The synthesis and transformation of 4-phosphorylated derivatives of 1,3-azoles
DOI:
https://doi.org/10.24959/ophcj.18.939Keywords:
1, 3-azoles, oxazole, thiazole, selenazol, imidazole, synthesis, biological activityAbstract
The review systematizes the literary data on the methods of the synthesis of 4-phosphorylated 1,3-azoles (oxazoles, thiazoles, selenazoles, imidazoles), as well as their chemical and biological properties. For the synthesis of 4-phosphorylated imidazole derivatives metallic derivatives of imidazole and phosphorus halides, electronically enriched imidazoles and phosphorus halides in pyridine in the presence of triethylamine or a cross-coupling of halogenimidazoles and dialkyl phosphites in the presence of a palladium catalyst are generally used. For the synthesis of 4-phosphorylated 1,3-azoles the acyclic phosphorus-containing reagents have been widely used, in particular 1-phosphorylated derivatives of 2-chloro- and 2,2-dichloroethenylamides, aminomethylphosphonates and their triphenylphosphonium analogs, β-ketopphosphonates, phosphorylated α-halogenocarbonyl compounds. The chemical properties of phosphorylated azoles are represented by phosphorus residue modification reactions, modification of other substituents and the azole ring, as well as reactions involving the disclosure of the azole ring. The latter are the most interesting since they provide an opportunity to conduct recyclization reactions, as well as synthesize an important class of organic compounds – phosphorylated peptidomimetics. Due to the systematic study of derivatives of 1,3-azoles over the last 30 years it has been shown that at least one fragment of the 1,3-azole ring is a part of a wide range of simple and complex natural molecules and synthetic drugs. Synthetic 4-phosphorylated derivatives of 1,3-azoles are characterized by insectoacaricidal, anti-blastic, sugar-lowering, anti-exudative, antihypertensive, neurodegenerative and other types of activity.
Downloads
References
- Matevosian, G. L., Zavlin, P. M. (1990). Khimiia Getorotcyklicheskikh soedinenii, 6, 723–740.
- Zarudnitckii, E. V. (2000). Fosforilirovanie 1,3–azolov. K., 95.
- Van der Jeught, S., Stevens, C. V. (2009). Direct Phosphonylation of Aromatic Azaheterocycles. Chemical Reviews, 109 (6), 2672–2702. doi: 10.1021/cr800315j
- Pavlenko, N. V., Oos, T. I., Yagupolskii, Yu. L. et al. (2011). Khimiia Getorotciklicheskikh soedinenii, 1, 52–62.
- Kunz, P. C., Reiß, G. J., Frank, W., Kläui, W. (2003). A Novel Water–Soluble Tripodal Imidazolyl Ligand as a Model for the Tris(histidine) Motif of Zinc Enzymes: Nickel, Cobalt and Zinc Complexes and a Comparison with Metal Binding in Carbonic Anhydrase. European Journal of Inorganic Chemistry, 2003 (21), 3945–3951. doi: 10.1002/ejic.200300228
- Kunz, P. C., Kläui, W. (2007). Zinc and cobalt(II) complexes of tripodal nitrogen ligands of the tris[2–substituted imidazol–4(5)–yl]–phosphane type. Biomimetic hydrolysis of an activated ester. Collection of Czechoslovak Chemical Communications, 72 (4), 492–502.
- Kunz, P. C., Zribi, A., Frank, W., Kläui, W. (2007). Synthesis and Characterization of Water–Soluble Zinc, Cobalt(II) and Copper(II) Complexes with a Neutral TripodalN,N,N–Ligand: Crystal Structures of [(κ3N–4–TIPOiPr)Co(H2O)(κ2O–NO3)]NO3 and [(κ3N–4–TIPOiPr)Cu(H2O)(κO–SO4)], 4–TIPOiPr = tris(2–isopropylimidazol–4(5)–yl)phosphane oxide. Zeitschrift Für Anorganische Und Allgemeine Chemie, 633 (7), 955–960. doi:
- 1002/zaac.200700031
- Kunz, P. C., Zribi, A., Frank, W., Kläui, W. (2008). Unexpected Coordination Modes of the Tris(imidazolyl)phosphane Oxide Ligand 4–TIPOiPr in the Chloro Complexes of Zinc, Cobalt and Nickel. Zeitschrift Für Anorganische Und Allgemeine Chemie, 634 (4), 724–729. doi: 10.1002/zaac.200700473
- Kunz, P. C., Kassack, M. U., Hamacher, A., Spingler, B. (2009). Imidazole–based phosphane gold(I) complexes as potential agents for cancer treatment: Synthesis, structural studies and antitumour activity. Dalton Transactions, (37), 7741. doi: 10.1039/b902748c
- Kunz, P. C., Huber, W., Rojas, A., Schatzschneider, U., Spingler, B. (2009). Tricarbonylmanganese(I) and â “rhenium(I) Complexes of Imidazol–Based Phosphane Ligands: Influence of the Substitution Pattern on the CO Release Properties. European Journal of Inorganic Chemistry, 2009 (35),
- –5366. doi: 10.1002/ejic.200900650
- Kunz, P. C., Wetzel, C., Bongartz, M., Noffke, A. L., Spingler, B. (2010). Novel multitopic diphos–type ligands. Journal of Organometallic Chemistry, 695(15–16), 1891–1897. doi: 10.1016/j.jorganchem.2010.04.028
- Wetzel, C., Kunz, P. C., Thiel, I., Spingler, B. (2011). Gold(I) catalysts with difunctional P, N ligands. Inorganic Chemistry, 50 (16), 7863–7870.
