The synthesis and transformation of 4-phosphorylated derivatives of 1,3-azoles

Authors

  • E. R. Abdurakhmanova Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Ukraine https://orcid.org/0000-0002-7071-7125
  • K. M. Kondratyuk Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Ukraine
  • O. V. Holovchenko Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Ukraine
  • V. S. Brovarets Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Ukraine

DOI:

https://doi.org/10.24959/ophcj.18.939

Keywords:

1, 3-azoles, oxazole, thiazole, selenazol, imidazole, synthesis, biological activity

Abstract

The review systematizes the literary data on the methods of the synthesis of 4-phosphorylated 1,3-azoles (oxazoles, thiazoles, selenazoles, imidazoles), as well as their chemical and biological properties. For the synthesis of 4-phosphorylated imidazole derivatives metallic derivatives of imidazole and phosphorus halides, electronically enriched imidazoles and phosphorus halides in pyridine in the presence of triethylamine or a cross-coupling of halogenimidazoles and dialkyl phosphites in the presence of a palladium catalyst are generally used. For the synthesis of 4-phosphorylated 1,3-azoles the acyclic phosphorus-containing reagents have been widely used, in particular 1-phosphorylated derivatives of 2-chloro- and 2,2-dichloroethenylamides, aminomethylphosphonates and their triphenylphosphonium analogs, β-ketopphosphonates, phosphorylated α-halogenocarbonyl compounds. The chemical properties of phosphorylated azoles are represented by phosphorus residue modification reactions, modification of other substituents and the azole ring, as well as reactions involving the disclosure of the azole ring. The latter are the most interesting since they provide an opportunity to conduct recyclization reactions, as well as synthesize an important class of organic compounds – phosphorylated peptidomimetics. Due to the systematic study of derivatives of 1,3-azoles over the last 30 years it has been shown that at least one fragment of the 1,3-azole ring is a part of a wide range of simple and complex natural molecules and synthetic drugs. Synthetic 4-phosphorylated derivatives of 1,3-azoles are characterized by insectoacaricidal, anti-blastic, sugar-lowering, anti-exudative, antihypertensive, neurodegenerative and other types of activity.

Downloads

Download data is not yet available.

