DOI: https://doi.org/10.24959/ophcj.17.928

The inhibitory potential of calixarenes against nucleotide pyrophosphatase/phosphodiesterase 1

V. M. Buldenko, L. A. Kononets, O. L. Kobzar, A. B. Drapailo, S. G. Vyshnevsky, V. I. Kalchenko, A. I. Vovk

Abstract


It has been previously shown that phosphonic acids covalently attached to the macrocyclic platform of calix[4]arenes are capable of inhibiting alkaline phosphatases. In this paper the effects of the upper-rim functionalized calix[4]arenes on the activity of nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) have been examined.
Aim. To assess the inhibitory potential of calix[4]arene, thiacalix[4]arene and sulfonylcalix[4]arene derivatives against NPP1.
Results and discussion. It has been found that calix[4]arene, thiacalix[4]arene, and sulfonylcalix[4]arene tetrakismethylphosphonic acids inhibit NPP1 with the IC50 values in the micromolar range. The derivatives of sulfonylcalix[4]arene demonstrated the selectivity of inhibition of NPP1 over alkaline phosphatases. In addition, sulfonylcalix[4]arene tetrakismethylphosphonic acid was able to inhibit the nucleotide pyrophosphatase/phosphodiesterase activity of the human serum. The possible mechanism of the inhibition has been discussed.
Experimental part. The activity of NPP1 was monitored by spectrophotometry measuring the rate of hydrolysis of bis-p-nitrophenyl phosphate. The phosphodiesterase activity of the human serum was assessed in the presence of p-nitrophenyl ester of thymidine-5-monophosphate as a substrate. The homology model of the human NPP1 was generated based on the crystal structure of the murine enzyme. The molecular docking was performed using AutoDock 4.2.
Conclusions. The results obtained have shown the ability of sulfonylcalix[4]arene derivatives to inhibit the activity of NPP1 in vitro, including the nucleotide pyrophosphatase/phosphodiesterase activity in the human blood serum.


Keywords


calix[4]arene; thiacalix[4]arene; sulfonylcalix[4]arene; nucleotide pyrophosphatase/phosphodiesterase 1; inhibition; molecular docking

Full Text:

PDF

References


Al–Rashida, M., Iqbal, J. (2013). Therapeutic Potentials of Ecto–Nucleoside Triphosphate Diphosphohydrolase, Ecto–Nucleotide Pyrophosphatase/Phosphodiesterase, Ecto–5’–Nucleotidase, and Alkaline Phosphatase Inhibitors. Medicinal Research Reviews, 34 (4), 703–743. doi: 10.1002/med.21302

Bollen, M., Gijsbers, R., Ceulemans, H., Stalmans, W., Stefan, C. (2000). Nucleotide Pyrophosphatases/Phosphodiesterases on the Move. Critical Reviews in Biochemistry and Molecular Biology, 35 (6), 393–432. doi: 10.1080/10409230091169249

Goding, J. W., Grobben, B., Slegers, H. (2003). Physiological and pathophysiological functions of the ecto–nucleotide pyrophosphatase/phosphodiesterase family. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 1638 (1), 1–19. doi: 10.1016/s0925–4439(03)00058–9

Lee, S.–Y., Sarkar, S., Bhattarai, S., Namasivayam, V., De Jonghe, S., Stephan, H., Müller, C. E. (2017). Substrate–Dependence of Competitive Nucleotide Pyrophosphatase/Phosphodiesterase1 (NPP1) Inhibitors. Frontiers in Pharmacology, 8. doi: 10.3389/fphar.2017.00054

Lee, S.–Y., Fiene, A., Li, W., Hanck, T., Brylev, K. A., Fedorov, V. E., Müller, C. E. (2015). Polyoxometalates—Potent and selective ecto–nucleotidase

inhibitors. Biochemical Pharmacology, 93 (2), 171–181. doi: 10.1016/j.bcp.2014.11.002