- Park, H., Baus, J. S., Lindeman, S. V., Fiedler, A. T. (2011). Synthesis and Characterization of Fe(II) β–Diketonato Complexes with Relevance to Acetylacetone Dioxygenase: Insights into the Electronic Properties of the 3–Histidine Facial Triad. Inorganic Chemistry, 50 (23), 11978–11989. doi: 10.1021/ic201115s
- Beckmann, U., Süslüyan, D., Kunz, P. C. (2011). Is the1JPSeCoupling Constant a Reliable Probe for the Basicity of Phosphines? A31P NMR Study. Phosphorus, Sulfur, and Silicon and the Related Elements, 186 (10), 2061–2070. doi: 10.1080/10426507.2010.547892
- Kunz, P. C., Börgardts, M., Mohr, F. (2012). Structural flexibility in complexes bearing a tripodal nitrogen ligand. Inorganica Chimica Acta, 380, 392–398. doi: 10.1016/j.ica.2011.11.011
- Kunz, P. C., Thiel, I., Noffke, A. L., Reiß, G. J., Mohr, F., Spingler, B. (2012). Ruthenium piano–stool complexes bearing imidazole–based PN ligands. Journal of Organometallic Chemistry, 697 (1), 33–40. doi: 10.1016/j.jorganchem.2011.10.006
- Huber, W., Linder, R., Niesel, J., Schatzschneider, U., Spingler, B., Kunz, P. C. (2012). A Comparative Study of Tricarbonylmanganese Photoactivatable CO Releasing Molecules (PhotoCORMs) by Using the Myoglobin Assay and Time–Resolved IR Spectroscopy. European Journal of Inorganic Chemistry, 2012 (19), 3140–3146. doi: 10.1002/ejic.201200115
- Tschamber, T., Gessier, F., Neuburger, M., Gurcha, S. S., Besra, G. S., Streith, J. (2003). On the Way to Glycoprocessing Inhibitors − Synthesis of an Imidazolo–Nectrisine–Phosphono Acid Derivative: A Potential Glycosyltranferase Inhibitor. European Journal of Organic Chemistry, 2003 (15), 2792–2798. doi: 10.1002/ejoc.200300190
- Marchenko, A. P., Koidan, H. N., Huryeva, A. N., Zarudnitskii, E. V., Yurchenko, A. A., Kostyuk, A. N. (2010). N–Phosphorylated Imidazolium Salts as Precursors to 2– and 5–Phosphorylated Imidazoles and New Imidazol–2–ylidenes Featuring the PNCN Unit. The Journal of Organic Chemistry, 75
- (21), 7141–7145. doi: 10.1021/jo101177h
- Ruiz, J., Mesa, A. F. (2012). A 4,5–Diphosphino–Substituted Imidazolium Salt: A Building Block for the Modular Synthesis of Mixed Diphosphine–NHC Heterometallic Complexes. Chemistry – A European Journal, 18 (15), 4485–4488. doi: 10.1002/chem.201200031
- Hirao, T., Masunaga, T., Ohshiro, Y., Agawa, T. (1981). A Novel Synthesis of Dialkyl Arenephosphonates. Synthesis, 1981 (01), 56–57. doi: 10.1055/s–1981–29335
- Hirao, T., Masunaga, T., Yamada, N., Ohshiro, Y., & Agawa, T. (1982). Palladium–catalyzed New Carbon–Phosphorus Bond Formation. Bulletin of the Chemical Society of Japan, 55 (3), 909–913. doi: 10.1246/bcsj.55.909
- Lin, J., Thompson, C. M. (1994). The synthesis of biologically relevant 4(5)–phosphono–5(4)–aminoimidazoles using a Pd–catalyzed coupling reaction. Journal of Heterocyclic Chemistry, 31 (6), 1701–1705. doi:10.1002/jhet.5570310672
- Billault, I., Vasella, A. (1999). Synthesis of gluco–configured tetrahydroimidazopyridine–2–phosphonate–derived lipids, potential glucosyl transferase inhibitors / I. Billault, A. Vasella. Helv. Chim. Acta, 82 (8), 1137–1149. doi: 0.1002/(sici)1522–2675(19990804)82:8<1137::aid–hlca1137>3.0.co;2–n
- Terinek, M., Vasella, A. (2004). Improved Access to Imidazole–phosphonic Acids: Synthesis ofD–manno–Tetrahydroimidazopyridine–2–phosphonates.
