Synthesis, the antifungal and antibacterial activity of N1-substituted N2-(4,5-dihydro-1,3-thiazol-2-yl)glycinamides

L. M. Saliyeva, A. M. Grozav, N. D. Yakovychuk, N. Yu. Slyvka, M. V. Vovk

Abstract


Aim. To apply cleavage of 2-methyl-2,3-dihydroimidazo[2,1-b][1,3]thiazol-(6H)-one with morpholine and piperidine for preparation of the previously unknown N1-substituted N2-(4,5-dihydro-1,3-thiazol-2-il)glycineamides as promising compounds for further study of the antibacterial properties.

Results and discussion. It has been shown that the reaction of 2-methyl-2,3-dihydroimidazo[2,1-b][1,3]thiazol-(6H)-one with the primary and secondary amines can be effectively used for the synthesis of N1-substituted N2-(4,5-dihydro-1,3-thiazol-2-il)glycineamides. Some glycinamides obtained demonstrate the antifungal and antibacterial properties in the range of concentrations of 7.81-62.50 mkg/ml.

Experimental part. 2-Methyl-2,3-dihydroimidazo[2,1-b][1,3]thiazol-(6H)-one reacts regioselectively with the primary and secondary amines in THF solution forming N1-substituted N2-(4,5-dihydro-1,3-thiazol-2-yl)glycineamides with the yields of 77-95%. Their structure has been proven by the complex spectral analysis. The screening of the antifungal and antibacterial properties of the compounds synthesized was conducted by the micromethod of double serial dilutions in the liquid nutritious medium.

Conclusions. It has been found that cleavage of 2-methyl-2,3-dihydroimidazo[2,1-b][1,3]thiazol-(6H)-one with the primary and secondary amines is a convenient method for the synthesis of N1-substituted N2-(4,5-dihydro-1,3-thiazol-2-il)glycineamides; among them substances with a marked antimicrobial activity have been found.


Keywords


dihydroimidazo[2,1-b][1,3]thiazol; aminolysis; 2-thiazolylglycinamides; antifungal and antibacterial activity

References


Das, D., Sikdar, P., Bairagi, M. (2012). Recent development of 2–aminothiasoles in medicinal chemistry. European Journal of Medicilal Chemistry, 109, 89–98. doi: 10.1016/j.ejmech.2015.12.022

Bon, R. S., Buch, D. J. (2013). In pursuit of small molecules chemistry for calcium–permeable non–selective TRPC channels–mirage or pot of gold. British Journal of Pharmacology, 170 (3), 459–474. doi: 10.1111/bph.12274

Pieroni, M., Wan, B., Cho, S. et al. (2014). Design, synthesis and investigation on the structure–activity relationships of N–substituted 2–aminothiazole derivatives as antitubercular agents. European Journal of Medicilal Chemistry, 72, 26–34. doi: 10.1016/j.ejmech.2013.11.007

Merssner, A., Boskoft, H. I., Vasan, M. et al. (2013). Structure–activity relationships of 2–aminothiazoles effective against Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry, 21 (21), 6385–6397. doi: 10.1016/j.bmc.2013.08.048

Pan, Yu., Li, P., Xie, S. et al. (2016). Synthesis, 3D–QSAR analysis and biological evaluation of quinoxoline 1,4–di–N–oxide derivatives as antituberculosis agent. Bioorganic and Medicinal Chemistry Letters, 26 (16), 4146–4153. doi: 10.1016/j.bmcl.2016.01.066

Baruah, B., Dasa, K., Vaitiligam, B. et al. (2004). 1,2–Diaryl–1–ethanone and pyrazolo[3,4–c]quinoline–4–one as novel selective cyclooxogenase–2–inhibitors. Bioorganic and Medicinal Chemistry Letters, 14 (2), 445–448. doi: 10.1016/j.bmcl.2003.10.052

Li, H–Q., Yang, J., Ma, S., Qiao, C. (2012). Structure–based design of rhodanine–based acylsulfonamide derivates as antagonists of the anti–apoptotic Bcl–2 protein. Bioorganic and Medicinal Chemistry, 20 (14), 4194–4200. doi: 10.1016/j.bmc.2012.05.079

Li, S–N., Xu, Y–Y., Goo, J–Y. et al. (2015). Combination of 4–anilinoquinazoline and rhodanine as novel epidermal growth factor receptor tyrosine kinase inhibitors. Bioorganic and Medicinal Chemistry, 23 (13), 3221–3227. doi: 10.1016/j.bmc.2015.04.065

Coppola, B. P., Noe, M. C., Hong, S. S.–K. (1997). Regiocontrol in the 1,3–dipolar cycloaddition reactions of mesoionic compounds with acetylenic dipolarophiles. Tetrahedron Letters, 38 (41), 7159–7162. doi: 10.1016/s0040–4039(97)01761–9

Imomoto, H., Iwanomi, T., Alnabane, M., Tani, Y. (2003). Substituted 1–aza–2–iminoheterocycles and their use as acetylholin receptors activators. Pat. US 134848; declared 21.11.2001; published 17.07.2003.

Saliieva, L. M., Slyvka, N. Yu., Vaskevich, R. I., Vovk, M. V. (2016). Ukrainskii Khimicheskii Zhurnal, 5, 64–70.

