules in rat brain / Y. Kimura, Y. Mikami, K. Osumi et al. // FASEB J. – 2013. – Vol. 27, Issue 6. –

P. 2451–2457. doi: 10.1096/fj.12–226415

Kimura, H. Hydrogen sulfide : its production, release and functions / H. Kimura // Amino Acids. – 2011. – Vol. 41, Issue 1. – P. 113–121. doi:

1007/s00726–010–0510–x

Hughes, M. N. Making and working with hydrogen sulfide / M. N. Hughes, M. N. Centelles, K. P. Moore // Free Radic. Biol. Med. – 2009. – Vol. 47,

Issue 10. – P. 1346–1353. doi: 10.1016/j.freeradbiomed.2009.09.018

Guo, W. Hydrogen sulfide and translational medicine / W. Guo, Z. Y. Cheng, Y. Z. Zhu // Acta Pharmacol. Sinica. – 2013. – Vol. 34, Issue 10. –

P. 1284–1291. doi: 10.1038/aps.2013.127

Kashfi, K. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide–releasing chimeras / K. Kashfi, K. R. Olson // Biochem.

Pharmacol. 2013. – Vol. 85, Issue 5. – P. 689–703. doi: 10.1016/j.bcp.2012.10.019

Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest / M. Carballal, E. Trujillo, S. Cuevasanta et al. // Free

Rad. Biol. Med. – 2011. – Vol. 50, Issue 1, P. 196–205. doi: 10.1016/j.freeradbiomed.2010.10.705

Zhao, Y. Cysteine–Activated Hydrogen Sulfide (H2S) Donors / Y. Zhao, H. Wang, M. J. Xian // Am. Chem. Soc. – 2011. – Vol. 133, Issue 1. – P. 15–17.

doi: 10.1021/ja1085723

Wang, R. Two’s company, three’s a crowd : can H2S be the third endogenous gaseous transmitter? / R. Wang // FASEB J. – 2002. – Vol. 16, Issue 13. – P. 1792–1798. doi: 10.1096/fj.02–0211hyp

The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener / W. Zhao, J. Zhang, Y. Lu, R. Wang // EMBO J. – 2001. – Vol. 20, Issue 21. – P. 6008–6016. doi: 10.1093/emboj/20.21.6008

Tang, G. Direct stimulation of KATP channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle / G. Tang // Mol. Pharmacol.

–2005. – Vol. 68. – P. 1757–1764. doi: 10.1124/mol.105.017467

Zhao, W. H2S–induced vasorelaxation and underlying cellular and molecular mechanisms / W. Zhao, R. Wang // Am. J. Physiol. Heart Circ. Physiol.

– 2002. – Vol. 283, Issue 2. – P. H474–H480. doi: 10.1152/ajpheart.00013.2002

Hydrogen sulfide in combination with taurine or cysteic acid reversibly abolishes sodium currents in neuroblastoma cells / M. W. Warenycia,

J. A. Steele, E. Karpinski, R. J. Reiffenstein // Neurotox. – 1989. – Vol. 10. – P. 191–199.

Biomarkers of oxidative and nitro–oxidative stress: conventional and novel approaches / A. Cipak Gasparovic, N. Zarkovic, K. Zarkovic et al. //

Brit. J. Pharmacol. – 2017. doi: 10.1111/bph.13673

Vasoconstrictive effect of hydrogen sulfide involves downregulation of cAMP in vascular smooth muscle cells / J. J. Lim, Y.–H. Liu et al. // Am. J.

Physiol. Cell Physiol. – 2008. – Vol. 295, Issue 5. – P. C1261–C1270. doi: 10.1152/ajpcell.00195.2008

Hydrogen Sulfide–Induced Dual Vascular Effect Involves Arachidonic Acid Cascade in Rat Mesenteric Arterial Bed / R. d’E. Di Villa Bianca, R. Sorrentino,

C. Coletta et al. // J. Pharmacol. Exp. Ther. – 2011. –Vol. 337, Issue 1. – P. 59–64. doi: 10.1124/jpet.110.176016

The Role of Endogenous H2S in Cardiovascular Physiology / N. Skovgaard, A. Gouliaev, M. Aalling, U. Simonsen // Curr. Pharm. Biotechnol. – 2011.

– Vol. 12, Issue 9. – P. 1385–1393. doi: 10.2174/138920111798280956

Contractile and Vasorelaxant Effects of Hydrogen Sulfide and Its Biosynthesis in the Human Internal Mammary Artery / G. D. Webb, L. H. Lim,

V. M. S. Oh et al. // J. Pharmacol. Exp. Ther. – 2008. – Vol. 324, Issue 2. – P. 876–882. doi: 10.1124/jpet.107.133538

Lavu, M. Hydrogen sulfide–mediated cardioprotection : mechanisms and therapeutic potential / M. Lavu, S. Bhushan, D. J. Lefler // Clin. Sci. –

– Vol. 120, Issue 6. – P. 219–229. doi: 10.1042/CS20100462

Brittain, T. The interaction of human neuroglobin with hydrogen sulphide / T. Brittain, Y. Yosaatmadja, K. Henty // IUBMB Life. – 2008. – Vol. 60,

