Trifluoromethyl-containing 3,4-dihydropyrimidine-2-ones and their condensed analogs


  • S. V. Mel’nikov Institute of Organic Chemistry of the NAS of Ukraine, Ukraine
  • V. M. Tkachuk Institute of Organic Chemistry of the NAS of Ukraine, Ukraine
  • V. A. Sukach Institute of Organic Chemistry of the NAS of Ukraine, Ukraine
  • M. V. Vovk Institute of Organic Chemistry of the NAS of Ukraine, Ukraine



3, 4-dihydropyrimidones, CF3-containing derivatives, inter- and intramolecular cyclocondensations, Biginelly reaction, nucleophilic addition, anti-HIV agents


The information related to the methods of the synthesis of 4- and 6-trifluoromethyl-3,4-dihydropyrimidine- 2-ones and their condensed analogs as potent molecular platforms for the synthesis of bioactive compounds has been analyzed and systematized. The role of inter- and intramolecular cyclocondensations of CF3-containing substrates, as well as nucleophilic addition to C=N bond as key steps for construction of 4-trifluorinated derivatives has been emphasized. The major part of this article is devoted to the construction of trifluoromethyldihydropirimidones of a high optical purity and their thioanalogs based on the condensation of the chiral ureas and thioureas. A special attention is paid to asymmetric reactions, which are used for the synthesis of chiral analogs of the anti-HIV drug Efavirenz. It has been noted that Biginelly reaction of the corresponding fluorinated ketoesters is the common way for obtaining 6-trifluoromethylpyrimidones. The method allows obtaining the target products in one stage although it has limitations due to the need to isolate intermediate cyclic products, which in the future should be subjected to dehydration. The effect of the catalyst nature on the course of Biginelly reaction of trifluoromethylated substrates has been analyzed. It has been shown that nucleophilic 3,6-addition to 4-CF3- dihydropyrimidones is effective method for the synthesis of dihydroorotic acid derivatives.


Ahmed N., van Lier J. E. (2010). TaBr5-catalyzed Biginelli reaction: one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones under solvent-

free conditions. Tetrahedron Lett., 48 (31), 5407–5409.

Crespo, A., El Maatougui, A., Biagini, P., Azuaje, J., Coelho, A., Brea, J., … Sotelo, E. (2013). Discovery of 3,4-Dihydropyrimidin-2(1H)-ones As

a Novel Class of Potent and Selective A2B Adenosine Receptor Antagonists. ACS Medicinal Chemistry Letters, 4(11), 1031–1036. https://doi.


Azizian, J., Mohammadi, M. K., Firuzi, O., Mirza, B., & Miri, R. (2010). Microwave-Assisted Solvent-Free Synthesis of Bis(dihydropyrimidinone)benzenes

and Evaluation of their Cytotoxic Activity. Chemical Biology & Drug Design, 75(4), 375–380.

China Raju, B., Nageswara Rao, R., Suman, P., Yogeeswari, P., Sriram, D., Shaik, T. B., & Kalivendi, S. V. (2011). Synthesis, structure–activity relationship

of novel substituted 4H-chromen-1,2,3,4-tetrahydropyrimidine-5-carboxylates as potential anti-mycobacterial and anticancer agents.

Bioorganic & Medicinal Chemistry Letters, 21(10), 2855–2859.

Magnus, N. A., Confalone, P. N., Storace, L., Patel, M., Wood, C. C., Davis, W. P., & Parsons, R. L. (2003). General Scope of 1,4-Diastereoselective

Additions to a 2(3H)-Quinazolinone: Practical Preparation of HIV Therapeutics. The Journal of Organic Chemistry, 68(3), 754–761. https://doi.


Shoba V. M., Tkachuk V. M, Sukach V. A., Vovk, M. V. (2013). Synthesis, chemical and biological properties of trifluoromethylated pyrimidin-

-ones(thiones) and their fused analogues. Targets in heterocyclic systems. Chemistry and properties, 2013 (17), 147–175.

Sukach, V. A., Golovach, N. M., Melnichenko, N. V., Tsymbal, I. F., & Vovk, M. V. (2008). Optically active 4-amino-4-aryl-5,5,5-trifluoropentan-

-ones: Versatile reagents for synthesis of chiral 4-trifluoromethyl-3,4-dihydroazin-2-ones. Journal of Fluorine Chemistry, 129(12), 1180–1186.