Lee, S.–Y., Müller, C. E. (2017). Nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) and its inhibitors. MedChemComm, 8 (5), 823–840. doi: 10.1039/c7md00015d

Choudhary, M. I., Fatima, N., Abbasi, M. A., Jalil, S., Ahmad, V. U., Atta–ur–Rahman. (2004). Phenolic glycosides, a new class of human recombinant nucleotide pyrophosphatase phosphodiesterase–1 inhibitors. Bioorganic & Medicinal Chemistry, 12 (22), 5793–5798. doi: 10.1016/j.bmc.2004.08.035

Khan, K. M., Fatima, N., Rasheed, M., Jalil, S., Ambreen, N., Perveen, S., Choudhary, M. I. (2009). 1,3,4–Oxadiazole–2(3H)–thione and its analogues: A new class of non–competitive nucleotide pyrophosphatases/phosphodiesterases 1 inhibitors. Bioorganic & Medicinal Chemistry, 17 (22), 7816–7822.

doi: 10.1016/j.bmc.2009.09.011

Khan, K. M., Siddiqui, S., Saleem, M., Taha, M., Saad, S. M., Perveen, S., Choudhary, M. I. (2014). Synthesis of triazole Schiff bases: Novel inhibitors

of nucleotide pyrophosphatase/phosphodiesterase–1. Bioorganic & Medicinal Chemistry, 22 (22), 6509–6514. doi: 10.1016/j.bmc.2014.08.032

Zalatan, J. G., Fenn, T. D., Brunger, A. T., Herschlag, D. (2006). Structural and Functional Comparisons of Nucleotide Pyrophosphatase/Phosphodiesterase and Alkaline Phosphatase: Implications for Mechanism and Evolution. Biochemistry, 45 (32), 9788–9803. doi: 10.1021/bi060847t

Vovk, A. I., Kalchenko, V. I., Cherenok, S. A., Kukhar, V. P., Muzychka, O. V., Lozynsky, M. O. (2004). Calix[4]arene methylenebisphosphonic acids as calf intestine alkaline phosphatase inhibitors. Organic & Biomolecular Chemistry, 2 (21), 3162. doi: 10.1039/b409526j

Vovk, A. I., Kononets, L. A., Tanchuk, V. Y., Cherenok, S. O., Drapailo, A. B., Kalchenko, V. I., Kukhar, V. P. (2010). Inhibition of Yersinia protein tyrosine phosphatase by phosphonate derivatives of calixarenes. Bioorganic & Medicinal Chemistry Letters, 20 (2), 483–487. doi: 10.1016/j.bmcl.2009.11.126

Vovk, A. I., Kononets, L. A., Tanchuk, V. Y., Drapailo, A. B., Kalchenko, V. I., Kukhar, V. P. (2009). Thiacalix[4]arene as molecular platform for design of alkaline phosphatase inhibitors. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 66 (3–4), 271–277. doi: 10.1007/s10847–009–9607–9

Henz, S. L., Fürstenau, C. R., Chiarelli, R. A., Sarkis, J. J. F. (2007). Kinetic and biochemical characterization of an ecto–nucleotide pyrophosphatase/phosphodiesterase (EC 3.1.4.1) in cells cultured from submandibular salivary glands of rats. Archives of Oral Biology, 52 (10), 916–923. doi: 10.1016/j.archoralbio.2007.03.006

Wanno, B., Sang–aroon, W., Tuntulani, T., Polpoka, B., Ruangpornvisuti, V. (2003). Conformational and energetical structures of sulfonylcalix[4]arene, p–tert–butylsulfonylcalix[4]arene and their zinc complexes. Journal of Molecular Structure: Theochem, 629 (1–3), 137–150. doi: 10.1016/

s0166–1280(03)00135–0

Huey, R., Morris, G. M., Olson, A. J., Goodsell, D. S. (2007). A semiempirical free energy force field with charge–based desolvation. Journal of Computational Chemistry, 28 (6), 1145–1152. doi: 10.1002/jcc.20634

Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., Hutchison, G. R. (2012). Avogadro : an advanced semantic chemical editor,

visualization, and analysis platform. Journal of Cheminformatics, 4 (1), 17. doi: 10.1186/1758–2946–4–17

Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Schwede, T. (2014). SWISS–MODEL : modelling protein tertiary and

quaternary structure using evolutionary information. Nucleic Acids Research, 42(W1), W252–W258. doi: 10.1093/nar/gku340

Šali, A., Blundell, T. L. (1993). Comparative Protein Modelling by Satisfaction of Spatial Restraints. Journal of Molecular Biology, 234 (3), 779–815. doi: 10.1006/jmbi.1993.1626

Jansen, S., Perrakis, A., Ulens, C., Winkler, C., Andries, M., Joosten, R. P., Bollen, M. (2012). Structure of NPP1, an Ectonucleotide Pyrophosphatase/Phosphodiesterase Involved in Tissue Calcification. Structure, 20 (11), 1948–1959. doi: 10.1016/j.str.2012.09.001

Almi, M., Arduini, A., Casnati, A., Pochini, A., Ungaro, R. (1989). Chloromethylation of calixarenes and synthesis of new water soluble macrocyclic hosts. Tetrahedron, 45 (7), 2177–2182. doi: 10.1016/s0040–4020(01)80077–6

Kasyan, O., Swierczynski, D., Drapailo, A., Suwinska, K., Lipkowski, J., Kalchenko, V. (2003). Upper rim substituted thiacalix[4]arenes. Tetrahedron Letters, 44 (38), 7167–7170. doi: 10.1016/s0040–4039(03)01809–4

Kharchenko, S. G., Drapailo, A. B., Kalchenko, O. I., Yampolska, G. D., Shishkina, S. V., Shishkin, O. V., Kalchenko, V. I. (2013). Thia– and Sulfonyl–Calix[

Arene Methylphosphonous Acids: Synthesis, Structure, and Amino Acids Binding. Phosphorus, Sulfur, and Silicon and the Related Elements,

(1–3), 243–248. doi: 10.1080/10426507.2012.741164

Iki, N., Kumagai, H., Morohashi, N., Ejima, K., Hasegawa, M., Miyanari, S., Miyano, S. (1998). Selective oxidation of thiacalix[4]arenes to the sulfinyl– and sulfonylcalix[4]arenes and their coordination ability to metal ions. Tetrahedron Letters, 39 (41), 7559–7562. doi: 10.1016/s0040–4039(98)01645–1

Kumagai, H., Hasegawa, M., Miyanari, S., Sugawa, Y., Sato, Y., Hori, T., Miyano, S. (1997). Facile synthesis of p–tert–butylthiacalix[4]arene by the reaction of p–tert–butylphenol with elemental sulfur in the presence of a base. Tetrahedron Letters, 38 (22), 3971–3972. doi: 10.1016/s0040–4039(97)00792–2

Kasyan, O., Kalchenko, V., Bolte, M., Böhmer, V. (2006). Hydrogen–bonded dimers of a thiacalixarene substituted by carbamoylmethylphosphineoxide groups at the wide rim. Chem. Commun., 18, 1932–1934. doi: 10.1039/b601016d


GOST Style Citations


1. Al–Rashida, M. Therapeutic potentials of ecto–nucleoside triphosphate diphosphohydrolase, ecto–nucleotide pyrophosphatase/phosphodiesterase, ecto–5’–nucleotidase, and alkaline phosphatase inhibitors / M. al–Rashida, J. Iqbal // Med. Res. Rev. – 2013. – Vol. 34, Issue 4. – P. 703–743.
doi: 10.1002/med.21302

2. Nucleotide pyrophosphatases/phosphodiesterases on the move / M. Bollen, R. Gijsbers, H. Ceulemans et al. // Crit. Rev. Biochem. Mol. Biol. – 2000. – Vol. 35, Issue 6. – P. 393–432. doi: 10.1080/10409230091169249