Issue 2. – P. 135–138.doi: 10.1002/iub.16

Hydrogen sulfide mitigates matrix metalloproteinase–9 activity and neurovascular permeability in hyperhomocysteinemic mice / N. Tyagi, S. Givvimani, N. Qipshidze et al. // Neurochem. Int. – 2010. – Vol. 56, Issue 2. – P. 301–307. doi: 10.1016/j.neuint.2009.11.002

Calvert, J. W. Novel Insights Into Hydrogen Sulfide–Mediated Cytoprotection / J. W. Calvert, W. A. Coetzee, D. J. Lefer //Antioxid. Redox. Signal. –

– Vol. 12, Issue 10. – P. 1203–1217. doi: 10.1089/ars.2009.2882

Physiological and pharmacological features of the novel gasotransmitter : Hydrogen sulfide / D. Mancardi, C. Penna, A. Merlino et al. // Biochim.

Biophys. Acta. – 2009. – Vol. 1787, Issue 7. – P. 864–872. doi: 10.1016/j.bbabio.2009.03.005

Whiteman, M. Hydrogen sulfide and the vasculature: a novel vasculoprotective entity and regulator of nitric oxide bioavailability? / M. Whiteman, P. K. Moore // J. Cell Mol. Med. – 2009. – Vol. 13, Issue 3. – P. 488–507. doi: 10.1111/j.1582–4934.2009.00645.x

Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems / V. S. Lin, W. Chen,

M. Xian, C. J. Chang // Chemical. Soc. Rev. – 2015. – Vol. 44, Issue 14. – P. 4596–4618. doi: 10.1039/C4CS00298A

Юрченко, П. О. Роль системи гідроген сульфіду в механізмах ураження мозку за умов гіпергомоцистеїнемії : дис. … н. ст. канд. мед. наук

: 14.01.32 / П. О. Юрченко. – Вінниця, 2016.

Пентюк, Н. О. Гіперпродукція вазоактивних медіаторів як патогенетичний чинник розвитку ускладнень цирозу печінки у щурів

/ Н. О. Пентюк, Н. В. Харченко // Сучасна гастроентерол. – 2010. – № 2 (52), С. 33–43. Режим доступу : http://vitapol.com.ua/user_files/

pdfs/gastro/978639636524872_06062010115352.pdf

Li, L. Could hydrogen sulfide be the next blockbuster treatment for inflammatory disease? / L. Li, P. K. Moore // Expert. Rev. Clin. Pharmacol. –

– Vol. 6, Issue 6. – P. 593–595. doi: 10.1586/17512433.2013.842126

Wallace, J. L. Hydrogen sulfide–releasing anti–inflammatory drugs / J. L. Wallace // Trends Pharmacol. Sci. – 2007. – Vol. 28, Issue 10. – P. 501–505.

doi: 10.1016/j.tips.2007.09.003

Hydrogen sulfide induces ICAM–1 expression and neutrophil adhesion to caerulein–treated pancreatic acinar cells through NF–κB and Src–family

kinases pathway / R. Tamizhselvi, Y. H. Koh, J. Sun et al. // Exp. Cell Res. – 2010. – Vol. 316, Issue 9. – P. 1625–1636. doi: 10.1016/j.yexcr.2010.02.044

Pro–inflammatory effects of hydrogen sulphide on substance P in caerulein–induced acute pancreatitis / M. Bhatia, J. N. Sidhapuriwala et al. //

J. Cell Mol. Med. – 2008. – Vol. 12, Issue 2. – P. 580–590. doi: 10.1111/j.1582–4934.2007.00131.x

Hydrogen sulfide donors in research and drug development / Z. J. Song, M. Y. Ng, Z. W. Lee et al. // Med. Chem. Comm. – 2014. – Vol. 5, Issue 5. –

p. doi: 10.1039/C3MD00362K

Forgan, L. G. Oxygen consumption, ventilation frequency and cytochrome c oxidase activity in blue cod (Parapercis colias) exposed to hydrogen

sulphide or isoeugenol / L. G. Forgan, M. E. Forster // Comp. Biochem. Physiol. Toxicol. Pharmacol : CBP. – 2010. – Vol. 151, Issue 1. – P. 57–65.

doi: 10.1016/j.cbpc.2009.08.008

Baumgart, K. Applying gases for microcirculatory and cellular oxygenation in sepsis : effects of nitric oxide, carbon monoxide, and hydrogen sulfide

/ K. Baumgart, P. Radermacher, F. Wagner // Curr. Opin. Anaesthesiol. – 2009. – Vol. 22, Issue 2. – P. 168–176. doi: 10.1097/ACO.0b013e328328d22f

H2S during circulatory shock : Some unresolved questions / O. McCook, P. Radermacher, C. Volani et al. // Nitric Oxide. – 2014. – Vol. 41, P. 48–61.

doi: 10.1016/j.niox.2014.03.163

Hartle, M. D. A practical guide to working with H2S at the interface of chemistry and biology / M. D. Hartle, M. D. Pluth // Chem. Soc. Rev. – 2016.

