The inhibitory potential of calixarenes against nucleotide pyrophosphatase/phosphodiesterase 1


  • V. M. Buldenko Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Ukraine
  • L. A. Kononets Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Ukraine
  • O. L. Kobzar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Ukraine
  • A. B. Drapailo Institute of Organic Chemistry of the NAS of Ukraine, Ukraine
  • S. G. Vyshnevsky Institute of Organic Chemistry of the NAS of Ukraine, Ukraine
  • V. I. Kalchenko Institute of Organic Chemistry of the NAS of Ukraine, Ukraine
  • A. I. Vovk Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Ukraine



calix[4]arene, thiacalix[4]arene, sulfonylcalix[4]arene, nucleotide pyrophosphatase/phosphodiesterase 1, inhibition, molecular docking


It has been previously shown that phosphonic acids covalently attached to the macrocyclic platform of calix[4]arenes are capable of inhibiting alkaline phosphatases. In this paper the effects of the upper-rim functionalized calix[4]arenes on the activity of nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) have been examined.
Aim. To assess the inhibitory potential of calix[4]arene, thiacalix[4]arene and sulfonylcalix[4]arene derivatives against NPP1.
Results and discussion. It has been found that calix[4]arene, thiacalix[4]arene, and sulfonylcalix[4]arene tetrakismethylphosphonic acids inhibit NPP1 with the IC50 values in the micromolar range. The derivatives of sulfonylcalix[4]arene demonstrated the selectivity of inhibition of NPP1 over alkaline phosphatases. In addition, sulfonylcalix[4]arene tetrakismethylphosphonic acid was able to inhibit the nucleotide pyrophosphatase/phosphodiesterase activity of the human serum. The possible mechanism of the inhibition has been discussed.
Experimental part. The activity of NPP1 was monitored by spectrophotometry measuring the rate of hydrolysis of bis-p-nitrophenyl phosphate. The phosphodiesterase activity of the human serum was assessed in the presence of p-nitrophenyl ester of thymidine-5-monophosphate as a substrate. The homology model of the human NPP1 was generated based on the crystal structure of the murine enzyme. The molecular docking was performed using AutoDock 4.2.
Conclusions. The results obtained have shown the ability of sulfonylcalix[4]arene derivatives to inhibit the activity of NPP1 in vitro, including the nucleotide pyrophosphatase/phosphodiesterase activity in the human blood serum.


Download data is not yet available.