Golovach, N. M., Tkachuk, V. N., Sukach, V. A., & Vovk, M. V. (2012). Asymmetric organocatalytic mannich reaction of 1-aryl-2,2,2-trifluoroethylidenecarbamic acid derivatives with acetone. Russian Journal of Organic Chemistry, 48(9), 1187–1190.

Vovk, M. V., Lebed’, P. S., Sukach, V. A., & Kornilov, M. Y. (2003). Heterocyclizations of Functionalized Heterocumulenes with C,N- and C,O-Dinucleophiles: II.* Reaction of 1-Chloro- and 1,1-Dichloroalkyl Isocyanates and 1-Chloroalkylidenecarbamates with 2-Bensothiazolylacetonitrile, 2-Benzothiazolylacetates, and Bis(2-benzothiazolyl)methane. Russian Journal of Organic Chemistry, 39(12), 1781–1788.

Sokolov, V. B., & Aksinenko, A. Y. (2005). Synthesis of fluoro-containing pyrimidinones from hexafluoroacetone(ethoxycarbonylimine). Russian

Chemical Bulletin, 54(6), 1518–1522.

Yang, L.-J., Li, S., Wang, S., Nie, J., & Ma, J.-A. (2014). Nucleophilic Lewis Base Dependent Addition Reactions of Allenoates with Trifluoromethylated

Cyclic Ketimines. The Journal of Organic Chemistry, 79(8), 3547–3558.

Sukach, V. A., Tkachuk, V. M., Shoba, V. M., Pirozhenko, V. V., Rusanov, E. B., Chekotilo, A. A., … Vovk, M. V. (2014). Control of Regio- and Enantioselectivity in the Asymmetric Organocatalytic Addition of Acetone to 4-(Trifluoromethyl)pyrimidin-2(1H)-ones. European Journal of Organic

Chemistry, 2014(7), 1452–1460.

Tkachuk, V. M., Sukach, V. A., Kovalchuk, K. V., Vovk, M. V., & Nenajdenko, V. G. (2015). Development of an efficient route to CF3-substituted pyrrolopyrimidines through understanding the competition between Michael and aza-Henry reactions. Organic & Biomolecular Chemistry, 13(5),


Melnykov, S. V., Pataman, A. S., Dmytriv, Y. V., Shishkina, S. V., Vovk, M. V., & Sukach, V. A. (2017). Regioselective decarboxylative addition of malonic

acid and its mono(thio)esters to 4-trifluoromethylpyrimidin-2(1H)-ones. Beilstein Journal of Organic Chemistry, 13, 2617–2625. https://doi.


Corbett, J. W., Pan, S., Markwalder, J. A., Cordova, B. C., Klabe, R. M., Garber, S., … Erickson-Viitanen, S. K. (2001). 3,3a-Dihydropyrano[4,3,2- de ]

quinazolin-2(1 H )-ones are potent non-nucleoside reverse transcriptase inhibitors. Bioorganic & Medicinal Chemistry Letters, 11(2), 211–214.

Jiang, B., & Si, Y.-G. (2004). Highly Enantioselective Construction of a Chiral Tertiary Carbon Center by Alkynylation of a CyclicN-Acyl Ketimine: An

Efficient Preparation of HIV Therapeutics. Angewandte Chemie International Edition, 43(2), 216–218.

Jiang, B., Dong, J. J., Si, Y. G., Zhao, X. L., Huang, Z. G., & Xu, M. (2008). Highly Enantioselective Construction of a Quaternary Carbon Center of

Dihydroquinazoline by Asymmetric Mannich Reaction and Chiral Recognition. Advanced Synthesis & Catalysis, 350(9), 1360–1366. https://doi.


Zhang, F.-G., Zhu, X.-Y., Li, S., Nie, J., & Ma, J.-A. (2012). Highly enantioselective organocatalytic Strecker reaction of cyclic N-acyl trifluoromethylketimines:

synthesis of anti-HIV drug DPC 083. Chemical Communications, 48(94), 11552–11554.

