DOI: https://doi.org/10.24959/ophcj.18.939

The synthesis and transformation of 4-phosphorylated derivatives of 1,3-azoles

E. R. Abdurakhmanova, K. M. Kondratyuk, O. V. Holovchenko, V. S. Brovarets

Abstract


The review systematizes the literary data on the methods of the synthesis of 4-phosphorylated 1,3-azoles (oxazoles, thiazoles, selenazoles, imidazoles), as well as their chemical and biological properties. For the synthesis of 4-phosphorylated imidazole derivatives metallic derivatives of imidazole and phosphorus halides, electronically enriched imidazoles and phosphorus halides in pyridine in the presence of triethylamine or a cross-coupling of halogenimidazoles and dialkyl phosphites in the presence of a palladium catalyst are generally used. For the synthesis of 4-phosphorylated 1,3-azoles the acyclic phosphorus-containing reagents have been widely used, in particular 1-phosphorylated derivatives of 2-chloro- and 2,2-dichloroethenylamides, aminomethylphosphonates and their triphenylphosphonium analogs, β-ketopphosphonates, phosphorylated α-halogenocarbonyl compounds. The chemical properties of phosphorylated azoles are represented by phosphorus residue modification reactions, modification of other substituents and the azole ring, as well as reactions involving the disclosure of the azole ring. The latter are the most interesting since they provide an opportunity to conduct recyclization reactions, as well as synthesize an important class of organic compounds – phosphorylated peptidomimetics. Due to the systematic study of derivatives of 1,3-azoles over the last 30 years it has been shown that at least one fragment of the 1,3-azole ring is a part of a wide range of simple and complex natural molecules and synthetic drugs. Synthetic 4-phosphorylated derivatives of 1,3-azoles are characterized by insectoacaricidal, anti-blastic, sugar-lowering, anti-exudative, antihypertensive, neurodegenerative and other types of activity.


Keywords


1,3-azoles; oxazole; thiazole; selenazol; imidazole; synthesis; biological activity

References


Matevosian, G. L., Zavlin, P. M. (1990). Khimiia Getorotcyklicheskikh soedinenii, 6, 723–740.

Zarudnitckii, E. V. (2000). Fosforilirovanie 1,3–azolov. K., 95.

Van der Jeught, S., Stevens, C. V. (2009). Direct Phosphonylation of Aromatic Azaheterocycles. Chemical Reviews, 109 (6), 2672–2702. doi: 10.1021/cr800315j

Pavlenko, N. V., Oos, T. I., Yagupolskii, Yu. L. et al. (2011). Khimiia Getorotciklicheskikh soedinenii, 1, 52–62.

Kunz, P. C., Reiß, G. J., Frank, W., Kläui, W. (2003). A Novel Water–Soluble Tripodal Imidazolyl Ligand as a Model for the Tris(histidine) Motif of Zinc Enzymes: Nickel, Cobalt and Zinc Complexes and a Comparison with Metal Binding in Carbonic Anhydrase. European Journal of Inorganic Chemistry, 2003 (21), 3945–3951. doi: 10.1002/ejic.200300228

Kunz, P. C., Kläui, W. (2007). Zinc and cobalt(II) complexes of tripodal nitrogen ligands of the tris[2–substituted imidazol–4(5)–yl]–phosphane type. Biomimetic hydrolysis of an activated ester. Collection of Czechoslovak Chemical Communications, 72 (4), 492–502.

Kunz, P. C., Zribi, A., Frank, W., Kläui, W. (2007). Synthesis and Characterization of Water–Soluble Zinc, Cobalt(II) and Copper(II) Complexes with a Neutral TripodalN,N,N–Ligand: Crystal Structures of [(κ3N–4–TIPOiPr)Co(H2O)(κ2O–NO3)]NO3 and [(κ3N–4–TIPOiPr)Cu(H2O)(κO–SO4)], 4–TIPOiPr = tris(2–isopropylimidazol–4(5)–yl)phosphane oxide. Zeitschrift Für Anorganische Und Allgemeine Chemie, 633 (7), 955–960. doi:

1002/zaac.200700031

Kunz, P. C., Zribi, A., Frank, W., Kläui, W. (2008). Unexpected Coordination Modes of the Tris(imidazolyl)phosphane Oxide Ligand 4–TIPOiPr in the Chloro Complexes of Zinc, Cobalt and Nickel. Zeitschrift Für Anorganische Und Allgemeine Chemie, 634 (4), 724–729. doi: 10.1002/zaac.200700473

Kunz, P. C., Kassack, M. U., Hamacher, A., Spingler, B. (2009). Imidazole–based phosphane gold(I) complexes as potential agents for cancer treatment: Synthesis, structural studies and antitumour activity. Dalton Transactions, (37), 7741. doi: 10.1039/b902748c

Kunz, P. C., Huber, W., Rojas, A., Schatzschneider, U., Spingler, B. (2009). Tricarbonylmanganese(I) and â “rhenium(I) Complexes of Imidazol–Based Phosphane Ligands: Influence of the Substitution Pattern on the CO Release Properties. European Journal of Inorganic Chemistry, 2009 (35),

–5366. doi: 10.1002/ejic.200900650

Kunz, P. C., Wetzel, C., Bongartz, M., Noffke, A. L., Spingler, B. (2010). Novel multitopic diphos–type ligands. Journal of Organometallic Chemistry, 695(15–16), 1891–1897. doi: 10.1016/j.jorganchem.2010.04.028

Wetzel, C., Kunz, P. C., Thiel, I., Spingler, B. (2011). Gold(I) catalysts with difunctional P, N ligands. Inorganic Chemistry, 50 (16), 7863–7870.

Park, H., Baus, J. S., Lindeman, S. V., Fiedler, A. T. (2011). Synthesis and Characterization of Fe(II) β–Diketonato Complexes with Relevance to Acetylacetone Dioxygenase: Insights into the Electronic Properties of the 3–Histidine Facial Triad. Inorganic Chemistry, 50 (23), 11978–11989. doi: 10.1021/ic201115s

Beckmann, U., Süslüyan, D., Kunz, P. C. (2011). Is the1JPSeCoupling Constant a Reliable Probe for the Basicity of Phosphines? A31P NMR Study. Phosphorus, Sulfur, and Silicon and the Related Elements, 186 (10), 2061–2070. doi: 10.1080/10426507.2010.547892

Kunz, P. C., Börgardts, M., Mohr, F. (2012). Structural flexibility in complexes bearing a tripodal nitrogen ligand. Inorganica Chimica Acta, 380, 392–398. doi: 10.1016/j.ica.2011.11.011

Kunz, P. C., Thiel, I., Noffke, A. L., Reiß, G. J., Mohr, F., Spingler, B. (2012). Ruthenium piano–stool complexes bearing imidazole–based PN ligands. Journal of Organometallic Chemistry, 697 (1), 33–40. doi: 10.1016/j.jorganchem.2011.10.006

Huber, W., Linder, R., Niesel, J., Schatzschneider, U., Spingler, B., Kunz, P. C. (2012). A Comparative Study of Tricarbonylmanganese Photoactivatable CO Releasing Molecules (PhotoCORMs) by Using the Myoglobin Assay and Time–Resolved IR Spectroscopy. European Journal of Inorganic Chemistry, 2012 (19), 3140–3146. doi: 10.1002/ejic.201200115

Tschamber, T., Gessier, F., Neuburger, M., Gurcha, S. S., Besra, G. S., Streith, J. (2003). On the Way to Glycoprocessing Inhibitors − Synthesis of an Imidazolo–Nectrisine–Phosphono Acid Derivative: A Potential Glycosyltranferase Inhibitor. European Journal of Organic Chemistry, 2003 (15), 2792–2798. doi: 10.1002/ejoc.200300190

Marchenko, A. P., Koidan, H. N., Huryeva, A. N., Zarudnitskii, E. V., Yurchenko, A. A., Kostyuk, A. N. (2010). N–Phosphorylated Imidazolium Salts as Precursors to 2– and 5–Phosphorylated Imidazoles and New Imidazol–2–ylidenes Featuring the PNCN Unit. The Journal of Organic Chemistry, 75

(21), 7141–7145. doi: 10.1021/jo101177h

Ruiz, J., Mesa, A. F. (2012). A 4,5–Diphosphino–Substituted Imidazolium Salt: A Building Block for the Modular Synthesis of Mixed Diphosphine–NHC Heterometallic Complexes. Chemistry – A European Journal, 18 (15), 4485–4488. doi: 10.1002/chem.201200031

Hirao, T., Masunaga, T., Ohshiro, Y., Agawa, T. (1981). A Novel Synthesis of Dialkyl Arenephosphonates. Synthesis, 1981 (01), 56–57. doi: 10.1055/s–1981–29335

Hirao, T., Masunaga, T., Yamada, N., Ohshiro, Y., & Agawa, T. (1982). Palladium–catalyzed New Carbon–Phosphorus Bond Formation. Bulletin of the Chemical Society of Japan, 55 (3), 909–913. doi: 10.1246/bcsj.55.909

Lin, J., Thompson, C. M. (1994). The synthesis of biologically relevant 4(5)–phosphono–5(4)–aminoimidazoles using a Pd–catalyzed coupling reaction. Journal of Heterocyclic Chemistry, 31 (6), 1701–1705. doi:10.1002/jhet.5570310672

Billault, I., Vasella, A. (1999). Synthesis of gluco–configured tetrahydroimidazopyridine–2–phosphonate–derived lipids, potential glucosyl transferase inhibitors / I. Billault, A. Vasella. Helv. Chim. Acta, 82 (8), 1137–1149. doi: 0.1002/(sici)1522–2675(19990804)82:8<1137::aid–hlca1137>3.0.co;2–n

Terinek, M., Vasella, A. (2004). Improved Access to Imidazole–phosphonic Acids: Synthesis ofD–manno–Tetrahydroimidazopyridine–2–phosphonates.