  1. Al–Rashida, M., Iqbal, J. (2013). Therapeutic Potentials of Ecto–Nucleoside Triphosphate Diphosphohydrolase, Ecto–Nucleotide Pyrophosphatase/Phosphodiesterase, Ecto–5’–Nucleotidase, and Alkaline Phosphatase Inhibitors. Medicinal Research Reviews, 34 (4), 703–743. doi: 10.1002/med.21302
  2. Bollen, M., Gijsbers, R., Ceulemans, H., Stalmans, W., Stefan, C. (2000). Nucleotide Pyrophosphatases/Phosphodiesterases on the Move. Critical Reviews in Biochemistry and Molecular Biology, 35 (6), 393–432. doi: 10.1080/10409230091169249
  3. Goding, J. W., Grobben, B., Slegers, H. (2003). Physiological and pathophysiological functions of the ecto–nucleotide pyrophosphatase/phosphodiesterase family. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 1638 (1), 1–19. doi: 10.1016/s0925–4439(03)00058–9
  4. Lee, S.–Y., Sarkar, S., Bhattarai, S., Namasivayam, V., De Jonghe, S., Stephan, H., Müller, C. E. (2017). Substrate–Dependence of Competitive Nucleotide Pyrophosphatase/Phosphodiesterase1 (NPP1) Inhibitors. Frontiers in Pharmacology, 8. doi: 10.3389/fphar.2017.00054
  5. Lee, S.–Y., Fiene, A., Li, W., Hanck, T., Brylev, K. A., Fedorov, V. E., Müller, C. E. (2015). Polyoxometalates—Potent and selective ecto–nucleotidase
  6. inhibitors. Biochemical Pharmacology, 93 (2), 171–181. doi: 10.1016/j.bcp.2014.11.002
  7. Lee, S.–Y., Müller, C. E. (2017). Nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) and its inhibitors. MedChemComm, 8 (5), 823–840. doi: 10.1039/c7md00015d
  8. Choudhary, M. I., Fatima, N., Abbasi, M. A., Jalil, S., Ahmad, V. U., Atta–ur–Rahman. (2004). Phenolic glycosides, a new class of human recombinant nucleotide pyrophosphatase phosphodiesterase–1 inhibitors. Bioorganic & Medicinal Chemistry, 12 (22), 5793–5798. doi: 10.1016/j.bmc.2004.08.035
  9. Khan, K. M., Fatima, N., Rasheed, M., Jalil, S., Ambreen, N., Perveen, S., Choudhary, M. I. (2009). 1,3,4–Oxadiazole–2(3H)–thione and its analogues: A new class of non–competitive nucleotide pyrophosphatases/phosphodiesterases 1 inhibitors. Bioorganic & Medicinal Chemistry, 17 (22), 7816–7822.
  10. doi: 10.1016/j.bmc.2009.09.011
  11. Khan, K. M., Siddiqui, S., Saleem, M., Taha, M., Saad, S. M., Perveen, S., Choudhary, M. I. (2014). Synthesis of triazole Schiff bases: Novel inhibitors
  12. of nucleotide pyrophosphatase/phosphodiesterase–1. Bioorganic & Medicinal Chemistry, 22 (22), 6509–6514. doi: 10.1016/j.bmc.2014.08.032
  13. Zalatan, J. G., Fenn, T. D., Brunger, A. T., Herschlag, D. (2006). Structural and Functional Comparisons of Nucleotide Pyrophosphatase/Phosphodiesterase and Alkaline Phosphatase: Implications for Mechanism and Evolution. Biochemistry, 45 (32), 9788–9803. doi: 10.1021/bi060847t
  14. Vovk, A. I., Kalchenko, V. I., Cherenok, S. A., Kukhar, V. P., Muzychka, O. V., Lozynsky, M. O. (2004). Calix[4]arene methylenebisphosphonic acids as calf intestine alkaline phosphatase inhibitors. Organic & Biomolecular Chemistry, 2 (21), 3162. doi: 10.1039/b409526j
  15. Vovk, A. I., Kononets, L. A., Tanchuk, V. Y., Cherenok, S. O., Drapailo, A. B., Kalchenko, V. I., Kukhar, V. P. (2010). Inhibition of Yersinia protein tyrosine phosphatase by phosphonate derivatives of calixarenes. Bioorganic & Medicinal Chemistry Letters, 20 (2), 483–487. doi: 10.1016/j.bmcl.2009.11.126
  16. Vovk, A. I., Kononets, L. A., Tanchuk, V. Y., Drapailo, A. B., Kalchenko, V. I., Kukhar, V. P. (2009). Thiacalix[4]arene as molecular platform for design of alkaline phosphatase inhibitors. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 66 (3–4), 271–277. doi: 10.1007/s10847–009–9607–9