References

  1. Matevosian, G. L., Zavlin, P. M. (1990). Khimiia Getorotcyklicheskikh soedinenii, 6, 723–740.
  2. Zarudnitckii, E. V. (2000). Fosforilirovanie 1,3–azolov. K., 95.
  3. Van der Jeught, S., Stevens, C. V. (2009). Direct Phosphonylation of Aromatic Azaheterocycles. Chemical Reviews, 109 (6), 2672–2702. doi: 10.1021/cr800315j
  4. Pavlenko, N. V., Oos, T. I., Yagupolskii, Yu. L. et al. (2011). Khimiia Getorotciklicheskikh soedinenii, 1, 52–62.
  5. Kunz, P. C., Reiß, G. J., Frank, W., Kläui, W. (2003). A Novel Water–Soluble Tripodal Imidazolyl Ligand as a Model for the Tris(histidine) Motif of Zinc Enzymes: Nickel, Cobalt and Zinc Complexes and a Comparison with Metal Binding in Carbonic Anhydrase. European Journal of Inorganic Chemistry, 2003 (21), 3945–3951. doi: 10.1002/ejic.200300228
  6. Kunz, P. C., Kläui, W. (2007). Zinc and cobalt(II) complexes of tripodal nitrogen ligands of the tris[2–substituted imidazol–4(5)–yl]–phosphane type. Biomimetic hydrolysis of an activated ester. Collection of Czechoslovak Chemical Communications, 72 (4), 492–502.
  7. Kunz, P. C., Zribi, A., Frank, W., Kläui, W. (2007). Synthesis and Characterization of Water–Soluble Zinc, Cobalt(II) and Copper(II) Complexes with a Neutral TripodalN,N,N–Ligand: Crystal Structures of [(κ3N–4–TIPOiPr)Co(H2O)(κ2O–NO3)]NO3 and [(κ3N–4–TIPOiPr)Cu(H2O)(κO–SO4)], 4–TIPOiPr = tris(2–isopropylimidazol–4(5)–yl)phosphane oxide. Zeitschrift Für Anorganische Und Allgemeine Chemie, 633 (7), 955–960. doi:
  8. 1002/zaac.200700031
  9. Kunz, P. C., Zribi, A., Frank, W., Kläui, W. (2008). Unexpected Coordination Modes of the Tris(imidazolyl)phosphane Oxide Ligand 4–TIPOiPr in the Chloro Complexes of Zinc, Cobalt and Nickel. Zeitschrift Für Anorganische Und Allgemeine Chemie, 634 (4), 724–729. doi: 10.1002/zaac.200700473
  10. Kunz, P. C., Kassack, M. U., Hamacher, A., Spingler, B. (2009). Imidazole–based phosphane gold(I) complexes as potential agents for cancer treatment: Synthesis, structural studies and antitumour activity. Dalton Transactions, (37), 7741. doi: 10.1039/b902748c
  11. Kunz, P. C., Huber, W., Rojas, A., Schatzschneider, U., Spingler, B. (2009). Tricarbonylmanganese(I) and â “rhenium(I) Complexes of Imidazol–Based Phosphane Ligands: Influence of the Substitution Pattern on the CO Release Properties. European Journal of Inorganic Chemistry, 2009 (35),
  12. –5366. doi: 10.1002/ejic.200900650
  13. Kunz, P. C., Wetzel, C., Bongartz, M., Noffke, A. L., Spingler, B. (2010). Novel multitopic diphos–type ligands. Journal of Organometallic Chemistry, 695(15–16), 1891–1897. doi: 10.1016/j.jorganchem.2010.04.028
  14. Wetzel, C., Kunz, P. C., Thiel, I., Spingler, B. (2011). Gold(I) catalysts with difunctional P, N ligands. Inorganic Chemistry, 50 (16), 7863–7870.
  15. Park, H., Baus, J. S., Lindeman, S. V., Fiedler, A. T. (2011). Synthesis and Characterization of Fe(II) β–Diketonato Complexes with Relevance to Acetylacetone Dioxygenase: Insights into the Electronic Properties of the 3–Histidine Facial Triad. Inorganic Chemistry, 50 (23), 11978–11989. doi: 10.1021/ic201115s
  16. Beckmann, U., Süslüyan, D., Kunz, P. C. (2011). Is the1JPSeCoupling Constant a Reliable Probe for the Basicity of Phosphines? A31P NMR Study. Phosphorus, Sulfur, and Silicon and the Related Elements, 186 (10), 2061–2070. doi: 10.1080/10426507.2010.547892
  17. Kunz, P. C., Börgardts, M., Mohr, F. (2012). Structural flexibility in complexes bearing a tripodal nitrogen ligand. Inorganica Chimica Acta, 380, 392–398. doi: 10.1016/j.ica.2011.11.011
  18. Kunz, P. C., Thiel, I., Noffke, A. L., Reiß, G. J., Mohr, F., Spingler, B. (2012). Ruthenium piano–stool complexes bearing imidazole–based PN ligands. Journal of Organometallic Chemistry, 697 (1), 33–40. doi: 10.1016/j.jorganchem.2011.10.006