Helvetica Chimica Acta, 87 (3), 719–734. doi:10.1002/hlca.200490067

Yurchenko, A. A., Huryeva, A. N., Zarudnitskii, E. V., Marchenko, A. P., Koidan, G. N., & Pinchuk, A. M. (2009). 5–phosphorylated 1,2–disubstituted imidazoles. Heteroatom Chemistry, 20 (5), 289–308. doi: 10.1002/hc.20550

Zarudnitskii, E. V., Yurchenko, A. A., Merkulov, A. S., Semenova, M. G., Pinchuk, A. M., Tolmachev, A. A. (2005). Phosphorylation of imidazo[2,1–b] thiazoles with phosphorus(III) halides in the presence of bases. Heteroatom Chemistry, 16 (7), 648–655. doi: 10.1002/hc.20166

Marugan, J. J., Patnaik, S., Heilig, M. A. et al. (2011). WO2011137220A1 (USA) small molecule neuropeptide antagonists for the treatment of adictive disorders, mood,anxiety and sleep disorders; declared 28.04.2011, published 03.11.2011.

Lakhan, R., Ternai, B. (1974). Advances in Oxazole Chemistry – In: Advances in Heterocyclic Chemistry. N. Y.: Academic Press, 17, 99–211.

Potts, K. T. (1984). Synthesis of Five–membered Rings with Two or More Heteroatoms – In: Chemistry of Heterocyclic Compounds. N. Y.: Pergamon Press, 5, part 4A, 111–166.

Grimmett, M. R. (1984). Imidazoles and their Benzo Derivatives: (III) Synthesis and Applications. In: Chemistry of Heterocyclic Compounds. N. Y.: Pergamon Press, 5, part 4A, 457–498.

Boyd, G. V. (1984). Oxazoles and their Benzoderivatives – In: Comprehensive Heterocyclic Chemistry. N.Y.: Pergamon Press, 6, part 4B, 177–234.

Metzger, J. V. (1984). Thiazoles and their Benzo Derivatives – In: Comprehensive Heterocyclic Chemistry. N. Y.: Pergamon Press, 6, part 4B, 235–331.

Lalezari, I.(1984). Five–membered Selenium–Nitrogen Heterocycles – In: Comprehensive Heterocyclic Chemistry. N. Y.: Pergamon Press, 6, part 4B, 333–363.

Turchi, I. J. (1986). Oxazoles – In: The Chemistry of Heterocyclic Compounds. N. Y.: John Wiley, 45, 1064p.

Dzhoul, Dzh., Mills, K. (2004). Khimiia geterotciklicheskikh soedinenii. Moscow: Mir, 728.

Drach, B. S. (1989). Khimiia geterotciklicheskikh soedinenii, 6, 723–735.

Drach, B.S., Brovaretc, V. S., Smolii, O. B., Ziabrev, V. S. (2003). Khimiia i biologicheskaia aktivnost kislorod– i serusoderzhashchikh geterotciklov. Moscow, 1, 58–73.

Drach, B. S., Sviridov E. P. Zhurnal obschey himii – Russian Journal of General Chemistry, 1973, Vol. 43, № 7, pp. 1648–1649.

Drach B. S., Sviridov, E. P. (1974). Zhurnal obshchei khimii, 44 (8), 1712–1715.

Drach, B. S., Sviridov, E. P., Kirsanov, A. V. (1973). Zhurnal obshchei khimii, 45 (1), 12–16.

Drach B.S., Lobanov O.P., Martyinyuk A.P. Zhurnal obshchei khimii, 1979, Vol.49, № 3, pp. 717–718.

Martyiniuk, A. P., Brovaretc, V. S., Lobanov, O. P., Drach, B. S. (1984). Zhurnal obshchei khimii, 54 (9), 2186–2200.

Scheidecker, S., Köckritz, A., Schnell, M. (1990). α–substituierte Phosphonate. 56. Synthese und Reaktionen von 1–Formylamino–2,2,2–trichlorethanphosphonaten. Journal Für Praktische Chemie, 332 (6), 968–976. doi: 10.1002/prac.19903320614

Kurg, V. V., Brovarets, V. S., Drach, B. S. (1991). Zhurnal obshchei khimii, 61 (4), 874–879.

Röhr, G., Köckritz, A., Schnell, M. (1992). α–Substituierte Phosphonate 60.1Phosphonosubstituierte Heterocyclen aus 1–Formylamino–2,2,2–Trichlorethanphosphonaten. Phosphorus, Sulfur, and Silicon and the Related Elements, 71 (1–4), 157–163. doi: 10.1080/10426509208034506

Röhr, G., Schnell, M., Köckritz, A. (1992). α–Substituted Phosphonates; 61.1Synthesis of 2–Phosphonoglycine Amides by Solvolysis of 5–Amino–4–phosphonooxazoles. Synthesis, 1992 (10), 1031–1034. doi: 10.1055/s–1992–26294

Brovaretc, V. S., Vyidzhak, R. N., Drach, B. S. (1993). Zhurnal obshchei khimii, 63 (1), 80–86.

Brovaretc, V. S., Vyidzhak, R. N., Vinogradova, T. K., Drach, B. S. (1994). Zhurnal obshchei khimii, 64 (6), 1048.

Van Meervelt, L., Schuerman, G. S., Brovarets, V. S., Mishchenko, N. I., Romanenko, E. A., Drach, B. S. (1995). Structure and properties of phosphonium ylides–betaines, derivatives of 2–phenyl–2–oxazolin–5–one and its thio– and seleno–analogues. Tetrahedron, 51 (5), 1471–1482. doi:

1016/0040–4020(94)01041–w

Brovaretc, V. S., Vydzhak, R.N., Pilo, S. G., Ziuz, K. V., Drach, B. S. (2001). Zhurnal obshchei khimii, 71 (11), 1726–1728.

Brovaretc, V. S., Pilo, S. G., Popovich, T. P., Vydzhak, R. N., Drach, B. S. (2001). Zhurnal obshchei khimii, 71 (11), 1825–1826.

Vydzhak, R. N., Brovaretc, V. S., Pilo, S. G., Drach, B. S. (2002). Zhurnal obshchei khimii, 72 (2), 207–211.

Pilo, S. G., Brovaretc, V. S., Vinogradova, T. K., Golovchenko, A. V., Drach, B. S. (2002). Zhurnal obshchei khimii, 72 (11), 1714–1723.

Brovarets, V. S., Golovchenko, A. V., Pilyo, S. G., Chernega, A. N., Drach, B. S. (2003). A Facile Synthesis of Derivatives of (1,3,4–Thiadiazol–2–yl) glycine and Its Phosphonyl Analogue. Synthesis, (18), 2851–2857. doi: 10.1055/s–2003–42458

Golovchenko, A. V., Pilo, S. G., Brovaretc, V. S., Drach, B. S. (2003). Zhurnal obshchei khimii, 73 (11), 1832–1833.

Golovchenko, A. V., Pilo, S. G., Brovaretc, V. S., Chernega, A. N., Drach, B. S. (2005). Zhurnal obshchei khimii, 75 (3), 425–431.

Golovchenko, A.V., Solomiannyi, R. N., Brovaretc, V. S. (2010). Zhurnal obshchei khimii, 80 (4), 723–727.

Prokopenko, V. M., Pilo, S. G., Vasilenko, A. N., Brovaretc, V. S. (2010). Zhurnal obshchei khimii, 80 (11), 2358–2365.

Lobanov, O. P., Martyiniuk, A. P., Drach, B. S. (1980). Zhurnal obshchei khimii, 50 (10), 2248–2257.

Köckritz, A., Schnell, M. (1993). α–Substituted phosphonates 68.1α–aminophosphonates and phosphono–substituted heterocycles from diethyl [2,2,2–trichloro–1–isocyanato–ethyl]phosphonate. Phosphorus, Sulfur, and Silicon and the Related Elements, 83 (1–4), 125–133. doi: 10.1080/10426509308034355

Smolii, O. B., Panchishin, S. Ya., Budnik, L. V. (1997). Zhurnal obshchei khimii, 67 (3), 391–394.

Kondratiuk, K. M., Golovchenko, A. V., Osadchuk, T. V., Brovaretc, V. S. (2011). Zhurnal obshchei khimii, 81, 1470–1476.

Abdurakhmanova, E. R., Lukashuk, E. I., Golovchenko, A. V., Pil’o, S. G., Brovarets, V. S. (2015). N–methyl–D–glucamine–derived 4–substituted 1,3–oxazoles. Russian Journal of General Chemistry, 85 (4), 851–857. doi: 10.1134/s1070363215040143

Abdurakhmanova, E. R., Lukashuk, E. I., Golovchenko, A. V., Brovarets, V. S. (2016). Synthesis and properties of 4–phosphorylated derivatives of 5–hydroxyalkylamino–1,3–oxazoles. Russian Journal of General Chemistry, 86 (7), 1584–1596. doi: 10.1134/s1070363216070094

Lukashuk, O. I., Abdurakhmanova, E. R., Kondratyuk, K. M., Golovchenko, O. V., Khokhlov, K. V., Brovarets, V. S., Kukhar, V. P. (2015). Introduction of chiral 2–(aminoalkyl) substituents into 5–amino–1,3–oxazol–4–ylphosphonic acid derivatives and their use in phosphonodipeptide synthesis. RSC Advances, 5 (15), 11198–11206. doi: 10.1039/c4ra13819h

Abdurakhmanova, E. R., Holovchenko, О. V., Brovarets, V. S. (2016). Zhurnal orhanichnoi ta farmatsevtychnoi khimii, 14 (4), 12–15.

Popilnichenko, S. V., Kondratiuk, K. M., Solomiannyi, R. N., Brovaretc, V. S. (2010). Zhurnal obshchei khimii, 80 (10), 1937–1940.

Lobanov, O. P., Drach, B. S. (1978). Zhurnal obshchei khimii, 48 (9), 1994–1997.

Brovaretc, V. S., Lobanov, O. P., Drach, B. S. (1983). Zhurnal obshchei khimii, 53 (3), 660–664.

Brovaretc, V. S., Drach, B. S. (1986). Zhurnal obshchei khimii, 56 (2), 321–325.