Alcaide, B., Plumet, J., Sierra, M. A. (1989). The reaction of α–diketones with primary heteroaromatic amines.Synthesis and reactions of imidazo[1, 2–a]pyridin–3(2H)–ones and N–heteroaryl α–iminoketones. Tetrahedron, 45 (21), 6841–6856. doi: 10.1016/s0040–4020(01)89152–3

Towner, K. J., Grenwod, D. (2001) The problem of resistance. Antimicrobial chemotherapy. 4th/ed.Oxford,New York:OxfordUniversity Press, 131–144.

Hecht, D.W. (2004). Prevalence of Antibiotic Resistance Anaerobic Bacteria: Worrisome Developments. Clinical Infections Diseases, 39 (1), 92–97. doi: 10.1086/421558


GOST Style Citations


1.         Das, D. Recent development of 2–aminothiasoles in medicinal chemistry / D. Das, P. Sikdar, M. Bairagi // Eur. J. Med. Chem. – 2016. – Vol. 109. – P. 89–98. doi: 10.1016/j.ejmech.2015.12.022

2.         Bon, R. S. In pursuit of small molecules chemistry for calcium–permeable non–selective TRPC channels–mirage or pot of gold? / R. S. Bon, D. J. Buch // Brit. J. Pharmacol. – 2013. – Vol. 170, Issue 3. – P. 459–474. doi: 10.1111/bph.12274

3.         Design, synthesis and investigation on the structure–activity relationships of N–substituted 2–aminothiazole derivatives as antitubercular agents / M. Pieroni, B. Wan, S. Cho et al. // Eur. J. Med. Chem. – 2014. – Vol. 72. – P. 26–34. doi: 10.1016/j.ejmech.2013.11.007

4.         Structure–activity relationship of 2–aminothiazoles effective against Mycobacterium tuberculosis / A. Merssner, H.I. Boskoft, M. Vasan et al. // Bioorg. Med. Chem. – 2013. – Vol. 21, Issue 21. – P. 6385–6397. doi: 10.1016/j.bmc.2013.08.048

5.         Synthesis, 3D–QSAR analysis and biological evaluation of quinoxoline 1,4–di–N–oxide derivatives as antituberculosis agent / Yu. Pan, P. Li, S. Xie et al. // Bioorg. Med. Chem. Lett. – 2016. – Vol. 26, Issue 16. – P. 4146–4153. doi: 10.1016/j.bmcl.2016.01.066

6.         1,2–Diaryl–1–ethanone and pyrazolo[3,4–c]quinoline–4–one as novel selective cyclooxogenase–2–inhibitors / B. Baruah, K. Dasa, B. Vaitiligam et al. // Bioorg. Med. Chem. Lett. – 2004. – Vol. 14, Issue 2. – P. 445–448. doi: 10.1016/j.bmcl.2003.10.052

7.         Structure–based design of rhodanine–based acylsulfonamide derivates as antagonist of the anti–apoptotic Bcl–2 protein / H–Q. Li, J. Yang, S. Ma, C. Qiao // Bioorg. Med. Chem. – 2012. – Vol. 20, Issue 14. – P. 4194–4200. doi: 10.1016/j.bmc.2012.05.079

8.         Combination of 4–anilinoquinazoline and rhodanine as novel epidermal growth factor receptor tyrosine kinase inhibitors / S–N. Li, Y–Y. Xu, J–Y. Goo et al. // Bioorg. Med. Chem. – 2015. – Vol. 23, Issue 13. – P. 3221–3227. doi: 10.1016/j.bmc.2015.04.065

9.         Coppola, B. P. Regiocontrol in the 1,3–Dipolar Cycloaddition Reactions of Mesoionic Compounds with Acetylenic Dipolarophiles / B. P. Coppola, M. C. Noe, S. S–K. Houg // Tetrahedron Lett. – 1997. – Vol. 38, Issue 41. – P. 7159–7162. doi: 10.1016/s0040–4039(97)01761–9

10.       Substituted 1–aza–2–iminoheterocycles and their use as acetylholin receptors activators. Pat. US 134848 / Imomoto H., Iwanomi T., Alnabane M., Tani Y. – declared 21.11.2001; published 17.07.2003.

11.       Синтез похідних 2,3–дигідроімідазо[2,1–b][1,3]тіазолу електрофільною циклізацією 3–аліл–2–тіоксоімідазолідин–4–онів / Л. М. Салієва, Н. Ю. Сливка, Р. І. Васькевич, М. В. Вовк // Укр. хим. журн. – 2016. – Т. 82, № 5. – С. 64–70.

12.       Alcaide, B. The reaction of the α–diketones with primary heteroaromatic amines. Synthesis and reactions of imidazo[1,2–a]pyridin–3(2H)–ones and N–heteroaryl α–iminoketones / B. Alcoide, J. Plument, M. A. Sierra // Tetrahedron. – 1989. – Vol. 45, Issue 21. – P. 6841–6856. doi: 10.1016/s0040–4020(01)89152–3

13.       Towner, K. J. The problem of resistance / K. J. Towner // Antimicrobial chemotherapy, 4-th / ed. Greenwod D. –Oxford,New York:OxfordUniversityPress, 2001. – P. 131–144.

14.       Hecht, D. W. Prevalence of Antibiotic Resistance Anaerobic Bacteria: Worrisome Developments / D. W. Hecht // Clin. Infect. Dis. – 2004. – Vol. 39, Issue 1. – P. 92–97. doi: 10.1086/421558





DOI: https://doi.org/10.24959/ophcj.17.924

Abbreviated key title: Ž. org. farm. hìm.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)