Yuan, H.-N., Wang, S., Nie, J., Meng, W., Yao, Q., & Ma, J.-A. (2013). Hydrogen-Bond-Directed Enantioselective Decarboxylative Mannich Reaction

of β-Ketoacids with Ketimines: Application to the Synthesis of Anti-HIV Drug DPC 083. Angewandte Chemie International Edition, 52(14),


Yuan, H.-N., Li, S., Nie, J., Zheng, Y., & Ma, J.-A. (2013). Highly Enantioselective Decarboxylative Mannich Reaction of Malonic Acid Half Oxyesters with Cyclic Trifluoromethyl Ketimines: Synthesis of β-Amino Esters and Anti-HIV Drug DPC 083. Chemistry - A European Journal, 19(47), 15856–15860.

Zhang, F.-G., Ma, H., Nie, J., Zheng, Y., Gao, Q., & Ma, J.-A. (2012). Enantioselective Diynylation of Cyclic N-Acyl Ketimines: Access to Chiral Trifluoromethylated Tertiary Carbinamines. Advanced Synthesis & Catalysis, 354(8), 1422–1428.

Zhang, K.-F., Nie, J., Guo, R., Zheng, Y., & Ma, J.-A. (2013). Chiral Phosphoric Acid-Catalyzed Asymmetric Aza-Friedel-Crafts Reaction of Indoles

with CyclicN-Acylketimines: Enantioselective Synthesis of Trifluoromethyldihydroquinazolines. Advanced Synthesis & Catalysis, 355(17), 3497–3502.

Zhou, D., Huang, Z., Yu, X., Wang, Y., Li, J., Wang, W., & Xie, H. (2015). A Quinine-Squaramide Catalyzed Enantioselective Aza-Friedel–Crafts Reaction

of Cyclic Trifluoromethyl Ketimines with Naphthols and Electron-Rich Phenols. Organic Letters, 17(22), 5554–5557.


Zhou, B., Jiang, C., Gandi, V. R., Lu, Y., & Hayashi, T. (2016). Palladium-Catalyzed Asymmetric Arylation of Trifluoromethylated/Perfluoroalkylated 2-Quinazolinones with High Enantioselectivity. Chemistry - A European Journal, 22(37), 13068–13071.

Dai, J., Xiong, D., Yuan, T., Liu, J., Chen, T., & Shao, Z. (2017). Chiral Primary Amine Catalysis for Asymmetric Mannich Reactions of Aldehydes

with Ketimines: Stereoselectivity and Reactivity. Angewandte Chemie International Edition, 56(41), 12697–12701.


Biginelli, P. (1891). Ueber Aldehyduramide des Acetessigäthers. Berichte Der Deutschen Chemischen Gesellschaft, 24(1), 1317–1319. https://doi.


Rutter, H. A., & Gustafson, L. O. (1954). Synthesis of some 2-oxo-4-aryl-5-carbethoxy-6-trifluoromethyl1,2,3,4-tetrahydropyrimidines. Journal of

the Franklin Institute, 258(5), 413–415.

Kappe, C. O., & Falsone, S. F. (1998). Polyphosphate Ester-Mediated Synthesis of Dihydropyrimidines. Improved Conditions for the Biginelli Reaction.

Synlett, 1998(7), 718–720.

Oliver Kappe, C., Fabio Falsone, S., M. F. Fabian, W., & Belaj, F. (1999). Isolation, Conformational Analysis and X-Ray Structure Determination of a Trifluoromethyl- stabilized Hexahydropyrimidine — An Intermediate in the Biginelli Reaction. Heterocycles, 51(1), 77.

Barrow, J. C., Nantermet, P. G., Selnick, H. G., Glass, K. L., Rittle, K. E., Gilbert, K. F., … Forray, C. (2000). In Vitro and in Vivo Evaluation of Dihydropyrimidinone C-5 Amides as Potent and Selective α1AReceptor Antagonists for the Treatment of Benign Prostatic Hyperplasia. Journal of Medicinal

Chemistry, 43(14), 2703–2718.

Ma, Y., Qian, C., Wang, L., & Yang, M. (2000). Lanthanide Triflate Catalyzed Biginelli Reaction. One-Pot Synthesis of Dihydropyrimidinones under

Solvent-Free Conditions. The Journal of Organic Chemistry, 65(12), 3864–3868.