Brovaretc, V. S., Vydzhak, R. N., Drach, B. S. (1993). Zhurnal obshchei khimii, 63 (5), 1053–1057.

Brovaretc, V. S., Vydzhak, R. N., Vinogradova, T. K., Drach, B. S. (1993). Zhurnal obshchei khimii, 63 (1), 87–92.

Brovaretc, V. S., Lobanov, O. P., T.K. Vinogradova, T. K., Drach, B. S. (1984). Zhurnal obshchei khimii, 54 (2), 288–301.

Brovaretc, V. S., Kurg, V. V., Stepko, O. P., Drach, B. S. (1992). Zhurnal obshchei khimii, 62 (4), 822–826.

Schnell, M., Ramm, M., Kockritz, A. (1994). α–Substituted phosphonates. 64. Phosphono–Substituted Imidazoles and other heterocycles from diethyl [(2,2–dichloro–1–isocyano)–ethenyl]phosphonate. Journal For Praktische Chemie/Chemiker–Zeitung, 336 (1), 29–37. doi: 10.1002/prac.19943360107

Vydzhak, R. N., Brovaretc, V. S., Drach, B. S. (1994). Zhurnal obshchei khimii, 64 (5), 872–873.

Smolii, O. B., Brovaretc, V. S., Drach, B. S. (1987). Zhurnal obshchei khimii, 57 (9), 2145–2146.

Smolii, O. B., Brovaretc, V. S., Drach, B. S. (1988). Zhurnal obshchei khimii, 58 (7), 1670–1671.

Smolii, O. B., Brovaretc, V. S., Pirozhenko, V. V., Drach, B. S. (1988). Zhurnal obshchei khimii, 58 (12), 2635–2643.

Brovaretc, V. S., Smolii, O .B., Vdovenko, S. I., Drach, B. S. (1990). Zhurnal obshchei khimii, 60 (3), 566–574.

Smolii, O. B., Panchishin, S. Ya., Romanenko, E. A., Drach, B. S. (1999). Zhurnal obshchei khimii, 69 (10), 1652–1656.

Schröder, R., Schöllkopf, U., Blume, E., Hoppe, I. (1975). Synthesen mit α–metallierten Isocyaniden, XXVIII1) In 2–Stellung unsubstituierte Oxazole aus α–metallierten Isocyaniden und Acylierungsreagenzien. Justus Liebigs Annalen Der Chemie, 1975 (3), 533–546. doi: 10.1002/jlac.197519750315

Rachoń, J., Schöllkopf, U. (1981). Synthesen mit α–metallierten Isocyaniden, IL Phosphoranaloga von Aminosauren und Peptiden, VI Synthese von Oxazolyl– und Thiazolylphosphonsäurediethylestern. Liebigs Annalen Der Chemie, 1981 (7), 1186–1189. doi: 10.1002/jlac.198119810704

Rachón, J., Schouml;llkopf, U. (1981). Synthesen mit α–metallierten Isocyaniden, L. Phosphoranaloga von α–Aminosäuren und Peptiden, VII. Synthese von Methyl(Ethyl–)–amino(diethoxyphosphoryl)acetat sowie 2–Phosphonoglycin und seinen Derivaten aus (Isocyanmethyl)phosphonsäure–diethylester. Liebigs Annalen Der Chemie, 1981 (9), 1693–1698. doi: 10.1002/jlac.198119810918

Fehlhammer, W. P., Zinner, G., Bakola–Christianopoulou, M. (1987). Metallkomplexe funktioneller Isocyanide. Journal of Organometallic Chemistry, 331 (2), 193–205. doi: 10.1016/0022–328x(87)80021–9

Buchanan, J. G., McCaig, A. E., Wightman, R. H. (1990). The synthesis of 4–alkylsulphonyl–5–amino– and 5–amino–4–phosphono–imidazole nucleosides as potential inhibitors of purine biosynthesis. Journal of the Chemical Society, Perkin Transactions 1 (4), 955. doi: 10.1039/p19900000955

Yuan, C., Huang, W. (1996). An Efficient and Regioselective Synthesis of 1–Aryl(Alkyl)–4–Diethoxyphosphoryl–5–Trifluoromethylimidazoles. Phosphorus, Sulfur, and Silicon and the Related Elements, 109 (1–4), 481–484. doi: 10.1080/10426509608545195

Huang, W., Yuan, C. (1996). Studies on Organophosphorus Compounds 92: A Facile Synthesis of 1–Substituted 5–Trifluoromethylimidazole–4–phosphonates. Synthesis, 1996 (04), 511–513. doi: 10.1055/s–1996–4243

Kanazawa, C., Kamijo, S., Yamamoto, Y. (2006). Synthesis of Imidazoles through the Copper–Catalyzed Cross–Cycloaddition between Two Different Isocyanides. Journal of the American Chemical Society, 128 (33), 10662–10663. doi: 10.1021/ja0617439

Dang, Q., Liu, Y., Cashion, D. K., Kasibhatla, S. R., Jiang, T., Taplin, F., Erion, M. D. (2011). Discovery of a Series of Phosphonic Acid–Containing Thiazoles and Orally Bioavailable Diamide Prodrugs That Lower Glucose in Diabetic Animals Through Inhibition of Fructose–1,6–Bisphosphatase. Journal of Medicinal Chemistry, 54 (1), 153–165. doi: 10.1021/jm101035x

Baumann, M., Baxendale, I. R., Ley, S. V., Smith, C. D., Tranmer, G. K. (2006). Fully Automated Continuous Flow Synthesis of 4,5–Disubstituted Oxazoles. Organic Letters, 8 (23), 5231–5234. doi: 10.1021/ol061975c

Drach, B. S., Dolgushina, I. Yu., Sinitca, A. D. (1975). Zhurnal obshchei khimii, 45 (6), 1251–1255.

Beluga, A. G., Brovaretc, V. S., Drach, B. S. (2005). Zhurnal obshchei khimii, 75 (4), 523–526.

Doyle, K. J., Moody, C. J. (1994). The rhodium carbenoid route to oxazoles. Synthesis of 4–functionalised oxazoles; Three step preparation of a bis–oxazole. Tetrahedron, 50 (12), 3761–3772. doi: 10.1016/s0040–4020(01)90396–5

Gong, D., Zhang, L., Yuan, C. (2004). A Facile Synthesis of 4‐(O,O‐Dialkylphosphoryl)‐1,3‐oxazole by Rhodium‐Catalyzed Heterocycloaddition. Synthetic Communications, 34 (18), 3259–3264. doi: 10.1081/scc–200030540

Shi, B., Blake, A. J., Campbell, I. B., Judkins, B. D., Moody, C. J. (2009). The rhodium carbene route to oxazoles: a remarkable catalyst effect. Chemical Communications, 22, 3291. doi: 10.1039/b903878g

Shi, B., Blake, A. J., Lewis, W., Campbell, I. B., Judkins, B. D., Moody, C. J. (2010). Rhodium Carbene Routes to Oxazoles and Thiazoles. Catalyst Effects in the Synthesis of Oxazole and Thiazole Carboxylates, Phosphonates, and Sulfones. The Journal of Organic Chemistry, 75 (1), 152–161. doi: 10.1021/jo902256r

Palacios, F., Aparicio, D., Ochoa de Retana, A. M., de los Santos, J. M., Gil, J. I., Alonso, J. M. (2002). Asymmetric Synthesis of 2H–Azirines Derived from Phosphine Oxides Using Solid–Supported Amines. Ring Opening of Azirines with Carboxylic Acids. The Journal of Organic Chemistry, 67 (21), 7283–7288. doi: 10.1021/jo025995d

Palacios, F., Ochoa de Retana, A. M., Gil, J. I., & Alonso, J. M. (2002). Synthesis of optically active oxazoles from phosphorylated 2H–azirines and N–protected amino acids or peptides. Tetrahedron: Asymmetry, 13 (23), 2541–2552. doi: 10.1016/s0957–4166(02)00686–9

Palacios, F., Ochoa de Retana, A. M., Gil, J. I., Alonso, J. M. (2004). Regioselective synthesis of 4– and 5–oxazole–phosphine oxides and –phosphonates from 2H–azirines and acyl chlorides. Tetrahedron, 60 (40), 8937–8947. doi: 10.1016/j.tet.2004.07.013

Öhler, E., El–Badawi, M., Zbiral, E. (1984). Synthese von Hetaryl– und Hetarylvinylphosphonsäureestern aus 2–Brom–1–oxoalkylphosphonaten und 4–Brom–3–oxo–1–alkenylphosphonaten. Chemische Berichte, 117 (10), 3034–3047. doi: 10.1002/cber.19841171005

Hansen, J., Peterson, K. B., Monahan, J. B. (1995). Imidazo[1,2–a]pyridinyldiacid compounds for cognitive enhancement and for treatment of cognitive disorders and neurotoxic injury, US Pat. 5464843; declared 08.10.1993; published 07.11.1995.

Guseinov, F. I., Asadov, Kh. A., Burangulova, R. N., Moskva, V. V. (2001). Khimiia geterotciklicheskikh soedinenii, 8, 1139–1140.

Salkeeva, L. K., Minaeva, E. V., Nurmaganbetova, M. T., Guseinov, A. S. (2007). Zhurnal obshchei khimii, 77 (2), 312–313. doi: 10.1134/S1070363207020211

Ratcliffe, R. W., Christensen, B. G. (1973). Total synthesis of β–lactam antibiotics I. Tetrahedron Letters, 14 (46), 4645–4648. doi: 10.1016/s0040–4039(01)87298–1

Bartlett, P. A., Hunt, J. T., Adams, J. L., Gehret, J.–C. E. (1978). Phosphorus–containing purines and pyrimidines: A new class of transition state analogs. Bioorganic Chemistry, 7 (4), 421–436. doi: 10.1016/0045–2068(78)90033–0

Canton, T., Böhme, G. A., Boireau, A., Bordier, F. et al. (2001). RPR 119990, a Novel α–Amino–3–hydroxy–5–methyl–4–isoxazolepropionic Acid Antagonist: Synthesis, Pharmacological Properties, and Activity in an Animal Model of Amyotrophic Lateral Sclerosis. Journal of Pharmacology and Experimental Therapeutics, 299 (1), 314–322.