3. Goding, J. W. Physiological and pathophysiological functions of the ecto–nucleotide pyrophosphatase/phosphodiesterase family / J. W. Goding, B. Grobben, H. Slegers // Biochim. Biophys. Acta. – 2003. – Vol. 1638, Issue 1. – P. 1–19. doi: 10.1016/S0925–4439(03)00058–9

4. Substrate–dependence of competitive nucleotide pyrophosphatase/phosphodiesterase1 (NPP1) inhibitors/ S. Y. Lee, S. Sarkar, S. Bhattarai et al. // Frontiers Pharm. – 2017. – Vol. 8. doi: 10.3389/fphar.2017.00054

5. Polyoxometalates – potent and selective ecto–nucleotidase inhibitors / S. Y. Lee, A. Fiene, W. Li et al. // Biochem. Pharm. – 2015. – Vol. 93, Issue 2. – P. 171–181. doi: 10.1016/j.bcp.2014.11.002

6. Lee, S. Y. Nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) and its inhibitors / S. Y. Lee, C. E. Müller // Med. Chem. Comm. – 2017. – Vol. 8, Issue 5. – P. 823–840. doi: 10.1039/C7MD00015D

7. Phenolic glycosides, a new class of human recombinant nucleotide pyrophosphatase phosphodiesterase–1 inhibitors / M. I. Choudhary, N. Fatima, M. A. Abbasi et al. // Bioorg. Med. Chem. – 2004. – Vol. 12, Issue 22. – P. 5793–5798. doi: 10.1016/j.bmc.2004.08.035

8. 1,3,4–Oxadiazole–2 (3H)–thione and its analogues : A new class of non–competitive nucleotide pyrophosphatases/phosphodiesterases 1 inhibitors
/ K. M. Khan, N. Fatima, M. Rasheed et al. // Bioorg. Med. Chem. – 2009. – Vol. 17, Issue 22. – P. 7816–7822. doi: 10.1016/j.bmc.2009.09.011

9. Synthesis of triazole Schiff bases : Novel inhibitors of nucleotide pyrophosphatase/phosphodiesterase–1 / K. M. Khan, S. Siddiqui, M. Saleem et
al. // Bioorg. Med. Chem. – 2014. – Vol. 22, Issue 22. – P. 6509–6514. doi: 10.1016/j.bmc.2014.08.032

10. Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase : implications for mechanism and evolution / J. G. Zalatan, T. D. Fenn, A. T. Brunger, D. Herschlag // Biochem. – 2006. – Vol. 45, Issue 32. – P. 9788–9803. doi: 10.1021/bi060847t

11. Calix[4]arene methylenebisphosphonic acids as calf intestine alkaline phosphatase inhibitors / A. I. Vovk, V. I. Kalchenko, S. A. Cherenok et al. //Org. Biomol. Chem. – 2004. – Vol. 2, Issue 21. – 3162 p. doi: 10.1039/B409526J

12. Inhibition of Yersinia protein tyrosine phosphatase by phosphonate derivatives of calixarenes / A. I. Vovk, L. A. Kononets, V. Yu. Tanchuk et al. //
Bioorg. Med. Chem. Let. – 2010. – Vol. 20, Issue 2. – P. 483–487. doi: 10.1016/j.bmcl.2009.11.126

13. Thiacalix[4]arene as molecular platform for design of alkaline phosphatase inhibitors / A. I. Vovk, L. A. Kononets, V. Yu. Tanchuk et al. // J. Incl. Phenom. Macrocycl. Chem. – 2010. – Vol. 66, Issue 3–4. – P. 271–277. doi: 10.1007/s10847–009–9607–9

14. Kinetic and biochemical characterization of an ecto–nucleotide pyrophosphatase/phosphodiesterase (EC 3.1. 4.1) in cells cultured from submandibular salivary glands of rats / S. L. Henz, C. R. Fürstenau, R. A. Chiarelli, J. J. F. Sarkis // Arch. Oral Biol. – 2007. – Vol. 52, Issue 10. – P. 916–923. doi: 10.1016/j.archoralbio.2007.03.006