  19. Huber, W., Linder, R., Niesel, J., Schatzschneider, U., Spingler, B., Kunz, P. C. (2012). A Comparative Study of Tricarbonylmanganese Photoactivatable CO Releasing Molecules (PhotoCORMs) by Using the Myoglobin Assay and Time–Resolved IR Spectroscopy. European Journal of Inorganic Chemistry, 2012 (19), 3140–3146. doi: 10.1002/ejic.201200115
  20. Tschamber, T., Gessier, F., Neuburger, M., Gurcha, S. S., Besra, G. S., Streith, J. (2003). On the Way to Glycoprocessing Inhibitors − Synthesis of an Imidazolo–Nectrisine–Phosphono Acid Derivative: A Potential Glycosyltranferase Inhibitor. European Journal of Organic Chemistry, 2003 (15), 2792–2798. doi: 10.1002/ejoc.200300190
  21. Marchenko, A. P., Koidan, H. N., Huryeva, A. N., Zarudnitskii, E. V., Yurchenko, A. A., Kostyuk, A. N. (2010). N–Phosphorylated Imidazolium Salts as Precursors to 2– and 5–Phosphorylated Imidazoles and New Imidazol–2–ylidenes Featuring the PNCN Unit. The Journal of Organic Chemistry, 75
  22. (21), 7141–7145. doi: 10.1021/jo101177h
  23. Ruiz, J., Mesa, A. F. (2012). A 4,5–Diphosphino–Substituted Imidazolium Salt: A Building Block for the Modular Synthesis of Mixed Diphosphine–NHC Heterometallic Complexes. Chemistry – A European Journal, 18 (15), 4485–4488. doi: 10.1002/chem.201200031
  24. Hirao, T., Masunaga, T., Ohshiro, Y., Agawa, T. (1981). A Novel Synthesis of Dialkyl Arenephosphonates. Synthesis, 1981 (01), 56–57. doi: 10.1055/s–1981–29335
  25. Hirao, T., Masunaga, T., Yamada, N., Ohshiro, Y., & Agawa, T. (1982). Palladium–catalyzed New Carbon–Phosphorus Bond Formation. Bulletin of the Chemical Society of Japan, 55 (3), 909–913. doi: 10.1246/bcsj.55.909
  26. Lin, J., Thompson, C. M. (1994). The synthesis of biologically relevant 4(5)–phosphono–5(4)–aminoimidazoles using a Pd–catalyzed coupling reaction. Journal of Heterocyclic Chemistry, 31 (6), 1701–1705. doi:10.1002/jhet.5570310672
  27. Billault, I., Vasella, A. (1999). Synthesis of gluco–configured tetrahydroimidazopyridine–2–phosphonate–derived lipids, potential glucosyl transferase inhibitors / I. Billault, A. Vasella. Helv. Chim. Acta, 82 (8), 1137–1149. doi: 0.1002/(sici)1522–2675(19990804)82:8<1137::aid–hlca1137>3.0.co;2–n
  28. Terinek, M., Vasella, A. (2004). Improved Access to Imidazole–phosphonic Acids: Synthesis ofD–manno–Tetrahydroimidazopyridine–2–phosphonates.
  29. Helvetica Chimica Acta, 87 (3), 719–734. doi:10.1002/hlca.200490067
  30. Yurchenko, A. A., Huryeva, A. N., Zarudnitskii, E. V., Marchenko, A. P., Koidan, G. N., & Pinchuk, A. M. (2009). 5–phosphorylated 1,2–disubstituted imidazoles. Heteroatom Chemistry, 20 (5), 289–308. doi: 10.1002/hc.20550
  31. Zarudnitskii, E. V., Yurchenko, A. A., Merkulov, A. S., Semenova, M. G., Pinchuk, A. M., Tolmachev, A. A. (2005). Phosphorylation of imidazo[2,1–b] thiazoles with phosphorus(III) halides in the presence of bases. Heteroatom Chemistry, 16 (7), 648–655. doi: 10.1002/hc.20166
  32. Marugan, J. J., Patnaik, S., Heilig, M. A. et al. (2011). WO2011137220A1 (USA) small molecule neuropeptide antagonists for the treatment of adictive disorders, mood,anxiety and sleep disorders; declared 28.04.2011, published 03.11.2011.
  33. Lakhan, R., Ternai, B. (1974). Advances in Oxazole Chemistry – In: Advances in Heterocyclic Chemistry. N. Y.: Academic Press, 17, 99–211.
  34. Potts, K. T. (1984). Synthesis of Five–membered Rings with Two or More Heteroatoms – In: Chemistry of Heterocyclic Compounds. N. Y.: Pergamon Press, 5, part 4A, 111–166.
  35. Grimmett, M. R. (1984). Imidazoles and their Benzo Derivatives: (III) Synthesis and Applications. In: Chemistry of Heterocyclic Compounds. N. Y.: Pergamon Press, 5, part 4A, 457–498.
  36. Boyd, G. V. (1984). Oxazoles and their Benzoderivatives – In: Comprehensive Heterocyclic Chemistry. N.Y.: Pergamon Press, 6, part 4B, 177–234.