Erkhitueva, E. B., Dogadina, A. V., Khramchikhin, A. V., Ionin, B. I. (2011). Zhurnal obshchei khimii, 81 (11), 2377–2378.

Erkhitueva, E. B., Dogadina, A. V., Khramchikhin, A. V., Ionin, B. I. (2012). Highly regioselective heterocyclization reactions of 1H–1,2,4–triazole–3–thiols with chloroacetylenephosphonates. Tetrahedron Letters, 53 (33), 4304–4308. doi: 10.1016/j.tetlet.2012.05.157

Matveeva, E. D., Podrugina, T. A., Pavlova, A. S. et al. (2008). Izvestiia Akademii Nauk – Seriia khimicheskaia, 10, 2195–2197.

Matveeva, E. D., Podrugina, T. A., Pavlova, A. S., Mironov, A. V., Gleiter, R., Zefirov, N. S. (2009). Novel Photochemical Reactions of Phosphonium–Iodonium Ylides: Synthesis of Phosphonium–Substituted Oxazoles. European Journal of Organic Chemistry, 2009 (14), 2323–2327. doi: 10.1002/ejoc.200801251

Aksinenko, A. Y., Goreva, T. V., Epishina, T. A., Sokolov, V. B. (2012). Synthesis of 3–fluoro–2–(diethoxyphosphoryl)imidazo[1,2–a]pyridine. Journal of Fluorine Chemistry, 137, 105–107. doi: 10.1016/j.jfluchem.2012.02.005

Lobanov, O. P., Brovaretc, V. S., Drach, B. S. (1985). Zhurnal obshchei khimii, 55 (4), 940–941.

Brovaretc, V. S., Lobanov, O. P., Drach, B. S. (1983). Zhurnal obshchei khimii, 53 (9), 2015–2020.

Brovaretc, V. S., Lobanov, O. P., Kisilenko, A. A. (1986). Zhurnal obshchei khimii, 56 (7), 1492–1504.

Golovchenko, A. V., Brovaretc, V. S., Drach, B. S. (2004). Zhurnal obshchei khimii, 74 (9), 1414–1417.

Mazurkiewicz, R., Pierwocha, A. W. (1997). 4–Phosphoranylidene–5(4H)–oxazolones II. Reactions with alkylating agents. Monatshefte For Chemie Chemical Monthly, 128 (8–9), 893–900. doi: 10.1007/bf00807098

Brovaretc, V. S., Lobanov, O. P., Drach, B. S. (1982). Zhurnal obshchei khimii, 52 (6), 1438–1439.

Lukashuk, O. I., Kondratyuk, K. M., Golovchenko, A. V., Brovarets, V. S., Kukhar, V. P. (2013). A Novel Synthetic Approach to Phosphorylated Peptidomimetics. Heteroatom Chemistry, 24 (4), 289–297. doi: 10.1002/hc.21093

Kondratyuk, K. M., Lukashuk, O. I., Golovchenko, A. V., Komarov, I. V., Brovarets, V. S., Kukhar, V. P. (2013). Synthesis of 5–amino–2–aminoalkyl–1,3–oxazol–4–ylphosphonic acid derivatives and their use in the preparation of phosphorylated peptidomimetics. Tetrahedron, 69 (30), 6251–6261.

doi: 10.1016/j.tet.2013.05.017

Lukashuk, E. I ., Abdurakhmanova, E. R., Kondratiuk, K. M., Golovchenko, A. V., Brovaretc, V. S. (2015). Zhurnal obshchei khimii, 85 (1), 77–81.

Huryeva, A. N., Marchenko, A. P., Koidan, G. N., Yurchenko,, A. A., Zarudnitskii, E. V., Pinchuk, A. M., Kostyuk, A. N. (2010). 4–Phosphorylated 1,2–disubstituted imidazoles. Heteroatom Chemistry, 21 (3), 103–118. doi: 10.1002/hc.20584

Protopopova, G. V., Dziuban, A. D., Nesterenko, N. I. (1979). SSSR. 488527. Insektoakaritcidy; declared 27.03.1974; published 25.09.1979.

Brovarets, V. S., Sharykina, N. I., Kudriavtseva, I. H. et al. (1997). Patent Ukr. 17144а. 4–Dialkoksyfosforyl–5–dymetylamino–2–feniloksazoly, shcho proiavliaiut antyblastychnu aktyvnist; declared 30.07.1993; published 31.01.1997.

Fukuda, Y., Asahina, Y., Takadoi, M., Yamamoto, M. (2009). Pat. EP2275414A1. Cyclopentylacrylic acid amide derivative; declared 27.04.2009; published 05.11.2009.

Ryono, D. E., Cheng, P. T. W., Bolton, S. A. (2008). Pat. US20080009465A1. Novel glucokinase activators and methods of using same; declared 28.06.2007; published 10.01.2008.

Smolii, O. B., Gorodetckova, N. R., Brovaretc, V. S. (1989). Khimiko–farmatcevticheskii zhurnal, 23 (11), 1329–1331.

Poos, M. A. (1993). Pat. US5208235. Indole– and benzimidazole–substituted imidazole derivatives; declared 10.03.1992; published 04.05.1993.

Bold, G., Furet, P., Gessier, F. (2011). Pat. WO2011/023677A1. Tetra–substituted heteroaryl compounds and their use as MDM2 and/or MDM4 modulators; declared 24.08.2010; published 03.03.2011.

Barrish, J. C., Chen, P., Das, J. (2001). Pat. US6235740B1. Imidazoquinoxaline protein tyrosine kinase inhibitors; declared 15.06.1998; published 22.05.2001.

Csuzdi, E., Hamori, T., Abraham, G. (2003). Pat. US6600036B2. Condensed 2,3–benzodiazepine derivatives and their use as AMPA–receptor inhibitors; declared 27.11.2001; published 29.06.2003.

Aloup, J. C., Audiau, F., Barreau, M. (1999). Pat. US5902803A. 5H,10H–Imidazo[1,2–a]indeno[1,2–e]pyrazin–4–one derivatives, preparation thereof, and drugs containing said derivatives; declared 02.04.1996; published 11.05.1999.

Aloup, J. C., Bouquerel, J., Damour, D. (1999). Pat. US5990108A. 5H,10H–Imidazo[1,2–a]indeno[1,2–e]pyrazin–4–one derivatives, preparation thereof, intermediates thereof and drugs containing the same; declared 06.01.1997; published 23.11.1999.

Jimonet, P., Bohme, G. A., Bouquerel, J., Boireau, A., Damour, D., Debono, M. W., Mignani, S. (2001). Bioisosteres of 9–Carboxymethyl–4–oxo–imidazo[ 1,2– a ]indeno[1,2– e ]pyrazin–2–carboxylic acid derivatives. Progress towards selective, potent In Vivo AMPA antagonists with longer

durations of action. Bioorganic & Medicinal Chemistry Letters, 11 (2), 127–132. doi: 10.1016/s0960–894x(00)00592–8


GOST Style Citations


1. Матевосян, Г. Л. Фосфорилированные 1,3–диазолы / Г. Л. Матевосян, П. М. Завлин // Химия гетероцикл. соед. – 1990. – № 6. – С. 723–740.

2. Зарудницкий, Е. В. Фосфорилирование 1,3–азолов : дис. … канд. хим. наук : 02.00.08 / Е. В. Зарудницкий. – К., 2000. – 95 с.

3. Van der Jeught, S. Direct Phosphonylation of Aromatic Azaheterocycles / S. Van der Jeught, C. V. Stevens // Chem. Rev. – 2009. – Vol. 109, Issue 6. – P. 2672–2702. doi: 10.1021/cr800315j

4. Новые структурные аналоги глифосата на основе азолов. 1. Синтез 1Н–имидазолов, содержащих карбоксильную и фосфорильную группы в цикле / Н. В. Павленко, Т. И. Оос, Ю. Л. Ягупольский и др. // Химия гетероцикл. соед. – 2011. – № 1. – С. 52–62.

5. A novel water–soluble tripodal imidazolyl ligand as a model for the tris(histidine) motif of zinc enzymes : nickel, cobalt and zinc complexes and a comparison with metal binding in carbonic anhydrase / P. C. Kunz, G. J. Reiß, W. Frank, W. Kläui // Eur. J. Inorg. Chem. – 2003. – Vol. 2003, Issue 21. – P. 3945–3951. doi: 10.1002/ejic.200300228

6. Kunz P. C. Zinc and cobalt(II) complexes of tripodal nitrogen ligands of the tris[2–substituted imidazol–4(5)–yl]–phosphane type. Biomimetic hydrolysis of an activated ester / P. C. Kunz, W. Kläui // Collect. Czech. Chem. Commun. – 2007. – 72, № 4. – P. 492–502.

7. Synthesis and characterization of water–soluble zinc, cobalt(II) and copper(II) complexes with a neutral tripodal N,N,N–ligand : crystal structures of [(κ3N–4–TIPOiPr)Co(H2O)(κ2O–NO3)]NO3 and [(κ3N–4–TIPOiPr)Cu(H2O)(κO–SO4)], 4–TIPOiPr = tris(2–isopropylimidazol–4(5)–yl)phosphane oxide / P. C. Kunz, A. Zribi, W. Frank, W. Kläui // Z. Anorg. Allg. Chem. – 2007. – Vol. 633, Issue 7. – P. 955–960. doi: 10.1002/zaac.200700031

8. Unexpected coordination modes of the tris(imidazolyl)phosphane oxide ligand 4–TIPOiPr in the chloro complexes of zinc, cobalt and nickel / P. C. Kunz, A. Zribi, W. Frank, W. Kläui // Z. Anorg. Allg. Chem. – 2008. – Vol. 634, Issue 4. – P. 724–729. doi: 10.1002/zaac.200700473

9. Imidazole–based phosphane gold(I) complexes as potential agents for cancertreatment : synthesis, structural studies and antitumour activity / P. C. Kunz, M. U. Kassack, A. Hamacher, B. Spingler // Dalton Trans. – 2009. – Vol. 37. – 7741 p. doi: 10.1039/b902748c

10. Tricarbonylmanganese(I) and –rhenium(I) complexes of imidazol–based phosphane ligands : influence of the substitution pattern on the CO release properties / P. C. Kunz, W. Huber, A. Rojas et al. // Eur. J. Inorg. Chem. – 2009. – Vol. 2009, Issue 35. – P. 5358–5366. doi: 10.1002/ejic.200900650

11. Novel multitopic diphos–type ligands / P. C. Kunz, C. Wetzel, M. Bongartz et al. // J. Organomet. Chem. – 2010. – Vol. 695, Issue 15–16. – P. 1891–1897. doi: 10.1016/j.jorganchem.2010.04.028

12. Gold(I) catalysts with difunctional P, N ligands / C. Wetzel, P. C. Kunz, I. Thiel, B. Spingler // Inorg. Chem. – 2011. – Vol. 50. – P. 7863–7870.