- Helvetica Chimica Acta, 87 (3), 719–734. doi:10.1002/hlca.200490067
- Yurchenko, A. A., Huryeva, A. N., Zarudnitskii, E. V., Marchenko, A. P., Koidan, G. N., & Pinchuk, A. M. (2009). 5–phosphorylated 1,2–disubstituted imidazoles. Heteroatom Chemistry, 20 (5), 289–308. doi: 10.1002/hc.20550
- Zarudnitskii, E. V., Yurchenko, A. A., Merkulov, A. S., Semenova, M. G., Pinchuk, A. M., Tolmachev, A. A. (2005). Phosphorylation of imidazo[2,1–b] thiazoles with phosphorus(III) halides in the presence of bases. Heteroatom Chemistry, 16 (7), 648–655. doi: 10.1002/hc.20166
- Marugan, J. J., Patnaik, S., Heilig, M. A. et al. (2011). WO2011137220A1 (USA) small molecule neuropeptide antagonists for the treatment of adictive disorders, mood,anxiety and sleep disorders; declared 28.04.2011, published 03.11.2011.
- Lakhan, R., Ternai, B. (1974). Advances in Oxazole Chemistry – In: Advances in Heterocyclic Chemistry. N. Y.: Academic Press, 17, 99–211.
- Potts, K. T. (1984). Synthesis of Five–membered Rings with Two or More Heteroatoms – In: Chemistry of Heterocyclic Compounds. N. Y.: Pergamon Press, 5, part 4A, 111–166.
- Grimmett, M. R. (1984). Imidazoles and their Benzo Derivatives: (III) Synthesis and Applications. In: Chemistry of Heterocyclic Compounds. N. Y.: Pergamon Press, 5, part 4A, 457–498.
- Boyd, G. V. (1984). Oxazoles and their Benzoderivatives – In: Comprehensive Heterocyclic Chemistry. N.Y.: Pergamon Press, 6, part 4B, 177–234.
- Metzger, J. V. (1984). Thiazoles and their Benzo Derivatives – In: Comprehensive Heterocyclic Chemistry. N. Y.: Pergamon Press, 6, part 4B, 235–331.
- Lalezari, I.(1984). Five–membered Selenium–Nitrogen Heterocycles – In: Comprehensive Heterocyclic Chemistry. N. Y.: Pergamon Press, 6, part 4B, 333–363.
- Turchi, I. J. (1986). Oxazoles – In: The Chemistry of Heterocyclic Compounds. N. Y.: John Wiley, 45, 1064p.
- Dzhoul, Dzh., Mills, K. (2004). Khimiia geterotciklicheskikh soedinenii. Moscow: Mir, 728.
- Drach, B. S. (1989). Khimiia geterotciklicheskikh soedinenii, 6, 723–735.
- Drach, B.S., Brovaretc, V. S., Smolii, O. B., Ziabrev, V. S. (2003). Khimiia i biologicheskaia aktivnost kislorod– i serusoderzhashchikh geterotciklov. Moscow, 1, 58–73.
- Drach, B. S., Sviridov E. P. Zhurnal obschey himii – Russian Journal of General Chemistry, 1973, Vol. 43, № 7, pp. 1648–1649.
- Drach B. S., Sviridov, E. P. (1974). Zhurnal obshchei khimii, 44 (8), 1712–1715.
- Drach, B. S., Sviridov, E. P., Kirsanov, A. V. (1973). Zhurnal obshchei khimii, 45 (1), 12–16.
- Drach B.S., Lobanov O.P., Martyinyuk A.P. Zhurnal obshchei khimii, 1979, Vol.49, № 3, pp. 717–718.
- Martyiniuk, A. P., Brovaretc, V. S., Lobanov, O. P., Drach, B. S. (1984). Zhurnal obshchei khimii, 54 (9), 2186–2200.
- Scheidecker, S., Köckritz, A., Schnell, M. (1990). α–substituierte Phosphonate. 56. Synthese und Reaktionen von 1–Formylamino–2,2,2–trichlorethanphosphonaten. Journal Für Praktische Chemie, 332 (6), 968–976. doi: 10.1002/prac.19903320614
- Kurg, V. V., Brovarets, V. S., Drach, B. S. (1991). Zhurnal obshchei khimii, 61 (4), 874–879.