  37. Metzger, J. V. (1984). Thiazoles and their Benzo Derivatives – In: Comprehensive Heterocyclic Chemistry. N. Y.: Pergamon Press, 6, part 4B, 235–331.
  38. Lalezari, I.(1984). Five–membered Selenium–Nitrogen Heterocycles – In: Comprehensive Heterocyclic Chemistry. N. Y.: Pergamon Press, 6, part 4B, 333–363.
  39. Turchi, I. J. (1986). Oxazoles – In: The Chemistry of Heterocyclic Compounds. N. Y.: John Wiley, 45, 1064p.
  40. Dzhoul, Dzh., Mills, K. (2004). Khimiia geterotciklicheskikh soedinenii. Moscow: Mir, 728.
  41. Drach, B. S. (1989). Khimiia geterotciklicheskikh soedinenii, 6, 723–735.
  42. Drach, B.S., Brovaretc, V. S., Smolii, O. B., Ziabrev, V. S. (2003). Khimiia i biologicheskaia aktivnost kislorod– i serusoderzhashchikh geterotciklov. Moscow, 1, 58–73.
  43. Drach, B. S., Sviridov E. P. Zhurnal obschey himii – Russian Journal of General Chemistry, 1973, Vol. 43, № 7, pp. 1648–1649.
  44. Drach B. S., Sviridov, E. P. (1974). Zhurnal obshchei khimii, 44 (8), 1712–1715.
  45. Drach, B. S., Sviridov, E. P., Kirsanov, A. V. (1973). Zhurnal obshchei khimii, 45 (1), 12–16.
  46. Drach B.S., Lobanov O.P., Martyinyuk A.P. Zhurnal obshchei khimii, 1979, Vol.49, № 3, pp. 717–718.
  47. Martyiniuk, A. P., Brovaretc, V. S., Lobanov, O. P., Drach, B. S. (1984). Zhurnal obshchei khimii, 54 (9), 2186–2200.
  48. Scheidecker, S., Köckritz, A., Schnell, M. (1990). α–substituierte Phosphonate. 56. Synthese und Reaktionen von 1–Formylamino–2,2,2–trichlorethanphosphonaten. Journal Für Praktische Chemie, 332 (6), 968–976. doi: 10.1002/prac.19903320614
  49. Kurg, V. V., Brovarets, V. S., Drach, B. S. (1991). Zhurnal obshchei khimii, 61 (4), 874–879.
  50. Röhr, G., Köckritz, A., Schnell, M. (1992). α–Substituierte Phosphonate 60.1Phosphonosubstituierte Heterocyclen aus 1–Formylamino–2,2,2–Trichlorethanphosphonaten. Phosphorus, Sulfur, and Silicon and the Related Elements, 71 (1–4), 157–163. doi: 10.1080/10426509208034506
  51. Röhr, G., Schnell, M., Köckritz, A. (1992). α–Substituted Phosphonates; 61.1Synthesis of 2–Phosphonoglycine Amides by Solvolysis of 5–Amino–4–phosphonooxazoles. Synthesis, 1992 (10), 1031–1034. doi: 10.1055/s–1992–26294
  52. Brovaretc, V. S., Vyidzhak, R. N., Drach, B. S. (1993). Zhurnal obshchei khimii, 63 (1), 80–86.
  53. Brovaretc, V. S., Vyidzhak, R. N., Vinogradova, T. K., Drach, B. S. (1994). Zhurnal obshchei khimii, 64 (6), 1048.
  54. Van Meervelt, L., Schuerman, G. S., Brovarets, V. S., Mishchenko, N. I., Romanenko, E. A., Drach, B. S. (1995). Structure and properties of phosphonium ylides–betaines, derivatives of 2–phenyl–2–oxazolin–5–one and its thio– and seleno–analogues. Tetrahedron, 51 (5), 1471–1482. doi:
  55. 1016/0040–4020(94)01041–w
  56. Brovaretc, V. S., Vydzhak, R.N., Pilo, S. G., Ziuz, K. V., Drach, B. S. (2001). Zhurnal obshchei khimii, 71 (11), 1726–1728.
  57. Brovaretc, V. S., Pilo, S. G., Popovich, T. P., Vydzhak, R. N., Drach, B. S. (2001). Zhurnal obshchei khimii, 71 (11), 1825–1826.
  58. Vydzhak, R. N., Brovaretc, V. S., Pilo, S. G., Drach, B. S. (2002). Zhurnal obshchei khimii, 72 (2), 207–211.
  59. Pilo, S. G., Brovaretc, V. S., Vinogradova, T. K., Golovchenko, A. V., Drach, B. S. (2002). Zhurnal obshchei khimii, 72 (11), 1714–1723.
  60. Brovarets, V. S., Golovchenko, A. V., Pilyo, S. G., Chernega, A. N., Drach, B. S. (2003). A Facile Synthesis of Derivatives of (1,3,4–Thiadiazol–2–yl) glycine and Its Phosphonyl Analogue. Synthesis, (18), 2851–2857. doi: 10.1055/s–2003–42458
  61. Golovchenko, A. V., Pilo, S. G., Brovaretc, V. S., Drach, B. S. (2003). Zhurnal obshchei khimii, 73 (11), 1832–1833.
  62. Golovchenko, A. V., Pilo, S. G., Brovaretc, V. S., Chernega, A. N., Drach, B. S. (2005). Zhurnal obshchei khimii, 75 (3), 425–431.
  63. Golovchenko, A.V., Solomiannyi, R. N., Brovaretc, V. S. (2010). Zhurnal obshchei khimii, 80 (4), 723–727.