13. Synthesis and characterization of Fe(II) β–diketonato complexes with relevance to acetylacetone dioxygenase : insights into the electronic properties of the 3–histidine facial triad / H. Park, J. S. Baus, S. V. Lindeman, A. T. Fiedler // Inorg. Chem. – 2011. – Vol. 50, Issue 23. – P. 11978–11989. doi:
10.1021/ic201115s

14. Beckmann, U. Is the 1JPSe coupling constant a reliable probe for the basicity of phosphines? A 31P NMR study / U. Beckmann, D. Süslüyan, P. C. Kunz // Phosphorus, Sulfur and Silicon. – 2011. – Vol. 186, Issue 10. – P. 2061–2070. doi: 10.1080/10426507.2010.547892

15. Kunz, P. C. Structural flexibility in complexes bearing a tripodal nitrogen ligand / P. C. Kunz, M. Börgardts, F. Mohr // Inorg. Chim. Acta. – 2012. – Vol. 380. – P. 392–398. doi: 10.1016/j.ica.2011.11.011

16. Ruthenium piano–stool complexes bearing imidazole–based PN ligands / P. C. Kunz, I. Thiel, A. L. Noffke et al. // J. Organomet. Chem. – 2012. – Vol. 697, Issue 1. – P. 33–40. doi: 10.1016/j.jorganchem.2011.10.006

17. A comparative study of tricarbonylmanganese photoactivatable CO releasing molecules (PhotoCORMs) by using the myoglobin assay and time–resolved IR spectroscopy / W. Huber, R. Linder, J. Niesel et al. // Eur. J. Inorg. Chem. – 2012. – Vol. 2012, Issue 19. – P. 3140–3146. doi: 10.1002/ejic.201200115

18. On the way to glycoprocessing inhibitors – synthesis of an imidazolo–nectrisine–phosphono acid derivative : a potential glycosyltranferase inhibitor / T. Tschamber, F. Gessier, M. Neuburger et al. // Eur. J. Org. Chem. – 2003. – Vol. 2003, Issue 15. – P. 2792–2798. doi: 10.1002/ejoc.200300190

19. N–Phosphorylated imidazolium salts as precursors to 2– and 5–phosphorylated imidazoles and new imidazol–2–ylidenes featuring the PNCN unit / A. P. Marchenko, H. N. Koidan, A. N. Huryeva et al. // J. Org. Chem. – 2010. – Vol. 75, Issue 21. – P. 7141–7145. doi: 10.1021/jo101177h

20. Ruiz, J. A 4,5–diphosphino–substituted imidazolium salt : A building block for the modular synthesis of mixed diphosphine–NHC heterometallic complexes / J. Ruiz, A. F. Mesa // Chem. Eur. J. – 2012. – Vol. 18, Issue 15. – P. 4485–4488. doi: 10.1002/chem.201200031

21. A novel synthesis of dialkyl arenephosphonates / T. Hirao, T. Masunaga, Y. Ohshiro, T. Agawa // Synthesis. – 1981. – Vol. 01. – P. 56–57. doi: 10.1055/s–1981–29335

22. Palladium–catalyzed New Carbon–Phosphorus Bond Formation / T. Hirao, T. Masunaga, N. Yamada et al. // Bull. Chem. Soc. Jpn. – 1982. – Vol. 55, Issue 3. – P. 909–913. doi: 10.1246/bcsj.55.909

23. Lin, J. The synthesis of biologically relevant 4(5)–phosphono–5(4)–aminoimidazoles using a Pd–catalyzed coupling reaction / J. Lin, C. M. Thompson // J. Heterocycl. Chem. – 1994. – Vol. 31, Issue 6. – P. 1701–1705. doi: 10.1002/jhet.5570310672

24. Billault, I. Synthesis of gluco–configured tetrahydroimidazopyridine–2–phosphonate–derived lipids, potential glucosyl transferase inhibitors / I. Billault, A. Vasella // Helv. Chim. Acta. – 1999. – Vol. 82, Issue 8. – P. 1137–1149. doi: 10.1002/(sici)1522–2675(19990804)82:8<1137::aid–hlca1137>3.0.co;2–n

25. Terinek, M. Improved access to imidazole–phosphonic acids: synthesis of D–manno–tetrahydroimidazopyridine–2–phosphonates / M. Terinek, A. Vasella // Helv. Chim. Acta. – 2004. – Vol. 87, Issue 3. – P. 719–734. doi: 10.1002/hlca.200490067

26. 5–Phosphorylated 1,2–disubstituted imidazoles / A. A. Yurchenko, A. N. Huryeva, E. V. Zarudnitskii et al. // Heteroat. Chem. – 2009. – Vol. 20, Issue 5. – P. 289–308. doi: 10.1002/hc.20550

27. Phosphorylation of imidazo[2,1–b]thiazoles with phosphorus(III) halides in the presence of bases / E. V. Zarudnitskii, A. A. Yurchenko, A. S. Merkulov et al. // Heteroat. Chem. – 2005. – Vol. 16, Issue 7. – P. 648–655. doi: 10.1002/hc.20166

28. WO2011137220A1 (USA) small molecule neuropeptide antagonists for the treatment of adictive disorders, mood,anxiety and sleep disorders / Marugan J. J., Patnaik S., Heilig M. A. et al. – declared 28.04.2011 ; published 03.11.2011.

29. Lakhan, R. Advances in Oxazole Chemistry / R. Lakhan, B. Ternai, Ed. A. R. Katritzky, A. J. Boulton // Advances in Heterocyclic Chem. – N. Y. : Academic Press, 1974. – Vol. 17. – P. 99–211.

30. Potts, K. T. Synthesis of Five–membered Rings with Two or More Heteroatoms / K. T. Poots, Ed. A. R. Katritzky // Chem. of Heterocyclic Compounds. – N. Y. : Pergamon Press, 1984. – 5, part 4A. – P. 111–166.

31. Grimmett, M. R. Imidazoles and their Benzo Derivatives : (iii) Synthesis and Applications / M. R. Grimmett, Ed. A. R. Katritzky // Chem. of Heterocyclic Compounds. – N. Y. : Pergamon Press, 1984. – 5, part 4A. – P. 457–498.

32. Boyd, G. V. Oxazoles and their Benzoderivatives / G. V. Boyd, Ed. A. R. Katritzky // Comprehensive Heterocyclic Chem. – N. Y. : Pergamon Press, 1984. – 6, part 4B. – P. 177–234.

33. Metzger, J. V. Thiazoles and their Benzo Derivatives / J. V. Metzger, Ed. A. R. Katritzky // Comprehensive Heterocyclic Chem. – N. Y. : Pergamon Press, 1984. – 6, part 4B. – P. 235–331.

34. Lalezari, I. Five–membered Selenium–Nitrogen Heterocycles / I. Lalezari, Ed. A. R. Katritzky // Comprehensive Heterocyclic Chem. – N. Y. : Pergamon Press, 1984. – 6, part 4B. – P. 333–363.

35. Turchi, I. J. Oxazoles / I. J. Turchi // The Chem. of Heterocyclic Compounds. – N. Y. : John Wiley, 1986. – Vol. 45. – 1064 p.

36. Джоуль, Дж. Химия гетероциклических соединений. – 2–е перераб. изд. / Дж. Джоуль, К. Миллс. – М. : Мир, 2004. – 728 с.

37. Драч, Б. С. Новые подходы к синтезу функциональнозамещенных азолов / Б. С. Драч // Химия гетероцикл. соед. – 1989. – № 6. – С. 723–735.

38. Новые достижения в химии функциональных производных оксазола / Б. С. Драч, В. С. Броварец, О. Б. Смолий, В. С. Зябрев // Труды II междунар. конф. «Химия и биологическая активность кислород– и серосодержащих гетероциклов», Москва, 2003. – № 1.– С. 58–73.

39. Драч, Б. С. Взаимодействие диметиламина с диэтиловым эфиром 1–бензамидо–2,2–дихлорвинилфосфоновой кислоты / Б. С. Драч, Э. П. Свиридов // Журн. общ. химии. – 1973. – T. 43, № 7. – С. 1648–1649.

40. Драч, Б. С. Взаимодействие диэтиловых эфиров 1–ациламидо–2,2–дихлорвинилфосфоновых кислот с первичными и вторичными аминами / Б. С. Драч, Э. П. Свиридов, Я. П. Шатурский // Журн. общ. химии. – 1974. – № 44 (8). – С. 1712–1715.

41. Драч, Б. С. Взаимодействие 1,2,2,2–тетрахлорэтиламидов кислот с этиловым эфиром дифенилфосфинистой кислоты и трифенилфосфином / Б. С. Драч, Э. П. Свиридов, А. В. Кирсанов // Журн. общ. химии. – 1973. – № 45 (1). – С. 12–16.

42. Драч, Б. С. Взаимодействие (2,2–дихлор–1–бензамидовинил)–трифенилфосфоний хлорида с гидросульфидом натрия / Б. С. Драч, О. П. Лобанов, А. П. Мартынюк // Журн. общ. химии. – 1979. – № 49 (3). – С. 717–718.