  17. Henz, S. L., Fürstenau, C. R., Chiarelli, R. A., Sarkis, J. J. F. (2007). Kinetic and biochemical characterization of an ecto–nucleotide pyrophosphatase/phosphodiesterase (EC in cells cultured from submandibular salivary glands of rats. Archives of Oral Biology, 52 (10), 916–923. doi: 10.1016/j.archoralbio.2007.03.006
  18. Wanno, B., Sang–aroon, W., Tuntulani, T., Polpoka, B., Ruangpornvisuti, V. (2003). Conformational and energetical structures of sulfonylcalix[4]arene, p–tert–butylsulfonylcalix[4]arene and their zinc complexes. Journal of Molecular Structure: Theochem, 629 (1–3), 137–150. doi: 10.1016/
  19. s0166–1280(03)00135–0
  20. Huey, R., Morris, G. M., Olson, A. J., Goodsell, D. S. (2007). A semiempirical free energy force field with charge–based desolvation. Journal of Computational Chemistry, 28 (6), 1145–1152. doi: 10.1002/jcc.20634
  21. Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., Hutchison, G. R. (2012). Avogadro : an advanced semantic chemical editor,
  22. visualization, and analysis platform. Journal of Cheminformatics, 4 (1), 17. doi: 10.1186/1758–2946–4–17
  23. Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Schwede, T. (2014). SWISS–MODEL : modelling protein tertiary and
  24. quaternary structure using evolutionary information. Nucleic Acids Research, 42(W1), W252–W258. doi: 10.1093/nar/gku340
  25. Šali, A., Blundell, T. L. (1993). Comparative Protein Modelling by Satisfaction of Spatial Restraints. Journal of Molecular Biology, 234 (3), 779–815. doi: 10.1006/jmbi.1993.1626
  26. Jansen, S., Perrakis, A., Ulens, C., Winkler, C., Andries, M., Joosten, R. P., Bollen, M. (2012). Structure of NPP1, an Ectonucleotide Pyrophosphatase/Phosphodiesterase Involved in Tissue Calcification. Structure, 20 (11), 1948–1959. doi: 10.1016/j.str.2012.09.001
  27. Almi, M., Arduini, A., Casnati, A., Pochini, A., Ungaro, R. (1989). Chloromethylation of calixarenes and synthesis of new water soluble macrocyclic hosts. Tetrahedron, 45 (7), 2177–2182. doi: 10.1016/s0040–4020(01)80077–6
  28. Kasyan, O., Swierczynski, D., Drapailo, A., Suwinska, K., Lipkowski, J., Kalchenko, V. (2003). Upper rim substituted thiacalix[4]arenes. Tetrahedron Letters, 44 (38), 7167–7170. doi: 10.1016/s0040–4039(03)01809–4
  29. Kharchenko, S. G., Drapailo, A. B., Kalchenko, O. I., Yampolska, G. D., Shishkina, S. V., Shishkin, O. V., Kalchenko, V. I. (2013). Thia– and Sulfonyl–Calix[
  30. Arene Methylphosphonous Acids: Synthesis, Structure, and Amino Acids Binding. Phosphorus, Sulfur, and Silicon and the Related Elements,
  31. (1–3), 243–248. doi: 10.1080/10426507.2012.741164
  32. Iki, N., Kumagai, H., Morohashi, N., Ejima, K., Hasegawa, M., Miyanari, S., Miyano, S. (1998). Selective oxidation of thiacalix[4]arenes to the sulfinyl– and sulfonylcalix[4]arenes and their coordination ability to metal ions. Tetrahedron Letters, 39 (41), 7559–7562. doi: 10.1016/s0040–4039(98)01645–1
  33. Kumagai, H., Hasegawa, M., Miyanari, S., Sugawa, Y., Sato, Y., Hori, T., Miyano, S. (1997). Facile synthesis of p–tert–butylthiacalix[4]arene by the reaction of p–tert–butylphenol with elemental sulfur in the presence of a base. Tetrahedron Letters, 38 (22), 3971–3972. doi: 10.1016/s0040–4039(97)00792–2
  34. Kasyan, O., Kalchenko, V., Bolte, M., Böhmer, V. (2006). Hydrogen–bonded dimers of a thiacalixarene substituted by carbamoylmethylphosphineoxide groups at the wide rim. Chem. Commun., 18, 1932–1934. doi: 10.1039/b601016d




How to Cite

Buldenko, V. M.; Kononets, L. A.; Kobzar, O. L.; Drapailo, A. B.; Vyshnevsky, S. G.; Kalchenko, V. I.; Vovk, A. I. The Inhibitory Potential of Calixarenes Against Nucleotide pyrophosphatase/Phosphodiesterase 1. J. Org. Pharm. Chem. 2017, 15, 41-47.



Original Researches

Most read articles by the same author(s)

1 2 > >>