  64. Prokopenko, V. M., Pilo, S. G., Vasilenko, A. N., Brovaretc, V. S. (2010). Zhurnal obshchei khimii, 80 (11), 2358–2365.
  65. Lobanov, O. P., Martyiniuk, A. P., Drach, B. S. (1980). Zhurnal obshchei khimii, 50 (10), 2248–2257.
  66. Köckritz, A., Schnell, M. (1993). α–Substituted phosphonates 68.1α–aminophosphonates and phosphono–substituted heterocycles from diethyl [2,2,2–trichloro–1–isocyanato–ethyl]phosphonate. Phosphorus, Sulfur, and Silicon and the Related Elements, 83 (1–4), 125–133. doi: 10.1080/10426509308034355
  67. Smolii, O. B., Panchishin, S. Ya., Budnik, L. V. (1997). Zhurnal obshchei khimii, 67 (3), 391–394.
  68. Kondratiuk, K. M., Golovchenko, A. V., Osadchuk, T. V., Brovaretc, V. S. (2011). Zhurnal obshchei khimii, 81, 1470–1476.
  69. Abdurakhmanova, E. R., Lukashuk, E. I., Golovchenko, A. V., Pil’o, S. G., Brovarets, V. S. (2015). N–methyl–D–glucamine–derived 4–substituted 1,3–oxazoles. Russian Journal of General Chemistry, 85 (4), 851–857. doi: 10.1134/s1070363215040143
  70. Abdurakhmanova, E. R., Lukashuk, E. I., Golovchenko, A. V., Brovarets, V. S. (2016). Synthesis and properties of 4–phosphorylated derivatives of 5–hydroxyalkylamino–1,3–oxazoles. Russian Journal of General Chemistry, 86 (7), 1584–1596. doi: 10.1134/s1070363216070094
  71. Lukashuk, O. I., Abdurakhmanova, E. R., Kondratyuk, K. M., Golovchenko, O. V., Khokhlov, K. V., Brovarets, V. S., Kukhar, V. P. (2015). Introduction of chiral 2–(aminoalkyl) substituents into 5–amino–1,3–oxazol–4–ylphosphonic acid derivatives and their use in phosphonodipeptide synthesis. RSC Advances, 5 (15), 11198–11206. doi: 10.1039/c4ra13819h
  72. Abdurakhmanova, E. R., Holovchenko, О. V., Brovarets, V. S. (2016). Zhurnal orhanichnoi ta farmatsevtychnoi khimii, 14 (4), 12–15.
  73. Popilnichenko, S. V., Kondratiuk, K. M., Solomiannyi, R. N., Brovaretc, V. S. (2010). Zhurnal obshchei khimii, 80 (10), 1937–1940.
  74. Lobanov, O. P., Drach, B. S. (1978). Zhurnal obshchei khimii, 48 (9), 1994–1997.
  75. Brovaretc, V. S., Lobanov, O. P., Drach, B. S. (1983). Zhurnal obshchei khimii, 53 (3), 660–664.
  76. Brovaretc, V. S., Drach, B. S. (1986). Zhurnal obshchei khimii, 56 (2), 321–325.
  77. Brovaretc, V. S., Vydzhak, R. N., Drach, B. S. (1993). Zhurnal obshchei khimii, 63 (5), 1053–1057.
  78. Brovaretc, V. S., Vydzhak, R. N., Vinogradova, T. K., Drach, B. S. (1993). Zhurnal obshchei khimii, 63 (1), 87–92.
  79. Brovaretc, V. S., Lobanov, O. P., T.K. Vinogradova, T. K., Drach, B. S. (1984). Zhurnal obshchei khimii, 54 (2), 288–301.
  80. Brovaretc, V. S., Kurg, V. V., Stepko, O. P., Drach, B. S. (1992). Zhurnal obshchei khimii, 62 (4), 822–826.
  81. Schnell, M., Ramm, M., Kockritz, A. (1994). α–Substituted phosphonates. 64. Phosphono–Substituted Imidazoles and other heterocycles from diethyl [(2,2–dichloro–1–isocyano)–ethenyl]phosphonate. Journal For Praktische Chemie/Chemiker–Zeitung, 336 (1), 29–37. doi: 10.1002/prac.19943360107
  82. Vydzhak, R. N., Brovaretc, V. S., Drach, B. S. (1994). Zhurnal obshchei khimii, 64 (5), 872–873.
  83. Smolii, O. B., Brovaretc, V. S., Drach, B. S. (1987). Zhurnal obshchei khimii, 57 (9), 2145–2146.
  84. Smolii, O. B., Brovaretc, V. S., Drach, B. S. (1988). Zhurnal obshchei khimii, 58 (7), 1670–1671.
  85. Smolii, O. B., Brovaretc, V. S., Pirozhenko, V. V., Drach, B. S. (1988). Zhurnal obshchei khimii, 58 (12), 2635–2643.
  86. Brovaretc, V. S., Smolii, O .B., Vdovenko, S. I., Drach, B. S. (1990). Zhurnal obshchei khimii, 60 (3), 566–574.
  87. Smolii, O. B., Panchishin, S. Ya., Romanenko, E. A., Drach, B. S. (1999). Zhurnal obshchei khimii, 69 (10), 1652–1656.
  88. Schröder, R., Schöllkopf, U., Blume, E., Hoppe, I. (1975). Synthesen mit α–metallierten Isocyaniden, XXVIII1) In 2–Stellung unsubstituierte Oxazole aus α–metallierten Isocyaniden und Acylierungsreagenzien. Justus Liebigs Annalen Der Chemie, 1975 (3), 533–546. doi: 10.1002/jlac.197519750315