43. Фосфорсодержащие N–2,2–дихлорвинилмочевины / А. П. Мартынюк, В. С. Броварец, О. П. Лобанов, Б. С. Драч // Журн. общ. химии. – 1984. – № 54 (9). – С. 2186–2200.

44. Scheidecker, S. α–Substituierte Phosphonate. 56. Synthese und Reaktionen von 1–Formylamino–2,2,2–trichlorethanphosphonaten / S. Scheidecker, A. Köckritz, M. Schnell // J. Prakt. Chem. – 1990. – Vol. 332, Issue 6. – P. 968–976. doi: 10.1002/prac.19903320614

45. Кург, В. В. Применение 1–ациламино–2,2–дихлорэтенилтрифенилфосфониевых солей для получения производных 5–меркаптотиазола / В. В. Кург, В. С. Броварец, Б. С. Драч // Журн. общ. химии. – 1991. – № 61 (4). – С. 874–879.

46. Röhr, G. α–Substituierte Phosphonate 60. Phosphonosubstituierte Heterocyclen aus 1–Formylamino–2,2,2–trichloroethanphosphonaten / G. Röhr, A. Köckritz, M. Schnell // Phosphorus, Sulfur, Silicon, Relat. Elem. – 1992. – Vol. 71, Issue 1–4. – P. 157–164. doi: 10.1080/10426509208034506

47. Röhr, G. α–Substituted phosphonates; 61. Synthesis of 2–phosphonoglycine amides by solvolysis of 5–amino–4–phosphonooxazoles / G. Röhr, M. Schnell, A. Köckritz // Synthesis. – 1992. – Vol. 1992, Issue 10. – P. 1031–1034. doi: 10.1055/s–1992–26294

48. Броварец, В. С. Синтезы функциональнозамещенных винилфосфониевых солей на основе ди– и полихлорсодержащих алкилгетерокумуленов / В. С. Броварец, Р. Н. Выджак, Б. С. Драч // Журн. общ. химии. – 1993. – № 63 (1). – С. 80–86.

49. 1–Дихлорацетиламино–2,2–дихлорэтенилфосфония хлорид – перспективный реагент для гетероциклизаций / В. С. Броварец, Р. Н. Выджак, Т. К. Виноградова, Б. С. Драч // Журн. общ. химии. – 1994. – № 64 (6). – 1048 c.

50. Structure and properties of phosphonium ylides–betaines, derivatives of 2–phenyl–2–oxazolin–5–one and its thio– and seleno–analogues / L. Van Meervelt, G. S. Schuerman, V. S. Brovarets et al. // Tetrahedron. – 1995. – Vol. 51, Issue 5. – P. 1471–1482. doi: 10.1016/0040–4020(94)01041–w

51. Синтез и превращения 4–фосфорилированных 2–алкил(арил)–5–гидразинооксазолов / В. С. Броварец, Р. Н. Выджак, С. Г. Пильо и др. // Журн. общ. химии. – 2001. – № 71 (11). – С. 1822–1824.

52. Рециклизация продуктов ацилирования 2–арил–5–гидразино–4–диалкоксифосфорилоксазолов / В. С. Броварец, С. Г. Пильо, Т. П. Попович и др. // Журн. общ. химии. – 2001. – № 71 (11). – С. 1930–1931.

53. Синтез и превращения двух типов 4–фосфорилированных альдегидов оксазольного ряда / Р. Н. Выджак, В. С. Броварец, С. Г. Пильо, Б. С. Драч // Журн. общ. химии. – 2002. – № 72 (2). – С. 226–230.

54. Синтезы новых производных 5–меркапто–1,3–оксазола на основе 2–ациламино–3,3–дихлоракрилонитрилов и их аналогов / С. Г. Пильо, В. С. Броварец, Т. К. Виноградова и др. // Журн. общ. химии. – 2002. – № 72 (11). – С. 1818–1827.

55. A facile synthesis of derivatives of (1,3,4–thiadiazol–2–yl)glycine and its phosphonyl analogue / A. V. Golovchenko, S. G. Pilyo, V. S. Brovarets, B. S. Drach // Synthesis. – 2003. – Vol. 18. – P. 2851–2857. doi: 10.1055/s–2003–42458

56. Рециклизация продуктов присоединения 4–функциональнозамещенных 5–гидразино–2–фенил–1,3–оксазолов к арилизотиоцианатам / А. В. Головченко, С. Г. Пильо, В. С. Броварец, Б. С. Драч // Журн. общ. химии. – 2003. – № 73 (11). – С. 1933–1934.

57. Превращения продуктов ацилирования 4–функциональнозамещенных 2–алкил–(арил)–5–гидразино–1,3–оксазолов в производные 1,3,4–оксадиазола / А. В. Головченко, С. Г. Пильо, В. С. Броварец и др. // Журн. общ. химии. – 2005. – № 75 (3). – С. 461–467.

58. Головченко, А. В. Синтез производных С–гетерилзамещенных аминометилфосфоновых кислот / А. В. Головченко, Р. Н. Соломянный, В. С. Броварец // Журн. общ. химии. – 2010. – № 80 (4). – С. 563–567.

59. Синтез и превращения производных 2–арил–5–(3,5–диметил–1Н–пиразол–1–ил)–1,3–оксазол–4–карбоновой кислоты / В. М. Прокопенко, С. Г. Пильо, А. Н. Василенко, В. С. Броварец // Журн. общ. химии. – 2010. – № 80 (11). – С. 1895–1902.

60. Лобанов, О. П. Реакции (2,2–дихлор–1–ациламиновинил)–трифенилфосфония хлоридов с нуклеофилами / О. П. Лобанов, А. П. Мартынюк, Б. С. Драч // Журн. общ. химии. – 1980. – № 50 (10). – С. 2248–2257.

61. Köckritz, A. α–Substituted phosphonates 68. α–Aminophosphonates and phosphono–substituted heterocycles from diethyl [2,2,2–trichloro–1–isocyanatoethyl]phosphonate / A. Köckritz, M. Schnell // Phosphorus, Sulfur, Silicon, Relat. Elem. – 1993. – Vol. 83, Issue 1–4. – P. 125–133.
doi: 10.1080/10426509308034355

62. Превращения продукта присоединения цианометилентрифенилфосфорана к 1,2,2,2–тетрахлорэтилизоцианату / О. Б. Смолий, С. Я. Панчишин, Л. В. Будник и др. // Журн. общ. химии. – 1997. – № 67 (3). – С. 391–394.

63. Cинтез новых 4–фосфорилированных производных 5–амино–1,3–оксазолa / К. М. Кондратюк, А. В. Головченко, Т. В. Осадчук, В. С. Броварец // Журн. общ. хим. – 2011. – Т. 81, № 7. – С. 1121–1128.

64. N–Methyl–D–glucamine–Derived 4–Substituted 1,3–Oxazoles / E. R. Abdurahmanova, E. I. Lukashuk, A. V. Golovchenko et al. // Rus. J. Gen. Chem. – 2015. – Vol. 85, Issue 4. – P. 851–857. doi:10.1134/s1070363215040143

65. Synthesis and Properties of 4–Phosphorylated Derivatives of 5–Hydroxyalkylamino–1,3–Oxazoles / E. R. Abdurahmanova, E. I. Lukashuk, A. V. Golovchenko, V. S. Brovarets // Rus. J. Gen. Chem. – 2016. – Vol. 86, Issue 7. – P. 1584–1596. doi: 10.1134/s1070363216070094

66. Introduction of chiral 2–(aminoalkyl) substituents into 5–amino–1,3–oxazol–4–ylphosphonic acid derivatives and their use in phosphonodipeptide synthesis / O. I. Lukashuk, E. R. Abdurahmanova, K. M. Kondratyuk et al. // RSC Advances. – 2015. – Vol. 5, Issue 15. – P. 11198–11206.
doi: 10.1039/c4ra13819h

67. Абдурахманова, Е. Р. Взаємодія 1–ацил¬аміно–2,2–дихлороетенілфосфонію хлоридів з моноетаноламіном та N–метилмоноетаноламіном / Е. Р. Абдурахманова, О. В. Головченко, В. С. Броварець // Журн. орг. фарм. хим. – 2016. – Т. 14, № 4. – С. 12–15.

68. Взаимодействие диэтиловых эфиров 1–ациламино–2,2–дихлорвинилфосфоновых кислот и их аналогов с реагентом Лоуссона / С. В. Попильниченко, К. М. Кондратюк, Р. Н. Соломянный, В. С. Броварец // Журн. общ. химии. – 2010. – Т. 80, № 10. – С. 1626–1629.

69. Драч, Б. С. Новый синтез фосфорилированных тиазолов / Б. С. Драч, О. П. Лобанов // Журн. общ. химии. – 1978. – Т. 48, № 9. – С. 1994–1997. 70. Броварец, В. С. Синтез 4–фосфорилированных оксазолов и тиазолов / В. С. Броварец, О. П. Лобанов, Б. С. Драч // Журн. общ. химии. –
1983. – Т. 53, № 3. – С. 660–664.

71. Броварец, В. С. Взаимодействие замещенных винилфосфониевых солей с гидроселенидом натрия / В. С. Броварец, Б. С. Драч // Журн. общ. химии. – 1986. – Т. 56, № 2. – С. 321–325.

72. Броварец, В. С. Взаимодействие 1–арил–1,4,4–трихлор–2–аза–1,3–бутадиен–3–илтрифенилфосфониевых солей с тиомочевиной и селенобензамидом / В. С. Броварец, Р. Н. Выджак, Б. С. Драч // Журн. общ. химии. – 1993. – Т. 63, № 5. – С. 1053–1057.

73. Синтезы замещенных азол–4–илфосфониевых солей на основе ненасыщенных азлактонов / В. С. Броварец, Р. Н. Выджак, Т. К. Виноградова, Б. С. Драч // Журн. общ. химии. – 1993. – Т. 63, № 1. – С. 87–92.