– Vol. 45, Issue 2. – P. 6108–6117. doi: 10.1039/C6CS00212A

Wallace, J. L. Hydrogen sulfide–based therapeutics: exploiting a unique but ubiquitous gasotransmitter / J. L. Wallace, R. Wang // Nat. Rev. Drug

Discov. –2015. – Vol. 14, Issue 5. – P. 329–345. doi: 10.1038/nrd4433

Onions? A global benefit to health / G. Griffiths, L. Trueman et al. // Phytother. Res. – 2002. – Vol. 16, Issue 7. – P. 603–615. doi: 10.1002/ptr.1222

Смаглий, Л. Сероводород – новое лекарство для сосудов / Л. Смаглий // Биомолекула. – 2013. Режим доступа : http://biomolecula.ru/

content/1373.

Synthesis and Biological Effects of Hydrogen Sulfide (H2S) : Development of H2S–Releasing Drugs as Pharmaceuticals / G. Caliendo, G. Cirino,

V. Santagada, J. L. Wallace // J. Med. Chem. – 2010. – Vol. 53, Issue 17. – P. 6275–6286. doi: 10.1021/jm901638j

Phosphinodithioate and Phosphoramidodithioate Hydrogen Sulfide Donors / M. Whiteman, A. Perry, Z. Zhou et al. // Handbook of Exp. Pharmacol.

– 2015. – Vol. 230. – P. 337–363. doi: 10.1007/978–3–319–18144–8_17

Characterization of a Novel, Water–Soluble Hydrogen Sulfide–Releasing Molecule (GYY4137) : New Insights Into the Biology of Hydrogen Sulfide /

L. Li, M. Whiteman, Y. Y. Guan et al. // Circulation. – 2008. – Vol. 117, Issue 18. – P. 2351–2360. doi: 10.1161/CIRCULATIONAHA.107.753467

The Slow–Releasing Hydrogen Sulfide Donor, GYY4137, Exhibits Novel Anti–Cancer Effects In Vitro and In Vivo / Z. W. Lee, J. Zhou et al. // PLoS

One. – 2011. – Vol. 6, Issue 6. – e21077 p. doi: 10.1371/journal.pone.0021077

Synthesis and evaluation of phosphorodithioate–based hydrogen sulfide donors / C. Park, Y. Zhao, Z. Zhu et al. // Mol. Bio. Syst. – 2013. – Vol. 9,

Issue 10. –P. 2430–2434. doi: 10.1039/C3MB70145J

Kodela, R. NOSH–Aspirin : A Novel Nitric Oxide–Hydrogen Sulfide–Releasing Hybrid: A New Class of Anti–inflammatory Pharmaceuticals / R. Kodela,

M. Chattopadhyay, K. Khosrow // ACS Med. Chem. Lett. – 2012. – Vol. 3, Issue 3. – P. 257–262. doi: 10.1021/ml300002m

Enhanced chemopreventive effects of a hydrogen sulfide–releasing anti–inflammatory drug (ATB–346) in experimental colorectal cancer /

W. Elsheikh, R. W. Blackler, K. L. Flannigan, J. L. Wallace // Nitric Oxide. – 2014. – Vol. 41. – P.131–137. doi: 10.1016/j.niox.2014.04.006

Thioglycine and l–thiovaline : Biologically active H2S–donors / Z. Zhou, M. von Wantoch Rekowski, C. Coletta, C. Szabo et al. // Bioorg. Med. Chem.

– 2012. – Vol. 20, Issue 8. – P. 2675–2678. doi: 10.1016/j.bmc.2012.02.028

Light–Induced Hydrogen Sulfide Release from “Caged” gem–Dithiols / N. O. Devarie–Baez, P. E. Bagdon, B. Peng et al. // Org. Lett. – 2013. – Vol. 15,

Issue 11. – P. 2786–2789. doi: 10.1021/ol401118k

New Biologically Active Hydrogen Sulfide Donors / T. Roger, F. Raynaud et al. // ChemBioChem. – 2013. – Vol. 14, Issue 17. – P. 2268–2271. doi:

1002/cbic.201300552

Synthesis of a photocontrollable hydrogen sulfide donor using ketoprofenate photocages / N. Fukushima, N. Ieda et al. // Chem. Commun. – 2014.

– Vol. 50, Issue 5. – P. 587–589. doi: 10.1039/C3CC47421F

Anti–inflammatory and gastrointestinal effects of a novel diclofenac derivative / L. Li, G. Rossoni et al. // Free Rad. Biol. Med. – 2007. – Vol. 42,

Issue 5. – P. 706–719. doi: 10.1016/j.freeradbiomed.2006.12.011

Hydrogen Sulfide Releasing Aspirin, ACS14, Attenuates High Glucose–Induced Increased Methylglyoxal and Oxidative Stress in Cultured Vascular

Smooth Muscle Cells / Q. Huang, A. Sparatore, P. Del Soldato et al. // PloS ONE. – 2014. – Vol. 9, Issue 6. – e97315 p. doi: 10.1371/journal.