  89. Rachoń, J., Schöllkopf, U. (1981). Synthesen mit α–metallierten Isocyaniden, IL Phosphoranaloga von Aminosauren und Peptiden, VI Synthese von Oxazolyl– und Thiazolylphosphonsäurediethylestern. Liebigs Annalen Der Chemie, 1981 (7), 1186–1189. doi: 10.1002/jlac.198119810704
  90. Rachón, J., Schouml;llkopf, U. (1981). Synthesen mit α–metallierten Isocyaniden, L. Phosphoranaloga von α–Aminosäuren und Peptiden, VII. Synthese von Methyl(Ethyl–)–amino(diethoxyphosphoryl)acetat sowie 2–Phosphonoglycin und seinen Derivaten aus (Isocyanmethyl)phosphonsäure–diethylester. Liebigs Annalen Der Chemie, 1981 (9), 1693–1698. doi: 10.1002/jlac.198119810918
  91. Fehlhammer, W. P., Zinner, G., Bakola–Christianopoulou, M. (1987). Metallkomplexe funktioneller Isocyanide. Journal of Organometallic Chemistry, 331 (2), 193–205. doi: 10.1016/0022–328x(87)80021–9
  92. Buchanan, J. G., McCaig, A. E., Wightman, R. H. (1990). The synthesis of 4–alkylsulphonyl–5–amino– and 5–amino–4–phosphono–imidazole nucleosides as potential inhibitors of purine biosynthesis. Journal of the Chemical Society, Perkin Transactions 1 (4), 955. doi: 10.1039/p19900000955
  93. Yuan, C., Huang, W. (1996). An Efficient and Regioselective Synthesis of 1–Aryl(Alkyl)–4–Diethoxyphosphoryl–5–Trifluoromethylimidazoles. Phosphorus, Sulfur, and Silicon and the Related Elements, 109 (1–4), 481–484. doi: 10.1080/10426509608545195
  94. Huang, W., Yuan, C. (1996). Studies on Organophosphorus Compounds 92: A Facile Synthesis of 1–Substituted 5–Trifluoromethylimidazole–4–phosphonates. Synthesis, 1996 (04), 511–513. doi: 10.1055/s–1996–4243
  95. Kanazawa, C., Kamijo, S., Yamamoto, Y. (2006). Synthesis of Imidazoles through the Copper–Catalyzed Cross–Cycloaddition between Two Different Isocyanides. Journal of the American Chemical Society, 128 (33), 10662–10663. doi: 10.1021/ja0617439
  96. Dang, Q., Liu, Y., Cashion, D. K., Kasibhatla, S. R., Jiang, T., Taplin, F., Erion, M. D. (2011). Discovery of a Series of Phosphonic Acid–Containing Thiazoles and Orally Bioavailable Diamide Prodrugs That Lower Glucose in Diabetic Animals Through Inhibition of Fructose–1,6–Bisphosphatase. Journal of Medicinal Chemistry, 54 (1), 153–165. doi: 10.1021/jm101035x
  97. Baumann, M., Baxendale, I. R., Ley, S. V., Smith, C. D., Tranmer, G. K. (2006). Fully Automated Continuous Flow Synthesis of 4,5–Disubstituted Oxazoles. Organic Letters, 8 (23), 5231–5234. doi: 10.1021/ol061975c
  98. Drach, B. S., Dolgushina, I. Yu., Sinitca, A. D. (1975). Zhurnal obshchei khimii, 45 (6), 1251–1255.
  99. Beluga, A. G., Brovaretc, V. S., Drach, B. S. (2005). Zhurnal obshchei khimii, 75 (4), 523–526.
  100. Doyle, K. J., Moody, C. J. (1994). The rhodium carbenoid route to oxazoles. Synthesis of 4–functionalised oxazoles; Three step preparation of a bis–oxazole. Tetrahedron, 50 (12), 3761–3772. doi: 10.1016/s0040–4020(01)90396–5
  101. Gong, D., Zhang, L., Yuan, C. (2004). A Facile Synthesis of 4‐(O,O‐Dialkylphosphoryl)‐1,3‐oxazole by Rhodium‐Catalyzed Heterocycloaddition. Synthetic Communications, 34 (18), 3259–3264. doi: 10.1081/scc–200030540
  102. Shi, B., Blake, A. J., Campbell, I. B., Judkins, B. D., Moody, C. J. (2009). The rhodium carbene route to oxazoles: a remarkable catalyst effect. Chemical Communications, 22, 3291. doi: 10.1039/b903878g
  103. Shi, B., Blake, A. J., Lewis, W., Campbell, I. B., Judkins, B. D., Moody, C. J. (2010). Rhodium Carbene Routes to Oxazoles and Thiazoles. Catalyst Effects in the Synthesis of Oxazole and Thiazole Carboxylates, Phosphonates, and Sulfones. The Journal of Organic Chemistry, 75 (1), 152–161. doi: 10.1021/jo902256r
  104. Palacios, F., Aparicio, D., Ochoa de Retana, A. M., de los Santos, J. M., Gil, J. I., Alonso, J. M. (2002). Asymmetric Synthesis of 2H–Azirines Derived from Phosphine Oxides Using Solid–Supported Amines. Ring Opening of Azirines with Carboxylic Acids. The Journal of Organic Chemistry, 67 (21), 7283–7288. doi: 10.1021/jo025995d