74. Получение и свойства 2–хлор–1–ациламиновинилтрифенилфосфония хлоридов / В. С. Броварец, О. П. Лобанов, Т. К. Виноградова, Б. С. Драч // Журн. общ. химии. – 1984. – Т. 54, № 2. – С. 288–301.

75. Взаимодействие 1–ациламино–2–хлорэтенилтрифенилфосфония хлоридов с роданидом натрия / В. С. Броварец, В. В. Кург, О. П. Степко, Б. С. Драч // Журн. общ. химии. – 1992. – Т. 62, № 4. – С. 822–826.

76. Schnell, M. α–Substituted Phosphonates. 64. Phosphono–substituted imidazoles and other heterocycles from diethyl [(2,2–dichloro–1–isocyano)–ethenyl] phosphonate / M. Schnell, M. Ramm, A. Köckritz // J. Prakt. Chem. – 1994. – Vol. 336, Issue 1. – P. 29–37. doi: 10.1002/prac.19943360107

77. Выджак, Р. Н. Взаимодействие 1,2,2,2–тетрахлорэтилизотиоцианата с трифенилфосфином / Р. Н. Выджак, В. С. Броварец, Б. С. Драч // Журн. общ. химии. – 1994. – Т. 64, № 5. – С. 872–873.

78. Смолий, О. Б. Взаимодействие хлористого N–(трифенилфосфониометил)–бензимидоилхлорида с роданидом натрия / О. Б. Смолий, В. С. Броварец, Б. С. Драч // Журн. общ. химии. – 1987. – Т. 57, № 9. – С. 2145–2146.

79. Смолий, О. Б. Взаимодействие хлористого N–(трифенилфосфониометил)–бензимидоилхлорида с хлорангидридами карбоновых кислот / О. Б. Смолий, В. С. Броварец, Б. С. Драч // Журн. общ. химии. – 1988. – Т. 58, № 7. – С. 1670–1671.

80. Замещенные метилтрифенилфосфониевые соли с имидоилхлоридной группировкой – реагенты для получения функциональных производных имидазола / О. Б. Смолий, В. С. Броварец, В. В. Пироженко, Б. С. Драч // Журн. общ. химии. – 1988. – Т. 58, № 12. – С. 2635–2643.

81. Получение и свойства мезомерных фосфониевых илидов и бетаинов имидазольного ряда / В. С. Броварец, О. Б. Смолий, С. И. Вдовенко, Б. С. Драч // Журн. общ. химии. – 1990. – Т. 60, № 3. – С. 566–574.

82. Реакционноспособные фосфониевые илиды на основе 3–фенил–3–хлор–2–аза–2–пропен–1–ил(трифенил)фосфония хлорида / О. Б. Смолий, С. Я. Панчишин, Е. А. Романенко, Б. С. Драч // Журн. общ. химии. – 1999. – Т. 69, № 10. – С. 1652–1656.

83. Synthesen mit α–metallierten Isocyaniden, XXVIII. In 2–Stellung unsubstituierte Oxazole aus α–metallierten Isocyaniden und Acylierungsreagenzien / R. Schröder, U. Schöllkopf, E. Blume, I. Hoppe // Justus Liebigs Ann. Chem. – 1975. – Vol. 1975, Issue 3. – P. 533–546. doi: 10.1002/jlac.197519750315

84. Rachon, J. Synthesen mit α–metallierten Isocyaniden, IL. – Phosphoranalog von Aminosäuren und Peptiden, VI. – Synthese von Oxazolyl– und Thiazolylphosphonsäurediethylestern / J. Rachon, U. Schöllkopf // Liebigs Ann. Chem. – 1981. – Vol. 1981, Issue 7. – P. 1186–1189. doi: 10.1002/jlac.198119810704

85. Rachon, J. Synthesen mit α–metallierten Isocyaniden, L. – Phosphoranaloga von Aminosäuren und Peptiden, VII. – Synthese von Methyl(Ethy1–)–amino–(diethoxyphosphoryl)acetat sowie 2–Phosphonoglycin und seinen Derivaten aus (Isocyanmethy1)phosphonsäurediethylester / J. Rachon,
U. Schöllkopf // Liebigs Ann. Chem. – 1981. – Vol. 1981, Issue 9. – P. 1693–1698. doi: 10.1002/jlac.198119810918

86. Fehlhammer, W. P. Metallkomplexe funktioneller Isocyanide / W. P. Fehlhammer, G. Zinner, M. Bakola–Christianopoulou // J. Organomet. Chem. – 1987. – Vol. 331, Issue 2. – P. 193–205. doi: 10.1016/0022–328x(87)80021–9

87. Buchanan, J. G. The Synthesis of 4–Alkylsulphonyl–5–amino– and 5–Amino–4–phosphono–imidazole Nucleosides as Potential Inhibitors of Purine Biosynthesis / J. G. Buchanan, A. E. McCaig, R. H. Wightman // J. Chem. Soc., Perkin Trans. 1. – 1990. – Vol. 1, Issue 4. – 955 p. doi: 10.1039/p19900000955

88. Yuan, C. An efficient and regioselective synthesis of 1–aryl(alkyl)–4–diethoxyphosphoryl–5–trifluoromethylimidazoles / C. Yuan, W. Huang // Phosphorus, Sulfur, Silicon, Relat. Elem. – 1996. – Vol. 109, Issue 1–4. – P. 481–484. doi: 10.1080/10426509608545195

89. Huang, W. Studies on organophosphorus compounds 92 : A facile synthesis of 1–substituted 5–trifluoromethylimidazole–4–phosphonates / W. Huang, C. Yuan // Synthesis. – 1996. – Vol. 1996, Issue 04. – P. 511–513. doi: 10.1055/s–1996–4243

90. Kanazawa, C. Synthesis of imidazoles through the copper–catalyzed cross–cycloaddition between two different isocyanides / C. Kanazawa, S. Kamijo, Y. Yamamoto // J. Am. Chem. Soc. – 2006. – Vol. 128, Issue 33. – P. 10662–10663. doi: 10.1021/ja0617439

91. Discovery of a series of phosphonic acid сontaining thiazoles and orally bioavailable diamide prodrugs that lower glucose in diabetic animals through inhibition of fructose–1,6–bisphosphatase / Q. Dang, Y. Liu, D. K. Cashion et al. // J. Med. Chem. – 2011. – Vol. 54, Issue 1. – P. 153–165.
doi: 10.1021/jm101035x

92. Fully automated continuonus flow synthesis of 4,5–disubstituted oxazoles / M. Baumann, I. R. Baxendale, S. V. Ley et al. // Org. Lett. – 2006. – Vol. 8, Issue 23. – P. 5231–5234. doi: 10.1021/ol061975c

93. Драч, Б. С. Применение ω–хлор–ω–ациламидоацетофенонов для синтеза фосфорилированных оксазолов / Б. С. Драч, И. Ю. Долгушина, А. Д. Синица // Журн. общ. химии. – 1975. – Т. 45, № 6. – С. 1251–1255.

94. Белюга, А. Г. Удобный подход к синтезу 2–арил–5–фенил–1,3–оксазол–4–илфосфоновых кислот и их функциональных производных / А. Г. Белюга, В. С. Броварец, Б. С. Драч // Журн. общ. химии. – 2005. – Т. 75, № 4. – С. 561–564.

95. Doyle, K. J. The rhodium carbenoid route to oxazoles. Synthesis of 4–functionalised oxazoles; three step preparation of a bis–oxazole / K. J. Doyle, C. J. Moody // Tetrahedron. – 1994. – Vol. 50, Issue 12. – P. 3761–3772. doi: 10.1016/s0040–4020(01)90396–5

96. Gong, D. A facile synthesis of 4–(O,O–dialkylphosphoryl)–1,3–oxazole by rhodium–catalyzed heterocycloaddition / D. Gong, L. Zhang, C. Yuan // Synth. Commun. – 2004. – Vol. 34, Issue 18. – P. 3259–3264. doi: 10.1081/scc–200030540

97. The rhodium carbene route to oxazoles : a remarkable catalyst effect / B. Shi, A. J. Blake, I. B. Campbell et al. // Chem. Commun. (Cambridge, U. K.). – 2009. – Vol. 22. – 3291 p. doi: 10.1039/b903878g

98. Rhodium carbene routes to oxazoles and thiazoles. Catalyst effects in the synthesis of oxazole and thiazole carboxylates, phosphonates, and sulfones / B. Shi, A. J. Blake, W. Lewis et al. // J. Org. Chem. – 2010. – Vol. 75, Issue 1. – P. 152–161. doi: 10.1021/jo902256r

99. Asymmetric synthesis of 2H–azirines derived from phosphine oxides using solid–supported amines. Ring opening of azirines with carboxylic acids / F. Palacios, D. Aparicio, A. M. Ochoa de Retana et al. // J. Org. Chem. – 2002. – Vol. 67, Issue 21. – P. 7283–7288. doi: 10.1021/jo025995d

100. Synthesis of optically active oxazoles from phosphorylated 2H–azirines and N–protected amino acids or peptides / F. Palacios, A. M. Ochoa de Retana, J. I. Gil, J. M. Alonso // Tetrahedron Asymmetry. – 2002. – Vol. 13, Issue 23. – P. 2541–2552. doi: 10.1016/s0957–4166(02)00686–9

101. Regioselective synthesis of 4– and 5–oxazole–phosphine oxides and –phosphonates from 2H–azirines and acyl chlorides / F. Palacios, A. M. Ochoa de Retana, J. I. Gil, J. M. Alonso // Tetrahedron. – 2004. – Vol. 60, Issue 40. – P. 8937–8947. doi: 10.1016/j.tet.2004.07.013

102. Öhler, E. Synthese von Hetaryl– und Hetarylvinylphosphonsäureestern aus 2–Brom–1–oxoalkylphosphonaten und 4–Brom–3–oxo–1–alkenylphosphonaten / E. Öhler, M. El–Badawi, E. Zbiral // Chem. Ber. – 1984. – Vol. 117, Issue 10. – P. 3034–3047. doi: 10.1002/cber.19841171005

103. US Pat. 5464843. Imidazo[1,2–a]pyridinyldiacid compounds for cognitive enhancement and for treatment of cognitive disorders and neurotoxic injury / Hansen J., Peterson K. B., Monahan J. B. – declared 08.10.1993 ; published 07.11.1995.