pone.0097315

NOSH–aspirin (NBS–1120), a novel nitric oxide– and hydrogen sulfide–releasing hybrid is a potent inhibitor of colon cancer cell growth in vitro

and in a xenograft mouse model / M. Chattopadhyay, R. Kodela, K. R., Olson, K. Kashfi // Biochem. Biophys. Res. Commun. – 2012. – Vol. 419, Issue

– P. 523–528. doi: 10.1016/j.bbrc.2012.02.051

Elsey, D. J. Regulation of cardiovascular cell function by hydrogen sulfide (H2S) / D. J. Elsey, R. C. Fowkes, G. F. Baxter // Cell Biochem. Func. – 2010. – Vol. 28, Issue 2. – P. 95–106. doi: 10.1002/cbf.1618

Hydrogen sulfide attenuates neurodegeneration and neurovascular dysfunction induced by intracerebral–administered homocysteine in mice /

P. K. Kamat, A. Kalani, S. Givvimani et al. // Neurosci. – 2013. – Vol. 252. – P. 302–319. doi: 10.1016/j.neuroscience.2013.07.051

Aruoma, O. I. Protection Against Oxidative Damage and Cell Death by the Natural Antioxidant Ergothioneine / O. I. Aruoma, J. P. E. Spencer,

N. Mahmood // Food Chem. Toxicol. – 1999. – Vol. 37, Issue 11. – P. 1043–1053. doi: 10.1016/S0278–6915(99)00098–8

Mitsuyama, H. Uptake and antioxidant effects of ergothioneine in human erythrocytes / H. Mitsuyama, J. M. May // Clin. Sci. – 1999. – Vol. 97,

Issue 4. – P. 407–411. doi: 10.1042/cs0970407

Lesyk, R. B. 4–Thiazolidones : Centenarian History, Current Status and Perspectives for Modern Organic and Medicinal Chemistry / R. B. Lesyk,

B. S. Zimenkovsky // Curr. Org. Chem. – 2004. – Vol. 8, Issue 16. – P. 1547–1577. doi: 10.2174/1385272043369773

Пат. України на корисну модель G 09 B 23/28. Спосіб зниження ульцерогенної дії нестероїдних протизапальних препаратів на експе-

риментальних моделях у щурів / Ільків, І. І., Лесик, Р. Б., Скляров, О. Я. – 108412 ; опубл. 11.07.2016, Бюл. № 13.

Ilkiv, I. Evaluation of novel 4–thiazolidinone–based derivatives as possible cytoprotective agents against stress model in rats / I. Ilkiv, R. Lesyk,

O. J. Sklyarov // Appl. Pharm. Sci. – 2017. – Vol. 7, Issue 01. – P. 199–203. doi: 10.7324/JAPS.2017.70129


GOST Style Citations


1. Lowicka, E., Beltowski, J. (2007). Hydrogen sulfide (H(2)S) – the third gas of interest for pharmacologists. Pharmacol. Reports, 59 (1), 4–24. Available
at: http://if–pan.krakow.pl/pjp/pdf/2007/1_4.pdf

2. Li, L., Hsu, A., Moore, P. K. (2009). Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system
and in inflammation — a tale of three gases! Pharmacol. & Therapeutics, 123 (3), 386–400. doi: 10.1016/j.pharmthera.2009.05.005

3. Pryor, W. A. (2006). Free radical biology and medicine: it’s a gas, man! AJP: Regulatory, Integrative and Comparative Physiology, 291 (3), R491–R511.
doi: 10.1152/ajpregu.00614.2005

4. Abe, K., Kimura, H. J. (1996). The possible role of hydrogen sulfide as an endogenous neuromodulator. Neuroscience, 16 (3), 1066–1071. Available
at: http://www.jneurosci.org/content/jneuro/16/3/1066.full.pdf

5. Brosnan, J. T., Brosnan, M. E. (2006). The sulfur–containing amino acids: an overview. J. Nutrit., 136 (6), 1636–1640. Available at: http://
jn.nutrition.org/content/136/6/1636S.full.pdf+html

6. Durand, P., Prost, M., Loreau, N., Lussier–Cacan, S. D. (2001). Blache Impaired homocysteine metabolism and atherothrombotic disease. D. Lab.
Invest, 81 (5), 645–672. Available at: http://www.nature.com/labinvest/journal/v81/n5/pdf/3780275a.pdf

7. Hayes, K. C., Sturman, J. A. (1981). Taurine in metabolism. Ann. Rev. Nutr., 1, 401–425.

8. Kabil, O., Banerjee, R. (2014). Enzymology of H2S Biogenesis, Decay and Signaling. Antioxidants & Redox Signaling, 20 (5), 770–782. doi: 10.1089/
ars.2013.5339

9. Kimura, H. (2011). Hydrogen sulfide: its production and functions. Experimental Physiology, 96 (9), 833–835. doi: 10.1113/expphysiol.2011.057455

10. Kimura, H. (2013). Physiological role of hydrogen sulfide and polysulfide in the central nervous system. Neurochem. Int., 63 (5), 492–497. doi:
10.1016/j.neuint.2013.09.003