  105. Palacios, F., Ochoa de Retana, A. M., Gil, J. I., & Alonso, J. M. (2002). Synthesis of optically active oxazoles from phosphorylated 2H–azirines and N–protected amino acids or peptides. Tetrahedron: Asymmetry, 13 (23), 2541–2552. doi: 10.1016/s0957–4166(02)00686–9
  106. Palacios, F., Ochoa de Retana, A. M., Gil, J. I., Alonso, J. M. (2004). Regioselective synthesis of 4– and 5–oxazole–phosphine oxides and –phosphonates from 2H–azirines and acyl chlorides. Tetrahedron, 60 (40), 8937–8947. doi: 10.1016/j.tet.2004.07.013
  107. Öhler, E., El–Badawi, M., Zbiral, E. (1984). Synthese von Hetaryl– und Hetarylvinylphosphonsäureestern aus 2–Brom–1–oxoalkylphosphonaten und 4–Brom–3–oxo–1–alkenylphosphonaten. Chemische Berichte, 117 (10), 3034–3047. doi: 10.1002/cber.19841171005
  108. Hansen, J., Peterson, K. B., Monahan, J. B. (1995). Imidazo[1,2–a]pyridinyldiacid compounds for cognitive enhancement and for treatment of cognitive disorders and neurotoxic injury, US Pat. 5464843; declared 08.10.1993; published 07.11.1995.
  109. Guseinov, F. I., Asadov, Kh. A., Burangulova, R. N., Moskva, V. V. (2001). Khimiia geterotciklicheskikh soedinenii, 8, 1139–1140.
  110. Salkeeva, L. K., Minaeva, E. V., Nurmaganbetova, M. T., Guseinov, A. S. (2007). Zhurnal obshchei khimii, 77 (2), 312–313. doi: 10.1134/S1070363207020211
  111. Ratcliffe, R. W., Christensen, B. G. (1973). Total synthesis of β–lactam antibiotics I. Tetrahedron Letters, 14 (46), 4645–4648. doi: 10.1016/s0040–4039(01)87298–1
  112. Bartlett, P. A., Hunt, J. T., Adams, J. L., Gehret, J.–C. E. (1978). Phosphorus–containing purines and pyrimidines: A new class of transition state analogs. Bioorganic Chemistry, 7 (4), 421–436. doi: 10.1016/0045–2068(78)90033–0
  113. Canton, T., Böhme, G. A., Boireau, A., Bordier, F. et al. (2001). RPR 119990, a Novel α–Amino–3–hydroxy–5–methyl–4–isoxazolepropionic Acid Antagonist: Synthesis, Pharmacological Properties, and Activity in an Animal Model of Amyotrophic Lateral Sclerosis. Journal of Pharmacology and Experimental Therapeutics, 299 (1), 314–322.
  114. Erkhitueva, E. B., Dogadina, A. V., Khramchikhin, A. V., Ionin, B. I. (2011). Zhurnal obshchei khimii, 81 (11), 2377–2378.
  115. Erkhitueva, E. B., Dogadina, A. V., Khramchikhin, A. V., Ionin, B. I. (2012). Highly regioselective heterocyclization reactions of 1H–1,2,4–triazole–3–thiols with chloroacetylenephosphonates. Tetrahedron Letters, 53 (33), 4304–4308. doi: 10.1016/j.tetlet.2012.05.157
  116. Matveeva, E. D., Podrugina, T. A., Pavlova, A. S. et al. (2008). Izvestiia Akademii Nauk – Seriia khimicheskaia, 10, 2195–2197.
  117. Matveeva, E. D., Podrugina, T. A., Pavlova, A. S., Mironov, A. V., Gleiter, R., Zefirov, N. S. (2009). Novel Photochemical Reactions of Phosphonium–Iodonium Ylides: Synthesis of Phosphonium–Substituted Oxazoles. European Journal of Organic Chemistry, 2009 (14), 2323–2327. doi: 10.1002/ejoc.200801251
  118. Aksinenko, A. Y., Goreva, T. V., Epishina, T. A., Sokolov, V. B. (2012). Synthesis of 3–fluoro–2–(diethoxyphosphoryl)imidazo[1,2–a]pyridine. Journal of Fluorine Chemistry, 137, 105–107. doi: 10.1016/j.jfluchem.2012.02.005
  119. Lobanov, O. P., Brovaretc, V. S., Drach, B. S. (1985). Zhurnal obshchei khimii, 55 (4), 940–941.
  120. Brovaretc, V. S., Lobanov, O. P., Drach, B. S. (1983). Zhurnal obshchei khimii, 53 (9), 2015–2020.
  121. Brovaretc, V. S., Lobanov, O. P., Kisilenko, A. A. (1986). Zhurnal obshchei khimii, 56 (7), 1492–1504.
  122. Golovchenko, A. V., Brovaretc, V. S., Drach, B. S. (2004). Zhurnal obshchei khimii, 74 (9), 1414–1417.
  123. Mazurkiewicz, R., Pierwocha, A. W. (1997). 4–Phosphoranylidene–5(4H)–oxazolones II. Reactions with alkylating agents. Monatshefte For Chemie Chemical Monthly, 128 (8–9), 893–900. doi: 10.1007/bf00807098