- Röhr, G., Köckritz, A., Schnell, M. (1992). α–Substituierte Phosphonate 60.1Phosphonosubstituierte Heterocyclen aus 1–Formylamino–2,2,2–Trichlorethanphosphonaten. Phosphorus, Sulfur, and Silicon and the Related Elements, 71 (1–4), 157–163. doi: 10.1080/10426509208034506
- Röhr, G., Schnell, M., Köckritz, A. (1992). α–Substituted Phosphonates; 61.1Synthesis of 2–Phosphonoglycine Amides by Solvolysis of 5–Amino–4–phosphonooxazoles. Synthesis, 1992 (10), 1031–1034. doi: 10.1055/s–1992–26294
- Brovaretc, V. S., Vyidzhak, R. N., Drach, B. S. (1993). Zhurnal obshchei khimii, 63 (1), 80–86.
- Brovaretc, V. S., Vyidzhak, R. N., Vinogradova, T. K., Drach, B. S. (1994). Zhurnal obshchei khimii, 64 (6), 1048.
- Van Meervelt, L., Schuerman, G. S., Brovarets, V. S., Mishchenko, N. I., Romanenko, E. A., Drach, B. S. (1995). Structure and properties of phosphonium ylides–betaines, derivatives of 2–phenyl–2–oxazolin–5–one and its thio– and seleno–analogues. Tetrahedron, 51 (5), 1471–1482. doi:
- 1016/0040–4020(94)01041–w
- Brovaretc, V. S., Vydzhak, R.N., Pilo, S. G., Ziuz, K. V., Drach, B. S. (2001). Zhurnal obshchei khimii, 71 (11), 1726–1728.
- Brovaretc, V. S., Pilo, S. G., Popovich, T. P., Vydzhak, R. N., Drach, B. S. (2001). Zhurnal obshchei khimii, 71 (11), 1825–1826.
- Vydzhak, R. N., Brovaretc, V. S., Pilo, S. G., Drach, B. S. (2002). Zhurnal obshchei khimii, 72 (2), 207–211.
- Pilo, S. G., Brovaretc, V. S., Vinogradova, T. K., Golovchenko, A. V., Drach, B. S. (2002). Zhurnal obshchei khimii, 72 (11), 1714–1723.
- Brovarets, V. S., Golovchenko, A. V., Pilyo, S. G., Chernega, A. N., Drach, B. S. (2003). A Facile Synthesis of Derivatives of (1,3,4–Thiadiazol–2–yl) glycine and Its Phosphonyl Analogue. Synthesis, (18), 2851–2857. doi: 10.1055/s–2003–42458
- Golovchenko, A. V., Pilo, S. G., Brovaretc, V. S., Drach, B. S. (2003). Zhurnal obshchei khimii, 73 (11), 1832–1833.
- Golovchenko, A. V., Pilo, S. G., Brovaretc, V. S., Chernega, A. N., Drach, B. S. (2005). Zhurnal obshchei khimii, 75 (3), 425–431.
- Golovchenko, A.V., Solomiannyi, R. N., Brovaretc, V. S. (2010). Zhurnal obshchei khimii, 80 (4), 723–727.
- Prokopenko, V. M., Pilo, S. G., Vasilenko, A. N., Brovaretc, V. S. (2010). Zhurnal obshchei khimii, 80 (11), 2358–2365.
- Lobanov, O. P., Martyiniuk, A. P., Drach, B. S. (1980). Zhurnal obshchei khimii, 50 (10), 2248–2257.
- Köckritz, A., Schnell, M. (1993). α–Substituted phosphonates 68.1α–aminophosphonates and phosphono–substituted heterocycles from diethyl [2,2,2–trichloro–1–isocyanato–ethyl]phosphonate. Phosphorus, Sulfur, and Silicon and the Related Elements, 83 (1–4), 125–133. doi: 10.1080/10426509308034355
- Smolii, O. B., Panchishin, S. Ya., Budnik, L. V. (1997). Zhurnal obshchei khimii, 67 (3), 391–394.
- Kondratiuk, K. M., Golovchenko, A. V., Osadchuk, T. V., Brovaretc, V. S. (2011). Zhurnal obshchei khimii, 81, 1470–1476.
- Abdurakhmanova, E. R., Lukashuk, E. I., Golovchenko, A. V., Pil’o, S. G., Brovarets, V. S. (2015). N–methyl–D–glucamine–derived 4–substituted 1,3–oxazoles. Russian Journal of General Chemistry, 85 (4), 851–857. doi: 10.1134/s1070363215040143
- Abdurakhmanova, E. R., Lukashuk, E. I., Golovchenko, A. V., Brovarets, V. S. (2016). Synthesis and properties of 4–phosphorylated derivatives of 5–hydroxyalkylamino–1,3–oxazoles. Russian Journal of General Chemistry, 86 (7), 1584–1596. doi: 10.1134/s1070363216070094
- Lukashuk, O. I., Abdurakhmanova, E. R., Kondratyuk, K. M., Golovchenko, O. V., Khokhlov, K. V., Brovarets, V. S., Kukhar, V. P. (2015). Introduction of chiral 2–(aminoalkyl) substituents into 5–amino–1,3–oxazol–4–ylphosphonic acid derivatives and their use in phosphonodipeptide synthesis. RSC Advances, 5 (15), 11198–11206. doi: 10.1039/c4ra13819h
- Abdurakhmanova, E. R., Holovchenko, О. V., Brovarets, V. S. (2016). Zhurnal orhanichnoi ta farmatsevtychnoi khimii, 14 (4), 12–15.