11. Zhang, M., Shan, H., Wang, T., Liu, W., Wang, Y., Wang, L., Tao, L. (2013). Dynamic Change of Hydrogen Sulfide After Traumatic Brain Injury and its Effect in Mice. Neurochemical Research, 38 (4), 714–725. doi: 10.1007/s11064–013–0969–4

12. Shibuya, N., Mikami, Y., Kimura, Y., Nagahara, N., Kimura, H. (2009). Vascular Endothelium Expresses 3–Mercaptopyruvate Sulfurtransferase and
Produces Hydrogen Sulfide. Journal of Biochemistry, 146 (5), 623–626. doi: 10.1093/jb/mvp111

13. Wang, R. (2012). Physiological Implications of Hydrogen Sulfide: A Whiff Exploration That Blossomed. Physiological Reviews, 92 (2), 791–896.
doi: 10.1152/physrev.00017.2011

14. Shibuya, N., Koike, S., Tanaka, M., Ishigami–Yuasa, M., Kimura, Y., Ogasawara, Y., Kimura, H. (2013). A novel pathway for the production of hydrogen sulfide from D–cysteine in mammalian cells. Nature Communications, 4, 1366. doi: 10.1038/ncomms2371

15. Jakubowski, H., Goldman, E. (1993). Synthesis of homocysteine thiolactone by methionyl–tRNA synthetase in cultured mammalian cells. FEBS
Letters, 317 (3), 237–240. doi: 10.1016/0014–5793(93)81283–6

16. Eto, K., Kimura, H. (2002). The production of hydrogen sulfide is regulated by testosterone and S–adenosyl–l–methionine in mouse brain. Journal
of Neurochemistry, 83 (1), 80–86. doi: 10.1046/j.1471–4159.2002.01097.x

17. Obeid, R., Herrmann, W. (2006). Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia.
FEBS Letters, 580 (13), 2994–3005. doi: 10.1016/j.febslet.2006.04.088

18. Kimura, H., Shibuya, N., Kimura, Y. (2012). Hydrogen Sulfide Is a Signaling Molecule and a Cytoprotectant. Antioxidants & Redox Signaling, 17 (1), 45–57. doi: 10.1089/ars.2011.4345

19. Mikami, Y., Shibuya, N., Kimura, Y., Nagahara, N., Ogasawara, Y., Kimura, H. (2011). Thioredoxin and dihydrolipoic acid are required for 3–mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochemical Journal, 439 (3), 479–485. doi: 10.1042/bj20110841

20. Li, Q., Lancaster, J. R. (2013). Chemical foundations of hydrogen sulfide biology. Nitric Oxide, 35, 21–34. doi: 10.1016/j.niox.2013.07.001

21. Zhao, Y., Biggs, T. D., Xian, M. (2014). Hydrogen sulfide (H2S) releasing agents: chemistry and biological applications. Chem. Commun., 50 (80),
11788–11805. doi: 10.1039/c4cc00968a

22. Pluth, M., Bailey, T., Hammers, M., Hartle, M., Henthorn, H., Steiger, A. (2015). Natural Products Containing Hydrogen Sulfide Releasing Moieties.
Synlett, 26 (19), 2633–2643. doi: 10.1055/s–0035–1560638

23. Kimura, Y., Mikami, Y., Osumi, K., Tsugane, M., Oka, J. –I., Kimura, H. (2013). Polysulfides are possible H2S–derived signaling molecules in rat
brain. The FASEB Journal, 27 (6), 2451–2457. doi: 10.1096/fj.12–226415

24. Kimura, H. (2010). Hydrogen sulfide: its production, release and functions. Amino Acids, 41 (1), 113–121. doi: 10.1007/s00726–010–0510–x

25. Hughes, M. N., Centelles, M. N., Moore, K. P. (2009). Making and working with hydrogen sulfide. Free Radical Biology and Medicine, 47 (10), 1346–1353.
doi: 10.1016/j.freeradbiomed.2009.09.018

26. Guo, W., Cheng, Z., Zhu, Y. (2013). Hydrogen sulfide and translational medicine. Acta Pharmacologica Sinica, 34 (10), 1284–1291. doi: 10.1038/
aps.2013.127

27. Kashfi, K., Olson, K. R. (2013). Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide–releasing chimeras. Biochemical Pharmacology, 85 (5), 689–703. doi: 10.1016/j.bcp.2012.10.019

28. Carballal, S., Trujillo, M., Cuevasanta, E., Bartesaghi, S., Möller, M. N., Folkes, L. K., Alvarez, B. (2011). Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest. Free Radical Biology and Medicine, 50 (1), 196–205. doi: 10.1016/j.freeradbiomed.2010.10.705

29. Zhao, Y., Wang, H., Xian, M. (2011). Cysteine–Activated Hydrogen Sulfide (H2S) Donors. Journal of the American Chemical Society, 133 (1), 15–17.
doi: 10.1021/ja1085723

30. Wang, R. (2002). Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J., 16 (13), 1792–1798. doi:
10.1096/fj.02–0211hyp

31. Zhao, W. (2001). The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. The EMBO Journal, 20 (21), 6008–6016.
doi: 10.1093/emboj/20.21.6008

32. Tang, G. (2005). Direct stimulation of KATP channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle. Molecular
Pharmacology. doi: 10.1124/mol.105.017467

33. Zhao, W., Wang, R. (2002). H2S–induced vasorelaxation and underlying cellular and molecular mechanisms. American Journal of Physiology –
Heart and Circulatory Physiology, 283 (2), H474–H480. doi: 10.1152/ajpheart.00013.2002

34. Warenycia, M. W., Steele, J. A., Karpinski, E., Reiffenstein, R. J. (1989). Hydrogen sulfide in combination with taurine or cysteic acid reversibly
abolishes sodium currents in neuroblastoma cells. Neurotox., 10, 191–199.