Yadav, J. S., Reddy, B. V. S., Bhaskar Reddy, K., Sarita Raj, K., & Prasad, A. R. (2001). Ultrasound-accelerated synthesis of 3,4-dihydropyrimidin-2(1H)-ones

with ceric ammonium nitrate†. Journal of the Chemical Society, Perkin Transactions 1, (16), 1939–1941.

Varala, R., Alam, M. M., & Adapa, S. A. (2003). Bismuth Triflate Catalyzed One-Pot Synthesis of 3,4-Dihydropyrimidin-2-(1H)-ones: An Improved

Protocol for the Biginelli Reaction. ChemInform, 34(15).

Putilova, E. S., Troitskii, N. A., Zlotin, S. G., Khudina, O. G., Burgart, Y. V., Saloutin, V. I., & Chupakhin, O. N. (2006). One-step solvent-free synthesis

of fluoroalkyl-substituted 4-hydroxy-2-oxo(thioxo)hexahydropyrimidines in the presence of 1-butyl-3-methylimidazolium tetrafluoroborate.

Russian Journal of Organic Chemistry, 42(9), 1392–1395.

Vijay K., Ganapaty S., Rao A. S. (2010). Synthesis, characterization and biological evaluation of some dihydropyrimidinones. Asian J. Chem., 22 (4),


Wu, M., Yu, J., Zhao, W., Wu, J., & Cao, S. (2011). One-pot synthesis of difluoromethyl-containing dihydropyrimidinones catalyzed by Yb(PFO)3 under

solvent and dehydrating agent free conditions. Journal of Fluorine Chemistry, 132(3), 155–159.

Konkala, K., Sabbavarapu, N. M., Katla, R., Durga, N. Y. V., Kumar Reddy T, V., Bethala L.A., P. D., & Rachapudi B.N., P. (2012). Revisit to the Biginelli

reaction: a novel and recyclable bioglycerol-based sulfonic acid functionalized carbon catalyst for one-pot synthesis of substituted 3,4-dihydropyrimidin-

-(1H)-ones. Tetrahedron Letters, 53(15), 1968–1973.

Bigdeli, M. A., Gholami, G., & Sheikhhosseini, E. (2011). P-Dodecylbenzenesulfonic acid (DBSA), a Brønsted acid-surfactant catalyst for Biginelli

reaction in water and under solvent free conditions. Chinese Chemical Letters, 22(8), 903–906.

Timoshenko, V. M., Markitanov, Y. N., & Shermolovich, Y. G. (2011). Preparation of pyrimidine derivatives through three-component reactions of dialkyl (2-oxo-3,3,3-trifluoropropyl)phosphonates. Chemistry of Heterocyclic Compounds, 47(8), 977–982.

Azizian, J., Mirza, B., Mojtahedi, M. M., Abaee, M. S., & Sargordan, M. (2008). Biginelli reaction for synthesis of novel trifluoromethyl derivatives

of bis(tetrahydropyrimidinone)benzenes. Journal of Fluorine Chemistry, 129(11), 1083–1089.

Mirza B., Sargordan M., Fazaeli R. (2012). Microwave-Assisted Synthesis of Bis(dihydropyrimidinone)benzenes. Asian J. Chem., 24 (4), 1421–1424.

Sukach, V. A., Resetnic, A. A., Tkachuk, V. M., Lin, Z., Kortz, U., Vovk, M. V., & Röschenthaler, G.-V. (2015). Synthesis of Trifluoromethylated Analogues

of 4,5-Dihydroorotic Acid. European Journal of Organic Chemistry, 2015(6), 1290–1301.

Tkachuk V. M., Melnykov S. V., Sukach V. A., Vovk, M. V. (2017). The addition of β-ketoacids to 4-(trifluoromethyl)pyrimidin-2(1H)-ones with decarboxylation: an effective method for the synthesis of 4-(2-oxoalkyl)-6-(trifluoromethyl)-3,4-dihydropyrimidin-2-ones. Chem. Heterocycl. Compd.,

(10), 1124–1127.



How to Cite

Mel’nikov, S. V.; Tkachuk, V. M.; Sukach, V. A.; Vovk, M. V. Trifluoromethyl-Containing 3,4-Dihydropyrimidine-2-Ones and Their Condensed Analogs. J. Org. Pharm. Chem. 2018, 16, 3-23.



Original Researches