15. Conformational and energetical structures of sulfonylcalix[4]arene, p–tert–butylsulfonylcalix[4]arene and their zinc complexes / B. Wanno, W. Sang–aroon, T. Tuntulani et al. // J. Mol. Struct. (Theochem.) – 2003. – Vol. 629, Issue 1–3. – P. 137–150. doi: 10.1016/S0166–1280(03)00135–0

16. A semiempirical free energy force field with charge–based desolvation / R. Huey, G. M. Morris, A. J. Olson, D. S. Goodsell // J. Comput. Chem. – 2007. – Vol. 28, Issue 6. – P. 1145–1152. doi: 10.1002/jcc.20634

17. Avogadro : an advanced semantic chemical editor, visualization, and analysis platform / M. D. Hanwell, D. E. Curtis, D. C. Lonie et al. // Cheminform. – 2012. – Vol. 4, Issue 1. – 17 p. doi: 10.1186/1758–2946–4–17

18. Swiss–model : modelling protein tertiary and quaternary structure using evolutionary information / M. Biasini, S. Bienert, A. Waterhouse et al. // Nucleic Acids Res. – 2014. – Vol. 42, Issue W 1. – P. W252–W258. doi: 10.1093/nar/gku340

19. Sali, A. Comparative protein modelling by satisfaction of spatial restraints / A. Sali, T. Blundell // J. Mol. Biol. – 1993. – Vol. 234, Issue 3. – P. 779–815. doi: 10.1006/jmbi.1993.1626

20. Structure of NPP1, an ectonucleotide pyrophosphatase/phosphodiesterase involved in tissue calcification / S. Jansen, A. Perrakis, C. Ulens et al. // Structure – 2012. – Vol. 20, Issue 11. – P. 1948–59. doi: 10.1016/j.str.2012.09.001

21. Chloromethylation of calixarenes and synthesis of new water soluble macrocyclic hosts / M. Almi, A. Arduini, A. Casnati et al. // Tetrahedron. – 1989. – Vol. 45, Issue 7. – P. 2177–2182. doi: 10.1016/S0040–4020(01)80077–6

22. Upper rim substituted thiacalix[4]arenes / O. Kasyan, D. Swierczynski, A. Drapailo et al. // Tetrahedron Let. – 2003. – Vol. 44, Issue 38. – P. 7167–7170. doi: 10.1016/S0040–4039(03)01809–4

23. Thia– and sulfonyl–calix[4]arene methylphosphonous acids : Synthesis, structure, and amino acids binding / S. G. Kharchenko, A. B. Drapailo, O. I. Kalchenko et al. // Phosph. Sulfur Silicon. – 2013. – Vol. 188, Issue 1–3. – P. 243–248. doi: 10.1080/10426507.2012.741164

24. Selective oxidation of thiacalix[4]arenes to the sulfinyl– and sulfonilcalix[4]arenes and their coordination ability to metal ions / N. Iki, H. Kumagai, N. Morohashi et al. // Tetrahedron Let. – 1998. – Vol. 39, Issue 41. – P. 7559–7562. doi: 10.1016/S0040–4039(98)01645–1

25. Facile synthesis of p–tert–butylthiacalix[4]arene by the reaction p–tert–butylphenol with elemental sulfur in the presence of base / H. Kumagai, M. Hasegawa, S. Miyanari et al. // Tetrahedron Let. – 1997. – Vol. 38, Issue 22. – P. 3971–3972. doi: 10.1016/S0040–4039(97)00792–2

26. Hydrogen–bonded dimers of a thiacalixarene substituted by carbamoylmethylphosphineoxide groups at the wide rim / O. Kasyan, V. Kalchenko, M. Bolte, M. Bohmer // Chem. Commun. – 2006. – Vol. 18. – P. 1932–1934. doi: 10.1039/B601016D





Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: Ž. org. farm. hìm.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)