- Popilnichenko, S. V., Kondratiuk, K. M., Solomiannyi, R. N., Brovaretc, V. S. (2010). Zhurnal obshchei khimii, 80 (10), 1937–1940.
- Lobanov, O. P., Drach, B. S. (1978). Zhurnal obshchei khimii, 48 (9), 1994–1997.
- Brovaretc, V. S., Lobanov, O. P., Drach, B. S. (1983). Zhurnal obshchei khimii, 53 (3), 660–664.
- Brovaretc, V. S., Drach, B. S. (1986). Zhurnal obshchei khimii, 56 (2), 321–325.
- Brovaretc, V. S., Vydzhak, R. N., Drach, B. S. (1993). Zhurnal obshchei khimii, 63 (5), 1053–1057.
- Brovaretc, V. S., Vydzhak, R. N., Vinogradova, T. K., Drach, B. S. (1993). Zhurnal obshchei khimii, 63 (1), 87–92.
- Brovaretc, V. S., Lobanov, O. P., T.K. Vinogradova, T. K., Drach, B. S. (1984). Zhurnal obshchei khimii, 54 (2), 288–301.
- Brovaretc, V. S., Kurg, V. V., Stepko, O. P., Drach, B. S. (1992). Zhurnal obshchei khimii, 62 (4), 822–826.
- Schnell, M., Ramm, M., Kockritz, A. (1994). α–Substituted phosphonates. 64. Phosphono–Substituted Imidazoles and other heterocycles from diethyl [(2,2–dichloro–1–isocyano)–ethenyl]phosphonate. Journal For Praktische Chemie/Chemiker–Zeitung, 336 (1), 29–37. doi: 10.1002/prac.19943360107
- Vydzhak, R. N., Brovaretc, V. S., Drach, B. S. (1994). Zhurnal obshchei khimii, 64 (5), 872–873.
- Smolii, O. B., Brovaretc, V. S., Drach, B. S. (1987). Zhurnal obshchei khimii, 57 (9), 2145–2146.
- Smolii, O. B., Brovaretc, V. S., Drach, B. S. (1988). Zhurnal obshchei khimii, 58 (7), 1670–1671.
- Smolii, O. B., Brovaretc, V. S., Pirozhenko, V. V., Drach, B. S. (1988). Zhurnal obshchei khimii, 58 (12), 2635–2643.
- Brovaretc, V. S., Smolii, O .B., Vdovenko, S. I., Drach, B. S. (1990). Zhurnal obshchei khimii, 60 (3), 566–574.
- Smolii, O. B., Panchishin, S. Ya., Romanenko, E. A., Drach, B. S. (1999). Zhurnal obshchei khimii, 69 (10), 1652–1656.
- Schröder, R., Schöllkopf, U., Blume, E., Hoppe, I. (1975). Synthesen mit α–metallierten Isocyaniden, XXVIII1) In 2–Stellung unsubstituierte Oxazole aus α–metallierten Isocyaniden und Acylierungsreagenzien. Justus Liebigs Annalen Der Chemie, 1975 (3), 533–546. doi: 10.1002/jlac.197519750315
- Rachoń, J., Schöllkopf, U. (1981). Synthesen mit α–metallierten Isocyaniden, IL Phosphoranaloga von Aminosauren und Peptiden, VI Synthese von Oxazolyl– und Thiazolylphosphonsäurediethylestern. Liebigs Annalen Der Chemie, 1981 (7), 1186–1189. doi: 10.1002/jlac.198119810704
- Rachón, J., Schouml;llkopf, U. (1981). Synthesen mit α–metallierten Isocyaniden, L. Phosphoranaloga von α–Aminosäuren und Peptiden, VII. Synthese von Methyl(Ethyl–)–amino(diethoxyphosphoryl)acetat sowie 2–Phosphonoglycin und seinen Derivaten aus (Isocyanmethyl)phosphonsäure–diethylester. Liebigs Annalen Der Chemie, 1981 (9), 1693–1698. doi: 10.1002/jlac.198119810918
- Fehlhammer, W. P., Zinner, G., Bakola–Christianopoulou, M. (1987). Metallkomplexe funktioneller Isocyanide. Journal of Organometallic Chemistry, 331 (2), 193–205. doi: 10.1016/0022–328x(87)80021–9
- Buchanan, J. G., McCaig, A. E., Wightman, R. H. (1990). The synthesis of 4–alkylsulphonyl–5–amino– and 5–amino–4–phosphono–imidazole nucleosides as potential inhibitors of purine biosynthesis. Journal of the Chemical Society, Perkin Transactions 1 (4), 955. doi: 10.1039/p19900000955
- Yuan, C., Huang, W. (1996). An Efficient and Regioselective Synthesis of 1–Aryl(Alkyl)–4–Diethoxyphosphoryl–5–Trifluoromethylimidazoles. Phosphorus, Sulfur, and Silicon and the Related Elements, 109 (1–4), 481–484. doi: 10.1080/10426509608545195