35. Cipak Gasparovic, A., Zarkovic, N., Zarkovic, K., Semen, K., Kaminskyy, D., Yelisyeyeva, O., Bottari, S. P. (2017). Biomarkers of oxidative and nitro–
oxidative stress: conventional and novel approaches. British Journal of Pharmacology. doi: 10.1111/bph.13673

36. Lim, J. J., Liu, Y.–H., Khin, E. S. W., Bian, J.–S. (2008). Vasoconstrictive effect of hydrogen sulfide involves downregulation of cAMP in vascular
smooth muscle cells. AJP: Cell Physiology, 295 (5), C1261–C1270. doi: 10.1152/ajpcell.00195.2008

37. D’ Emmanuele di Villa Bianca, R., Sorrentino, R., Coletta, C., Mitidieri, E., Rossi, A., Vellecco, V., Sorrentino, R. (2011). Hydrogen Sulfide–Induced
Dual Vascular Effect Involves Arachidonic Acid Cascade in Rat Mesenteric Arterial Bed. Journal of Pharmacology and Experimental Therapeutics,
337 (1), 59–64. doi: 10.1124/jpet.110.176016

38. Skovgaard, N., Gouliaev, A., Aalling, M., Simonsen, U. (2011). The Role of Endogenous H2S in Cardiovascular Physiology. Current Pharmaceutical
Biotechnology, 12 (9), 1385–1393. doi: 10.2174/138920111798280956

39. Webb, G. D., Lim, L. H., Oh, V. M. S., Yeo, S. B., Cheong, Y. P., Ali, M. Y., Moore, P. K. (2007). Contractile and Vasorelaxant Effects of Hydrogen Sulfide and Its Biosynthesis in the Human Internal Mammary Artery. Journal of Pharmacology and Experimental Therapeutics, 324 (2), 876–882. doi:
10.1124/jpet.107.133538

40. Lavu, M., Bhushan, S., Lefer, D. J. (2011). Hydrogen sulfide–mediated cardioprotection: mechanisms and therapeutic potential. Clinical Science,
120 (6), 219–229. doi: 10.1042/cs20100462

41. Brittain, T., Yosaatmadja, Y., Henty, K. (2008). The interaction of human neuroglobin with hydrogen sulphide. IUBMB Life, 60 (2), 135–138. doi:
10.1002/iub.16

42. Tyagi, N., Givvimani, S., Qipshidze, N., Kundu, S., Kapoor, S., Vacek, J. C., Tyagi, S. C. (2010). Hydrogen sulfide mitigates matrix metalloproteinase–9 activity and neurovascular permeability in hyperhomocysteinemic mice. Neurochemistry International, 56 (2), 301–307. doi: 10.1016/j.neuint.2009.11.002

43. Calvert, J. W., Coetzee, W. A., Lefer, D. J. (2010). Novel Insights Into Hydrogen Sulfide–Mediated Cytoprotection. Antioxidants & Redox Signaling, 12 (10),
1203–1217. doi: 10.1089/ars.2009.2882

44. Mancardi, D., Penna, C., Merlino, A., Del Soldato, P., Wink, D. A., Pagliaro, P. (2009). Physiological and pharmacological features of the novel gasotransmitter: Hydrogen sulfide. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1787 (7), 864–872. doi: 10.1016/j.bbabio.2009.03.005

45. Whiteman, M., Moore, P. K. (2009). Hydrogen sulfide and the vasculature: a novel vasculoprotective entity and regulator of nitric oxide bioavailability?
Journal of Cellular and Molecular Medicine, 13 (3), 488–507. doi: 10.1111/j.1582–4934.2009.00645.x

46. Lin, V. S., Chen, W., Xian, M., Chang, C. J. (2015). Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur
species in biological systems. Chem. Soc. Rev., 44 (14), 4596–4618. doi: 10.1039/c4cs00298a

47. Yurchenko, P. O. (2016). Rol systemy hidrohen sulfidu v mekhaniznakh urazhennia mozku za umov hiperhomotsysteinemii. Vinnytsia.