104. Взаимодействие диалкоксифосфорилуксусных альдегидов с 2–аминопиридинами / Ф. И. Гусейнов, Х. А. Асадов, Р. Н. Бурангулова, В. В. Москва // Химия гетероцикл. соед. – 2001. – № 8. – С. 1139–1140.

105. Новый подход к синтезу фосфорилированных 2–аминотиазолов / Л. К. Салькеева, Е. В. Минаева, М. Т. Нурмаганбетова, А. С. Гусейнов // Журн. общ. химии. – 2007. – Т. 77, № 2. – С. 339–340.

106. Ratcliffe, R. W. Total synthesis of β–lactam antibiotics I. α–thioformamido–diethylphosphonoacetates / R. W. Ratcliffe, B. G. Christensen // Tetrahedron Lett. – 1973. – Vol. 14, Issue 46. – P. 4645–4648. doi: 10.1016/s0040–4039(01)87298–1

107. Phosphorus–containing purines and pyrimidines : a new class of transition state analogs / P. A. Bartlett, J. T. Hunt, J. L. Adams, J.–C. E. Gernet // Bioorg. Chem. – 1978. – Vol. 7, Issue 4. – P. 421–436. doi: 10.1016/0045–2068(78)90033–0

108. RPR 119990, a Novel α–Amino–3–hydroxy–5–methyl–4–isoxazolepropionic Acid Antagonist : Synthesis, Pharmacological Properties, and Activity in an Animal Model of Amyotrophic Lateral Sclerosis / T. Canton, G. A. Böhme, A. Boireau et al. // J. Pharmacol. Exp. Ther. – 2001. – Vol. 299, Issue 1. – P. 314–322.

109. Взаимодействие 4–амино–3–меркапто–5–метил–1,2,4–триазола с хлорацетиленфосфонатом / Е. Б. Эрхитуева, А. В. Догадина, А. В. Храмчихин, Б. И. Ионин // Журн. общ. химии. – 2011. – Т. 81, № 11. – С. 1925–1926.

110. Highly regioselective heterocyclization reactions of 1H–1,2,4–triazole–3–thiols with chloroacetylenephosphonates / E. B. Erkhitueva, A. V. Dogadina, A. V. Khramchikhin, B. I. Ionin // Tetrahedron Lett. – 2012. – Vol. 53, Issue 33. – P. 4304–4308. doi: 10.1016/j.tetlet.2012.05.157

111. Инициированная псевдо–[3+2] циклоконденсация смешанного фосфоний–иодоний илида с ацетонитрилом / Е. Д. Матвеева, Т. А. Подругина, А. С. Павлова и др. // Изв. АН, Cер. хим. – 2008. – № 10. – С. 2195–2197.

112. Novel photochemical reactions of phosphonium–iodonium ylides: synthesis of phosphonium–substituted oxazoles / E. D. Matveeva, T. A. Podrugina, A. S. Pavlova et al. // Eur. J. Org. Chem. – 2009. – Vol. 2009, Issue 14. – P. 2323–2327. doi: 10.1002/ejoc.200801251

113. Synthesis of 3–fluoro–2–(diethoxyphosphoryl)imidazo[1,2–a]pyridine / A. Y. Aksinenko, T. V. Goreva, T. A. Epishina, V. B. Sokolov // J. Fluorine Chem. – 2012. – Vol. 137. – P. 105–107. doi: 10.1016/j.jfluchem.2012.02.005

114. Лобанов, О. П. 5–Оксо–2–фенил–4Н–оксазолидентрифенилфосфоран / О. П. Лобанов, В. С. Броварец, Б. С. Драч // Журн. общ. химии. – 1985. – Т. 55, № 4. – С. 940–941.

115. Броварец, В. С. Синтезы 2,5–замещенных азолов на основе (2,2–дихлор–1–ациламиновинил)трифенилфосфония хлоридов / В. С. Броварец, О. П. Лобанов, Б. С. Драч // Журн. общ. химии. – 1983. – Т. 53, № 9. – С. 2015–2020.

116. Превращения замещенных фосфинометиленов, содержащих 2–алкил(арил)–4,5–дигидро–5–тиоксо–4–оксазолилиденовые фрагменты / В. С. Броварец, О. П. Лобанов, А. А. Кисиленко и др. // Журн. общ. химии. – 1986. – Т. 56, № 7. – С. 1492–1504.

117. Головченко, А. В. Удобный способ введения арилтио– и гетерилтиогрупп в положение 5 оксазольного кольца / А. В. Головченко, В. С. Броварец, Б. С. Драч // Журн. общ. химии. – 2004. – Т. 74, № 9. – С. 1524–1528.

118. Mazurkiewicz, R. 4–Phosphoranylidene–5(4H)–oxazolones II. Reactions with Alkylating Agents / R. Mazurkiewicz, A.W. Pierwocha // Monatsh. Chem. – 1997. – Vol. 128, Issue 8–9. – P. 893–900. doi: 10.1007/bf00807098

119. Броварец, В. С. Новый синтез фосфорилированных азолов / В. С. Броварец, О. П. Лобанов, Б. С. Драч // Журн. общ. химии. – 1982. – Т. 52, № 6. – С. 1438–1439.

120. Lukashuk, O. I. A Novel Synthetic Approach to Phosphorylated Peptidomimetics / O. I. Lukashuk, K. M. Kondratyuk, A. V. Golovchenko et al. // Heteroatom Chem. – 2013. – Vol. 24, Issue 4. – Р. 289–297. doi: 10.1002/hc.21093

121. Synthesis of 5–amino–2–aminoalkyl–1,3–oxazol–4–ylphosphonic acid derivatives and their use in the preparation of phosphorylated peptidomimetics / K. M. Kondratyuk, O. I. Lukashuk, A. V. Golovchenko et al. // Tetrahedron. – 2013. – Vol. 69, Issue 30. – P. 6251–6261. doi: 10.1016/j.tet.2013.05.017

122. Применение производных 5–амино–2–аминоалкил–1,3–оксазол–4–фос-фоновых кислот для получения фосфорилированных дегидроти-розинсодержащих трипептидов / Е. И. Лукашук, Э. Р. Абдурахманова, К. М. Кондратюк и др. // Журн. общ. хим. – 2015. – Т. 85, № 1. – С. 77–81.

123. 4–Phosphorylated 1,2–disubstituted imidazoles / A. N. Huryeva, A. P. Marchenko, G. N. Koidan et al. // Heteroat. Chem. – 2010. – Vol. 21, Issue 3. – P. 103–118. doi: 10.1002/hc.20584

124. А.с. СССР. 488527. Инсектоакарициды / Протопопова Г. В., Дзюбан А. Д., Нестеренко Н. И. и др. – заявл. 27.03.1974 ; опубл. 25.09.1979.

125. Пат. Укр. 17144а. 4–Діалкоксифосфорил–5–диметиламіно–2–фенілоксазоли, що проявляють антибластичну активність / Броварець В. С., Шарикіна Н. І., Кудрявцева І. Г. та ін. – заявл. 30.07.1993 ; опубл. 31.01.1997.

126. Pat. EP2275414A1. Cyclopentylacrylic acid amide derivative / Fukuda Y., Asahina Y., Takadoi M., Yamamoto M. – declared 27.04.2009 ; published 05.11.2009.

127. Pat. US20080009465A1. Novel glucokinase activators and methods of using same / Ryono D. E., Cheng P. T. W., Bolton. S. A. – declared 28.06.2007 ; published 10.01.2008.

128. Получение и фармакологическая активность гидрохлоридов 1–алкил–5–алкилтио–2–арилимидазолов / О. Б. Смолий, Н. Р. Городецкова, В. С. Броварец и др. // Хим. фарм. журн. – 1989. – Т. 23, № 11. – С. 1329–1331.

129. Pat. US5208235. Indole– and benzimidazole–substituted imidazole derivatives / Poos M. A. – declared 10.03.1992 ; published 04.05.1993.

130. Pat. WO2011/023677A1. Tetra–substituted heteroaryl compounds and their use as MDM2 and/or MDM4 modulators / Bold G., Furet P., Gessier F. et al. – declared 24.08.2010 ; published 03.03.2011.

131. Pat. US6235740B1. Imidazoquinoxaline protein tyrosine kinase inhibitors / Barrish J. C., Chen P., Das J. et al. ; declared 15.06.1998 ; published 22.05.2001.

132. Pat. US6600036B2. Condensed 2,3–benzodiazepine derivatives and their use as AMPA–receptor inhibitors / Csuzdi E., Hamori T., Abraham G. et al. – declared 27.11.2001 ; published 29.06.2003.

133. Pat. US5902803A. 5H,10H–Imidazo[1,2–a]indeno[1,2–e]pyrazin–4–one derivatives, preparation thereof, and drugs containing said derivatives / Aloup J. C., Audiau F., Barreau M. et al. – declared 02.04.1996 ; published 11.05.1999.

134. Pat. US5990108A. 5H,10H–Imidazo[1,2–a]indeno[1,2–e]pyrazin–4–one derivatives, preparation thereof, intermediates thereof and drugs containing the same / Aloup J. C., Bouquerel J., Damour D. et al. – declared 06.01.1997 ; published 23.11.1999.

135. Bioisosteres of 9–carboxymethyl–4–oxo–imidazo[1,2–a]indeno–[1,2–e]pyrazin–2–carboxylic acid derivatives. Progress towards selective, potent in vivo AMPA antagonists with longer durations of action / P. Jimonet, G. A. Bohme, J. Bouqerel et al. // Bioorg. Med. Chem. Lett. – 2001. – Vol. 11, Issue 2. – P. 127–132. doi: 10.1016/s0960–894x(00)00592–8





Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: Ž. org. farm. hìm.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)