- Huang, W., Yuan, C. (1996). Studies on Organophosphorus Compounds 92: A Facile Synthesis of 1–Substituted 5–Trifluoromethylimidazole–4–phosphonates. Synthesis, 1996 (04), 511–513. doi: 10.1055/s–1996–4243
- Kanazawa, C., Kamijo, S., Yamamoto, Y. (2006). Synthesis of Imidazoles through the Copper–Catalyzed Cross–Cycloaddition between Two Different Isocyanides. Journal of the American Chemical Society, 128 (33), 10662–10663. doi: 10.1021/ja0617439
- Dang, Q., Liu, Y., Cashion, D. K., Kasibhatla, S. R., Jiang, T., Taplin, F., Erion, M. D. (2011). Discovery of a Series of Phosphonic Acid–Containing Thiazoles and Orally Bioavailable Diamide Prodrugs That Lower Glucose in Diabetic Animals Through Inhibition of Fructose–1,6–Bisphosphatase. Journal of Medicinal Chemistry, 54 (1), 153–165. doi: 10.1021/jm101035x
- Baumann, M., Baxendale, I. R., Ley, S. V., Smith, C. D., Tranmer, G. K. (2006). Fully Automated Continuous Flow Synthesis of 4,5–Disubstituted Oxazoles. Organic Letters, 8 (23), 5231–5234. doi: 10.1021/ol061975c
- Drach, B. S., Dolgushina, I. Yu., Sinitca, A. D. (1975). Zhurnal obshchei khimii, 45 (6), 1251–1255.
- Beluga, A. G., Brovaretc, V. S., Drach, B. S. (2005). Zhurnal obshchei khimii, 75 (4), 523–526.
- Doyle, K. J., Moody, C. J. (1994). The rhodium carbenoid route to oxazoles. Synthesis of 4–functionalised oxazoles; Three step preparation of a bis–oxazole. Tetrahedron, 50 (12), 3761–3772. doi: 10.1016/s0040–4020(01)90396–5
- Gong, D., Zhang, L., Yuan, C. (2004). A Facile Synthesis of 4‐(O,O‐Dialkylphosphoryl)‐1,3‐oxazole by Rhodium‐Catalyzed Heterocycloaddition. Synthetic Communications, 34 (18), 3259–3264. doi: 10.1081/scc–200030540
- Shi, B., Blake, A. J., Campbell, I. B., Judkins, B. D., Moody, C. J. (2009). The rhodium carbene route to oxazoles: a remarkable catalyst effect. Chemical Communications, 22, 3291. doi: 10.1039/b903878g
- Shi, B., Blake, A. J., Lewis, W., Campbell, I. B., Judkins, B. D., Moody, C. J. (2010). Rhodium Carbene Routes to Oxazoles and Thiazoles. Catalyst Effects in the Synthesis of Oxazole and Thiazole Carboxylates, Phosphonates, and Sulfones. The Journal of Organic Chemistry, 75 (1), 152–161. doi: 10.1021/jo902256r
- Palacios, F., Aparicio, D., Ochoa de Retana, A. M., de los Santos, J. M., Gil, J. I., Alonso, J. M. (2002). Asymmetric Synthesis of 2H–Azirines Derived from Phosphine Oxides Using Solid–Supported Amines. Ring Opening of Azirines with Carboxylic Acids. The Journal of Organic Chemistry, 67 (21), 7283–7288. doi: 10.1021/jo025995d
- Palacios, F., Ochoa de Retana, A. M., Gil, J. I., & Alonso, J. M. (2002). Synthesis of optically active oxazoles from phosphorylated 2H–azirines and N–protected amino acids or peptides. Tetrahedron: Asymmetry, 13 (23), 2541–2552. doi: 10.1016/s0957–4166(02)00686–9
- Palacios, F., Ochoa de Retana, A. M., Gil, J. I., Alonso, J. M. (2004). Regioselective synthesis of 4– and 5–oxazole–phosphine oxides and –phosphonates from 2H–azirines and acyl chlorides. Tetrahedron, 60 (40), 8937–8947. doi: 10.1016/j.tet.2004.07.013
- Öhler, E., El–Badawi, M., Zbiral, E. (1984). Synthese von Hetaryl– und Hetarylvinylphosphonsäureestern aus 2–Brom–1–oxoalkylphosphonaten und 4–Brom–3–oxo–1–alkenylphosphonaten. Chemische Berichte, 117 (10), 3034–3047. doi: 10.1002/cber.19841171005
- Hansen, J., Peterson, K. B., Monahan, J. B. (1995). Imidazo[1,2–a]pyridinyldiacid compounds for cognitive enhancement and for treatment of cognitive disorders and neurotoxic injury, US Pat. 5464843; declared 08.10.1993; published 07.11.1995.