48. Pentiuk, N. O. (2010). Suchasna gastroenterolohiia, 2 (52), 33–43. Available at: http://vitapol.com.ua/user_files/pdfs/gastro/978639636524872_
060620101 5352.pdf

49. Li, L., Moore, P. K. (2013). Could hydrogen sulfide be the next blockbuster treatment for inflammatory disease? Expert Review of Clinical Pharmacology,
6 (6), 593–595. doi: 10.1586/17512433.2013.842126

50. Wallace, J. L. (2007). Hydrogen sulfide–releasing anti–inflammatory drugs. Trends in Pharmacological Sciences, 28 (10), 501–505. doi: 10.1016/j.
tips.2007.09.003

51. Tamizhselvi, R., Koh, Y.–H., Sun, J., Zhang, H., Bhatia, M. (2010). Hydrogen sulfide induces ICAM–1 expression and neutrophil adhesion to caerulein– treated pancreatic acinar cells through NF–κB and Src–family kinases pathway. Experimental Cell Research, 316 (9), 1625–1636. doi: 10.1016/j.
yexcr.2010.02.044

52. Bhatia, M., Sidhapuriwala, J. N., Wei Ng, S., Tamizhselvi, R., Moochhala, S. M. (2008). Pro–inflammatory effects of hydrogen sulphide on substance
P in caerulein–induced acute pancreatitis. Journal of Cellular and Molecular Medicine, 12 (2), 580–590. doi: 10.1111/j.1582–4934.2007.00131.x

53. Song, Z. J., Ng, M. Y., Lee, Z.–W., Dai, W., Hagen, T., Moore, P. K., Tan, C.–H. (2014). Hydrogen sulfide donors in research and drug development.
MedChemComm, 5 (5), 557. doi: 10.1039/c3md00362k

54. Forgan, L. G., Forster, M. E. (2010). Oxygen consumption, ventilation frequency and cytochrome c oxidase activity in blue cod (Parapercis colias)
exposed to hydrogen sulphide or isoeugenol. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 151 (1), 57–65. doi:
10.1016/j.cbpc.2009.08.008

55. Baumgart, K., Radermacher, P., Wagner, F. (2009). Applying gases for microcirculatory and cellular oxygenation in sepsis: effects of nitric oxide,
carbon monoxide, and hydrogen sulfide. Current Opinion in Anaesthesiology, 22 (2), 168–176. doi: 10.1097/aco.0b013e328328d22f

56. McCook, O., Radermacher, P., Volani, C., Asfar, P., Ignatius, A., Kemmler, J., Wachter, U. (2014). H2S during circulatory shock: Some unresolved
questions. Nitric Oxide, 41, 48–61. doi: 10.1016/j.niox.2014.03.163

57. Hartle, M. D., Pluth, M. D. (2016). A practical guide to working with H2S at the interface of chemistry and biology. Chem. Soc. Rev., 45 (22), 6108–6117.
doi: 10.1039/c6cs00212a

58. Wallace, J. L., Wang, R. (2015). Hydrogen sulfide–based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nature Reviews Drug
Discovery, 14 (5), 329–345. doi: 10.1038/nrd4433

59. Griffiths, G., Trueman, L., Crowther, T., Thomas, B., Smith, B. (2002). Onions? A global benefit to health. Phytotherapy Research, 16 (7), 603–615.
doi: 10.1002/ptr.1222

60. Smaglii, L. (2013). Biomolekula. Available at: http://biomolecula.ru/content/1373.

61. Caliendo, G., Cirino, G., Santagada, V., Wallace, J. L. (2010). Synthesis and Biological Effects of Hydrogen Sulfide (H2S): Development of H2S–Releasing Drugs as Pharmaceuticals. Journal of Medicinal Chemistry, 53 (17), 6275–6286. doi: 10.1021/jm901638j

62. Whiteman, M., Perry, A., Zhou, Z., Bucci, M., Papapetropoulos, A., Cirino, G., Wood, M. E. (2015). Phosphinodithioate and Phosphoramidodithioate
Hydrogen Sulfide Donors. Handbook of Experimental Pharmacology, 337–363. doi:10.1007/978–3–319–18144–8_17

63. Li, L., Whiteman, M., Guan, Y. Y., Neo, K. L., Cheng, Y., Lee, S. W., Moore, P. K. (2008). Characterization of a Novel, Water–Soluble Hydrogen Sulfide– Releasing Molecule (GYY4137): New Insights Into the Biology of Hydrogen Sulfide. Circulation, 117 (18), 2351–2360. doi: 10.1161/circulationaha.
107.753467

64. Lee, Z. W., Zhou, J., Chen, C.–S., Zhao, Y., Tan, C.–H., Li, L., Deng, L.–W. (2011). The Slow–Releasing Hydrogen Sulfide Donor, GYY4137, Exhibits
Novel Anti–Cancer Effects In Vitro and In Vivo. PLoS ONE, 6 (6), e21077. doi: 10.1371/journal.pone.0021077

65. Park, C.–M., Zhao, Y., Zhu, Z., Pacheco, A., Peng, B., Devarie–Baez, N. O., Xian, M. (2013). Synthesis and evaluation of phosphorodithioate–based
hydrogen sulfide donors. Molecular BioSystems, 9 (10), 2430. doi: 10.1039/c3mb70145j

66. Kodela, R., Chattopadhyay, M., Kashfi, K. (2012). NOSH–Aspirin: A Novel Nitric Oxide–Hydrogen Sulfide–Releasing Hybrid: A New Class of Anti–
inflammatory Pharmaceuticals. ACS Medicinal Chemistry Letters, 3 (3), 257–262. doi: 10.1021/ml300002m

