The study of the three-component interaction between isatin, α-amino acids and N,N’-di(3-carboxypropenoyl)-1,2-ethylenediamine and determination of the structure of the compounds obtained

Ye. I. Syumka, L. A. Shemchuk, V. P. Chernykh, R. G. Redkin

Abstract


Aim. To develop the preparative methods for obtaining new series of biologically active substances by the three-component interaction between isatin, α-amino acids and N,N’-di(3-carboxypropenoyl)-1,2-ethylenediamine and determine the structure of the compounds obtained.
Results and discussion. Using the three-component cascade transformation of isatin with α-amino acids and N,N’-di(3-carboxypropenoyl)-1,2-ethylenediamine a series of new derivatives of ethylene-N,N’-bis(spiroindole- 3,3’-pyrrolo[3,4-c]pyrrole-2a’,5a’-dihydro-2,2’,6’(1H,1’H,5’H)-trione) was synthesized. It was found that as a result of N,N’-di(3-carboxypropenoyl)-1,2-ethylenediamine cyclization in the course of the reaction the derivatives of N,N’-ethan-1,2-diyl-bis-spiro-2-oxidol[3,2’]-3’H,4’H,5’H-pyrrolo-4’-carboxy-3’-carboxamide were not formed. Instead of the expected hypothetical structures the derivatives of ethylene-N,N’-bis(spiroindole-3,3’-pyrrolo[3,4- c]pyrrole-2a’,5a’-dihydro-2,2’,6’(1H,1’H,5’H)-trione) were selected. The structure of the compounds synthesized was reliably proven by the instrumental methods (1H NMR, IR-spectroscopy), as well as counter synthesis.
Experimental part. The synthesis of compounds was performed using the three-component condensation in the alcoholic-aqueous medium and instrumental methods for determining the structure of organic compounds.
Conclusions. The reaction of the three-component interaction between isatin, α-amino acids and N,N’- di(3-carboxypropenoyl)-1,2-ethylenediamine has been studied. It has been proven that the preparatory method for the three-component cascade transformation of isatin with α-amino acids and ethylenebismaleinimide is an effective method for the synthesis of ethylene-N,N’-bis(spiroindole-3,3’-pyrrolo[3,4-c]pyrrole-2a’,5a’-dihydro-2,2’,6’(1H,1’H,5’H)-triones). The structure of the compounds obtained has been proven.


Keywords


bis-spirocyclic systems; 2-oxindole; multi-component reactions; counter synthesis

References


Ball–Jones, N. R., Badillo, J. J., Franz, A. K. (2012). Strategies for the enantioselective synthesis of spirooxindoles. Organic & Biomolecular Chemistry,

(27), 5165. doi: 10.1039/c2ob25184a

Palyulin, V. A., Osolodkin, D. I., Zefirov, N. S. (2010). Virtual Screening Workflow for Glycogen Synthase Kinase 3β Inhibitors: Convergence of

Ligand–based and Structurebased Approaches. 6th German Conference on Chemoinformatics. Abstract Book, 73.

Zefirova, О. N., Zefirov, N. S. (2000). Vestnik Moskovskogo Universiteta, 2, 103–108.

Shvetc, A. A., Kurbatov, S. V. (2012). Khimiia geterotcyklicheskikh soedinenii, 5, 859–866.

Levina, R. M. (1961). Metody polucheniia khimicheskikh reaktivov i preparatov. Moscow, 85.

Searl, N. E. (1948). Synthesis of N–aryl–maleimides. United States Patent. № 2,444,536; declared 06.07.1948.

Pavlovska, T. L., Redkin, R. G., Lipson, V. V., Atamanuk, D. V. (2015). Molecular diversity of spirooxindoles. Synthesis and biological activity. Molecular

Diversity, 20 (1), 299–344. doi: 10.1007/s11030–015–9629–8

Suymka, Y. I., Red’kin, R. G., Shemchuk, L. A., Hlebova, K. V., Filimonova, N. I. (2017). Synthesis and the antimicrobial activity of hexamethylene–

Nmaleinimidospiroindole– 3,3’–pyrrolo[3,4–c]pyrrole derivatives. Žurnal Organìčnoï Ta Farmacevtičnoï Hìmìï, 15 (4(60)), 56–62. doi: 10.24959/

ophcj.17.929

Redkin, R. G., Syumka, E. I., Shemchuk, L. A., Chernykh, V. P. (2017). Synthesis and antimicrobial activity of Bis–Derivatives of 3a’,6a’Dihydro–2’H–

Spiro[Indole–3,1’–Pyrrolo[3,4–c]Pyrrole]–2,4’,6’(1H,3’H,5’H)–Trione. Journal of Applied Pharmaceutical Science, 7 (06), 069–078. doi: 10.7324/

JAPS.2017.70610


GOST Style Citations


1. Ball–Jones, R. B. Strategies for the enantioselective synthesis of spirooxindoles / R. В. Ball–Jones, J. J. Badillo, A. K. Franz // Org. & Biomol. Chem. – 2012. – Vol. 10, Issue 27. – 5165 p. doi: 10.1039/c2ob25184a

2. Palyulin, V. Virtual Screening Workflow for Glycogen Synthase Kinase 3β Inhibitors: Convergence of Ligand–based and Structurebased Approaches
/ V. Palyulin, D. I. Osolodkin, N. S. Zefirov // 6-th German Conf. on Chemoinformatics. Abstract Book. – 2010. – 73 p.

3. Зефирова, О. Н. Методологические основы создания лекарственных препаратов / О. Н. Зефирова, Н. С. Зефиров // Вестн. Моск. ун–та. –
2000. – № 2. – С. 103–108.

4. Швец, А. А. Синтез бис–β,β’–спиропирролидиноксиндолов, содержащих роданиновый фрагмент / А. А. Швец, С. В. Курбатов // Химия
гетероцикл. соед. – 2012. – № 5. – С. 859–866.

5. Левина, Р. М. Методы получения химических реактивов и препаратов / Р. М. Левина. – М., 1961. – 85 с.

6. Synthesis of N–aryl–maleimides. United States Patent / Searl N. E. – No. 2,444,536. – declared 06.07.1948.

7. Molecular diversity of spirooxindoles. Synthesis and biological activity / T. L. Pavlovska, R. G. Redkin, V. V. Lipson, D. V. Atamanuk // Mol. Divers. –
2015. – Vol. 20, Issue 1. – P. 299–344. doi: 10.1007/s11030–015–9629–8

8. Synthesis and antimicrobial activity of hexamethylene–N–maleinimidospiroindole–3,3’–pyrrolo[3,4–с]pyrrole derivatives / Ye. I. Syumka, R. G. Red’kin, L. A. Shemchuk et al. // Žurnal Organìčnoï Ta Farmacevtičnoï Hìmìï. – 2017. – Vol. 15, Issue 4 (60). – P. 56–62. doi: 10.24959/ophcj.17.929

9. Synthesis and antimicrobial activity of Bis–Derivatives of 3a’,6a’Dihydro–2’H–Spiro[Indole–3,1’–Pyrrolo[3,4–c]Pyrrole]–2,4’,6’(1H,3’H,5’H)–Trione
/ R. G. Redkin, E. I. Syumka, L. A. Shemchuk, V. P. Chernykh // J. of Applied Pharm. Sci. – 2017. – Vol. 7, Issue 06. – P. 069–078. doi: 10.7324/
JAPS.2017.70610





DOI: https://doi.org/10.24959/ophcj.18.932

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: Ž. org. farm. hìm.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)