  124. Brovaretc, V. S., Lobanov, O. P., Drach, B. S. (1982). Zhurnal obshchei khimii, 52 (6), 1438–1439.
  125. Lukashuk, O. I., Kondratyuk, K. M., Golovchenko, A. V., Brovarets, V. S., Kukhar, V. P. (2013). A Novel Synthetic Approach to Phosphorylated Peptidomimetics. Heteroatom Chemistry, 24 (4), 289–297. doi: 10.1002/hc.21093
  126. Kondratyuk, K. M., Lukashuk, O. I., Golovchenko, A. V., Komarov, I. V., Brovarets, V. S., Kukhar, V. P. (2013). Synthesis of 5–amino–2–aminoalkyl–1,3–oxazol–4–ylphosphonic acid derivatives and their use in the preparation of phosphorylated peptidomimetics. Tetrahedron, 69 (30), 6251–6261.
  127. doi: 10.1016/j.tet.2013.05.017
  128. Lukashuk, E. I ., Abdurakhmanova, E. R., Kondratiuk, K. M., Golovchenko, A. V., Brovaretc, V. S. (2015). Zhurnal obshchei khimii, 85 (1), 77–81.
  129. Huryeva, A. N., Marchenko, A. P., Koidan, G. N., Yurchenko,, A. A., Zarudnitskii, E. V., Pinchuk, A. M., Kostyuk, A. N. (2010). 4–Phosphorylated 1,2–disubstituted imidazoles. Heteroatom Chemistry, 21 (3), 103–118. doi: 10.1002/hc.20584
  130. Protopopova, G. V., Dziuban, A. D., Nesterenko, N. I. (1979). SSSR. 488527. Insektoakaritcidy; declared 27.03.1974; published 25.09.1979.
  131. Brovarets, V. S., Sharykina, N. I., Kudriavtseva, I. H. et al. (1997). Patent Ukr. 17144а. 4–Dialkoksyfosforyl–5–dymetylamino–2–feniloksazoly, shcho proiavliaiut antyblastychnu aktyvnist; declared 30.07.1993; published 31.01.1997.
  132. Fukuda, Y., Asahina, Y., Takadoi, M., Yamamoto, M. (2009). Pat. EP2275414A1. Cyclopentylacrylic acid amide derivative; declared 27.04.2009; published 05.11.2009.
  133. Ryono, D. E., Cheng, P. T. W., Bolton, S. A. (2008). Pat. US20080009465A1. Novel glucokinase activators and methods of using same; declared 28.06.2007; published 10.01.2008.
  134. Smolii, O. B., Gorodetckova, N. R., Brovaretc, V. S. (1989). Khimiko–farmatcevticheskii zhurnal, 23 (11), 1329–1331.
  135. Poos, M. A. (1993). Pat. US5208235. Indole– and benzimidazole–substituted imidazole derivatives; declared 10.03.1992; published 04.05.1993.
  136. Bold, G., Furet, P., Gessier, F. (2011). Pat. WO2011/023677A1. Tetra–substituted heteroaryl compounds and their use as MDM2 and/or MDM4 modulators; declared 24.08.2010; published 03.03.2011.
  137. Barrish, J. C., Chen, P., Das, J. (2001). Pat. US6235740B1. Imidazoquinoxaline protein tyrosine kinase inhibitors; declared 15.06.1998; published 22.05.2001.
  138. Csuzdi, E., Hamori, T., Abraham, G. (2003). Pat. US6600036B2. Condensed 2,3–benzodiazepine derivatives and their use as AMPA–receptor inhibitors; declared 27.11.2001; published 29.06.2003.
  139. Aloup, J. C., Audiau, F., Barreau, M. (1999). Pat. US5902803A. 5H,10H–Imidazo[1,2–a]indeno[1,2–e]pyrazin–4–one derivatives, preparation thereof, and drugs containing said derivatives; declared 02.04.1996; published 11.05.1999.
  140. Aloup, J. C., Bouquerel, J., Damour, D. (1999). Pat. US5990108A. 5H,10H–Imidazo[1,2–a]indeno[1,2–e]pyrazin–4–one derivatives, preparation thereof, intermediates thereof and drugs containing the same; declared 06.01.1997; published 23.11.1999.
  141. Jimonet, P., Bohme, G. A., Bouquerel, J., Boireau, A., Damour, D., Debono, M. W., Mignani, S. (2001). Bioisosteres of 9–Carboxymethyl–4–oxo–imidazo[ 1,2– a ]indeno[1,2– e ]pyrazin–2–carboxylic acid derivatives. Progress towards selective, potent In Vivo AMPA antagonists with longer
  142. durations of action. Bioorganic & Medicinal Chemistry Letters, 11 (2), 127–132. doi: 10.1016/s0960–894x(00)00592–8

Published

2018-06-08

How to Cite

(1)
Abdurakhmanova, E. R.; Kondratyuk, K. M.; Holovchenko, O. V.; Brovarets, V. S. The Synthesis and Transformation of 4-Phosphorylated Derivatives of 1,3-Azoles. J. Org. Pharm. Chem. 2018, 16, 3-30.

Issue

Section

Original Researches