67. Elsheikh, W., Blackler, R. W., Flannigan, K. L., Wallace, J. L. (2014). Enhanced chemopreventive effects of a hydrogen sulfide–releasing anti–inflammatory
drug (ATB–346) in experimental colorectal cancer. Nitric Oxide, 41, 131–137.doi: 10.1016/j.niox.2014.04.006

68. Zhou, Z., von Wantoch Rekowski, M., Coletta, C., Szabo, C., Bucci, M., Cirino, G., Giannis, A. (2012). Thioglycine and l–thiovaline: Biologically active
H2S–donors. Bioorganic & Medicinal Chemistry, 20 (8), 2675–2678. doi: 10.1016/j.bmc.2012.02.028

69. Devarie–Baez, N. O., Bagdon, P. E., Peng, B., Zhao, Y., Park, C.–M., Xian, M. (2013). Light–Induced Hydrogen Sulfide Release from “Caged” gem–
Dithiols. Organic Letters, 15 (11), 2786–2789. doi: 10.1021/ol401118k

70. Roger, T., Raynaud, F., Bouillaud, F., Ransy, C., Simonet, S., Crespo, C., Galardon, E. (2013). New Biologically Active Hydrogen Sulfide Donors. Chem-
BioChem, 14 (17), 2268–2271. doi: 10.1002/cbic.201300552

71. Fukushima, N., Ieda, N., Sasakura, K., Nagano, T., Hanaoka, K., Suzuki, T., Nakagawa, H. (2014). Synthesis of a photocontrollable hydrogen sulfide
donor using ketoprofenate photocages. Chem. Commun., 50 (5), 587–589. doi: 10.1039/c3cc47421f

72. Li, L., Rossoni, G., Sparatore, A., Lee, L. C., Del Soldato, P., Moore, P. K. (2007). Anti–inflammatory and gastrointestinal effects of a novel diclofenac
derivative. Free Radical Biology and Medicine, 42 (5), 706–719. doi: 10.1016/j.freeradbiomed.2006.12.011

73. Huang, Q., Sparatore, A., Del Soldato, P., Wu, L., Desai, K. (2014). Hydrogen Sulfide Releasing Aspirin, ACS14, Attenuates High Glucose–Induced
Increased Methylglyoxal and Oxidative Stress in Cultured Vascular Smooth Muscle Cells. PLoS ONE, 9 (6), e97315. doi: 10.1371/journal.pone.0097315

74. Chattopadhyay, M., Kodela, R., Olson, K. R., Kashfi, K. (2012). NOSH–aspirin (NBS–1120), a novel nitric oxide– and hydrogen sulfide–releasing
hybrid is a potent inhibitor of colon cancer cell growth in vitro and in a xenograft mouse model. Biochemical and Biophysical Research Communications,
419 (3), 523–528. doi: 10.1016/j.bbrc.2012.02.051

75. Elsey, D. J., Fowkes, R. C., Baxter, G. F. (2010). Regulation of cardiovascular cell function by hydrogen sulfide (H2S). Cell Biochemistry and Function, 28 (2), 95–106. doi: 10.1002/cbf.1618

76. Kamat, P. K., Kalani, A., Givvimani, S., Sathnur, P. B., Tyagi, S. C., Tyagi, N. (2013). Hydrogen sulfide attenuates neurodegeneration and neurovascular
dysfunction induced by intracerebral–administered homocysteine in mice. Neuroscience, 252, 302–319. doi: 10.1016/j.neuroscience.2013.07.051

77. Aruoma, O., Spencer, J. P., Mahmood, N. (1999). Protection Against Oxidative Damage and Cell Death by the Natural Antioxidant Ergothioneine.
Food and Chemical Toxicology, 37 (11), 1043–1053. doi: 10.1016/s0278–6915(99)00098–8

78. Mitsuyama, H., May, J. M. (1999). Uptake and antioxidant effects of ergothioneine in human erythrocytes. Clinical Science, 97 (4), 407–411. doi:
10.1042/cs0970407

79. Lesyk, R., Zimenkovsky, B. (2004). 4–Thiazolidones: Centenarian History, Current Status and Perspectives for Modern Organic and Medicinal
Chemistry. Current Organic Chemistry, 8 (16), 1547–1577. doi: 10.2174/1385272043369773

80. Ilkiv, I. I., Lesyk, R. B., Skliarov, O. Ya. (2016). Sposib znyzhennia ultserohennoi dii nesteroidnykh protyzapalnykh preparativ na eksperymentalnykh
modeliakh u shchuriv. Patent of Ukraine for useful model. G09B 23/28 /. №108412; published 11.07.2016, №3.

81. Ilkiv, I., Lesyk, R., Sklyarov, O. (2017). Evaluation of novel 4–thiazolidinone–based derivatives as possible cytoprotective agents against stress
model in rats. Journal of Applied Pharmaceutical Science, 199–203. doi: 10.7324/japs.2017.70129





DOI: https://doi.org/10.24959/ophcj.17.918

Abbreviated key title: Ž. org. farm. hìm.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)