- Guseinov, F. I., Asadov, Kh. A., Burangulova, R. N., Moskva, V. V. (2001). Khimiia geterotciklicheskikh soedinenii, 8, 1139–1140.
- Salkeeva, L. K., Minaeva, E. V., Nurmaganbetova, M. T., Guseinov, A. S. (2007). Zhurnal obshchei khimii, 77 (2), 312–313. doi: 10.1134/S1070363207020211
- Ratcliffe, R. W., Christensen, B. G. (1973). Total synthesis of β–lactam antibiotics I. Tetrahedron Letters, 14 (46), 4645–4648. doi: 10.1016/s0040–4039(01)87298–1
- Bartlett, P. A., Hunt, J. T., Adams, J. L., Gehret, J.–C. E. (1978). Phosphorus–containing purines and pyrimidines: A new class of transition state analogs. Bioorganic Chemistry, 7 (4), 421–436. doi: 10.1016/0045–2068(78)90033–0
- Canton, T., Böhme, G. A., Boireau, A., Bordier, F. et al. (2001). RPR 119990, a Novel α–Amino–3–hydroxy–5–methyl–4–isoxazolepropionic Acid Antagonist: Synthesis, Pharmacological Properties, and Activity in an Animal Model of Amyotrophic Lateral Sclerosis. Journal of Pharmacology and Experimental Therapeutics, 299 (1), 314–322.
- Erkhitueva, E. B., Dogadina, A. V., Khramchikhin, A. V., Ionin, B. I. (2011). Zhurnal obshchei khimii, 81 (11), 2377–2378.
- Erkhitueva, E. B., Dogadina, A. V., Khramchikhin, A. V., Ionin, B. I. (2012). Highly regioselective heterocyclization reactions of 1H–1,2,4–triazole–3–thiols with chloroacetylenephosphonates. Tetrahedron Letters, 53 (33), 4304–4308. doi: 10.1016/j.tetlet.2012.05.157
- Matveeva, E. D., Podrugina, T. A., Pavlova, A. S. et al. (2008). Izvestiia Akademii Nauk – Seriia khimicheskaia, 10, 2195–2197.
- Matveeva, E. D., Podrugina, T. A., Pavlova, A. S., Mironov, A. V., Gleiter, R., Zefirov, N. S. (2009). Novel Photochemical Reactions of Phosphonium–Iodonium Ylides: Synthesis of Phosphonium–Substituted Oxazoles. European Journal of Organic Chemistry, 2009 (14), 2323–2327. doi: 10.1002/ejoc.200801251
- Aksinenko, A. Y., Goreva, T. V., Epishina, T. A., Sokolov, V. B. (2012). Synthesis of 3–fluoro–2–(diethoxyphosphoryl)imidazo[1,2–a]pyridine. Journal of Fluorine Chemistry, 137, 105–107. doi: 10.1016/j.jfluchem.2012.02.005
- Lobanov, O. P., Brovaretc, V. S., Drach, B. S. (1985). Zhurnal obshchei khimii, 55 (4), 940–941.
- Brovaretc, V. S., Lobanov, O. P., Drach, B. S. (1983). Zhurnal obshchei khimii, 53 (9), 2015–2020.
- Brovaretc, V. S., Lobanov, O. P., Kisilenko, A. A. (1986). Zhurnal obshchei khimii, 56 (7), 1492–1504.
- Golovchenko, A. V., Brovaretc, V. S., Drach, B. S. (2004). Zhurnal obshchei khimii, 74 (9), 1414–1417.
- Mazurkiewicz, R., Pierwocha, A. W. (1997). 4–Phosphoranylidene–5(4H)–oxazolones II. Reactions with alkylating agents. Monatshefte For Chemie Chemical Monthly, 128 (8–9), 893–900. doi: 10.1007/bf00807098
- Brovaretc, V. S., Lobanov, O. P., Drach, B. S. (1982). Zhurnal obshchei khimii, 52 (6), 1438–1439.
- Lukashuk, O. I., Kondratyuk, K. M., Golovchenko, A. V., Brovarets, V. S., Kukhar, V. P. (2013). A Novel Synthetic Approach to Phosphorylated Peptidomimetics. Heteroatom Chemistry, 24 (4), 289–297. doi: 10.1002/hc.21093
- Kondratyuk, K. M., Lukashuk, O. I., Golovchenko, A. V., Komarov, I. V., Brovarets, V. S., Kukhar, V. P. (2013). Synthesis of 5–amino–2–aminoalkyl–1,3–oxazol–4–ylphosphonic acid derivatives and their use in the preparation of phosphorylated peptidomimetics. Tetrahedron, 69 (30), 6251–6261.
- doi: 10.1016/j.tet.2013.05.017
- Lukashuk, E. I ., Abdurakhmanova, E. R., Kondratiuk, K. M., Golovchenko, A. V., Brovaretc, V. S. (2015). Zhurnal obshchei khimii, 85 (1), 77–81.
- Huryeva, A. N., Marchenko, A. P., Koidan, G. N., Yurchenko,, A. A., Zarudnitskii, E. V., Pinchuk, A. M., Kostyuk, A. N. (2010). 4–Phosphorylated 1,2–disubstituted imidazoles. Heteroatom Chemistry, 21 (3), 103–118. doi: 10.1002/hc.20584
- Protopopova, G. V., Dziuban, A. D., Nesterenko, N. I. (1979). SSSR. 488527. Insektoakaritcidy; declared 27.03.1974; published 25.09.1979.
- Brovarets, V. S., Sharykina, N. I., Kudriavtseva, I. H. et al. (1997). Patent Ukr. 17144а. 4–Dialkoksyfosforyl–5–dymetylamino–2–feniloksazoly, shcho proiavliaiut antyblastychnu aktyvnist; declared 30.07.1993; published 31.01.1997.
- Fukuda, Y., Asahina, Y., Takadoi, M., Yamamoto, M. (2009). Pat. EP2275414A1. Cyclopentylacrylic acid amide derivative; declared 27.04.2009; published 05.11.2009.
- Ryono, D. E., Cheng, P. T. W., Bolton, S. A. (2008). Pat. US20080009465A1. Novel glucokinase activators and methods of using same; declared 28.06.2007; published 10.01.2008.
- Smolii, O. B., Gorodetckova, N. R., Brovaretc, V. S. (1989). Khimiko–farmatcevticheskii zhurnal, 23 (11), 1329–1331.
- Poos, M. A. (1993). Pat. US5208235. Indole– and benzimidazole–substituted imidazole derivatives; declared 10.03.1992; published 04.05.1993.
- Bold, G., Furet, P., Gessier, F. (2011). Pat. WO2011/023677A1. Tetra–substituted heteroaryl compounds and their use as MDM2 and/or MDM4 modulators; declared 24.08.2010; published 03.03.2011.
- Barrish, J. C., Chen, P., Das, J. (2001). Pat. US6235740B1. Imidazoquinoxaline protein tyrosine kinase inhibitors; declared 15.06.1998; published 22.05.2001.
- Csuzdi, E., Hamori, T., Abraham, G. (2003). Pat. US6600036B2. Condensed 2,3–benzodiazepine derivatives and their use as AMPA–receptor inhibitors; declared 27.11.2001; published 29.06.2003.
- Aloup, J. C., Audiau, F., Barreau, M. (1999). Pat. US5902803A. 5H,10H–Imidazo[1,2–a]indeno[1,2–e]pyrazin–4–one derivatives, preparation thereof, and drugs containing said derivatives; declared 02.04.1996; published 11.05.1999.
- Aloup, J. C., Bouquerel, J., Damour, D. (1999). Pat. US5990108A. 5H,10H–Imidazo[1,2–a]indeno[1,2–e]pyrazin–4–one derivatives, preparation thereof, intermediates thereof and drugs containing the same; declared 06.01.1997; published 23.11.1999.
- Jimonet, P., Bohme, G. A., Bouquerel, J., Boireau, A., Damour, D., Debono, M. W., Mignani, S. (2001). Bioisosteres of 9–Carboxymethyl–4–oxo–imidazo[ 1,2– a ]indeno[1,2– e ]pyrazin–2–carboxylic acid derivatives. Progress towards selective, potent In Vivo AMPA antagonists with longer
- durations of action. Bioorganic & Medicinal Chemistry Letters, 11 (2), 127–132. doi: 10.1016/s0960–894x(00)00592–8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 National University of Pharmacy

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors publishing their works in the Journal of Organic and Pharmaceutical Chemistry agree with the following terms:
1. Authors retain copyright and grant the journal the right of the first publication of the work under Creative Commons Attribution License allowing everyone to distribute and re-use the published material if proper citation of the original publication is given.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book) providing proper citation of the original publication.
3. Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on authors’ personal websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access).