Trifluoromethyl-containing 3,4-dihydropyrimidine-2-ones and their condensed analogs

Authors

  • S. V. Mel’nikov Institute of Organic Chemistry of the NAS of Ukraine, Ukraine
  • V. M. Tkachuk Institute of Organic Chemistry of the NAS of Ukraine, Ukraine
  • V. A. Sukach Institute of Organic Chemistry of the NAS of Ukraine, Ukraine
  • M. V. Vovk Institute of Organic Chemistry of the NAS of Ukraine, Ukraine

DOI:

https://doi.org/10.24959/ophcj.18.946

Keywords:

3, 4-dihydropyrimidones, CF3-containing derivatives, inter- and intramolecular cyclocondensations, Biginelly reaction, nucleophilic addition, anti-HIV agents

Abstract

The information related to the methods of the synthesis of 4- and 6-trifluoromethyl-3,4-dihydropyrimidine- 2-ones and their condensed analogs as potent molecular platforms for the synthesis of bioactive compounds has been analyzed and systematized. The role of inter- and intramolecular cyclocondensations of CF3-containing substrates, as well as nucleophilic addition to C=N bond as key steps for construction of 4-trifluorinated derivatives has been emphasized. The major part of this article is devoted to the construction of trifluoromethyldihydropirimidones of a high optical purity and their thioanalogs based on the condensation of the chiral ureas and thioureas. A special attention is paid to asymmetric reactions, which are used for the synthesis of chiral analogs of the anti-HIV drug Efavirenz. It has been noted that Biginelly reaction of the corresponding fluorinated ketoesters is the common way for obtaining 6-trifluoromethylpyrimidones. The method allows obtaining the target products in one stage although it has limitations due to the need to isolate intermediate cyclic products, which in the future should be subjected to dehydration. The effect of the catalyst nature on the course of Biginelly reaction of trifluoromethylated substrates has been analyzed. It has been shown that nucleophilic 3,6-addition to 4-CF3- dihydropyrimidones is effective method for the synthesis of dihydroorotic acid derivatives.

References

Ahmed N., van Lier J. E. (2010). TaBr5-catalyzed Biginelli reaction: one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones under solvent-

free conditions. Tetrahedron Lett., 48 (31), 5407–5409. https://doi.org/10.1016/j.tetlet.2007.06.005

Crespo, A., El Maatougui, A., Biagini, P., Azuaje, J., Coelho, A., Brea, J., … Sotelo, E. (2013). Discovery of 3,4-Dihydropyrimidin-2(1H)-ones As

a Novel Class of Potent and Selective A2B Adenosine Receptor Antagonists. ACS Medicinal Chemistry Letters, 4(11), 1031–1036. https://doi.

org/10.1021/ml400185v

Azizian, J., Mohammadi, M. K., Firuzi, O., Mirza, B., & Miri, R. (2010). Microwave-Assisted Solvent-Free Synthesis of Bis(dihydropyrimidinone)benzenes

and Evaluation of their Cytotoxic Activity. Chemical Biology & Drug Design, 75(4), 375–380. https://doi.org/10.1111/j.1747-0285.2009.00937.x

China Raju, B., Nageswara Rao, R., Suman, P., Yogeeswari, P., Sriram, D., Shaik, T. B., & Kalivendi, S. V. (2011). Synthesis, structure–activity relationship

of novel substituted 4H-chromen-1,2,3,4-tetrahydropyrimidine-5-carboxylates as potential anti-mycobacterial and anticancer agents.

Bioorganic & Medicinal Chemistry Letters, 21(10), 2855–2859. https://doi.org/10.1016/j.bmcl.2011.03.079

Magnus, N. A., Confalone, P. N., Storace, L., Patel, M., Wood, C. C., Davis, W. P., & Parsons, R. L. (2003). General Scope of 1,4-Diastereoselective

Additions to a 2(3H)-Quinazolinone: Practical Preparation of HIV Therapeutics. The Journal of Organic Chemistry, 68(3), 754–761. https://doi.

org/10.1021/jo0263162

Shoba V. M., Tkachuk V. M, Sukach V. A., Vovk, M. V. (2013). Synthesis, chemical and biological properties of trifluoromethylated pyrimidin-

-ones(thiones) and their fused analogues. Targets in heterocyclic systems. Chemistry and properties, 2013 (17), 147–175.

Sukach, V. A., Golovach, N. M., Melnichenko, N. V., Tsymbal, I. F., & Vovk, M. V. (2008). Optically active 4-amino-4-aryl-5,5,5-trifluoropentan-

-ones: Versatile reagents for synthesis of chiral 4-trifluoromethyl-3,4-dihydroazin-2-ones. Journal of Fluorine Chemistry, 129(12), 1180–1186.

https://doi.org/10.1016/j.jfluchem.2008.09.003

Golovach, N. M., Tkachuk, V. N., Sukach, V. A., & Vovk, M. V. (2012). Asymmetric organocatalytic mannich reaction of 1-aryl-2,2,2-trifluoroethylidenecarbamic acid derivatives with acetone. Russian Journal of Organic Chemistry, 48(9), 1187–1190. https://doi.org/10.1134/s1070428012090060

Vovk, M. V., Lebed’, P. S., Sukach, V. A., & Kornilov, M. Y. (2003). Heterocyclizations of Functionalized Heterocumulenes with C,N- and C,O-Dinucleophiles: II.* Reaction of 1-Chloro- and 1,1-Dichloroalkyl Isocyanates and 1-Chloroalkylidenecarbamates with 2-Bensothiazolylacetonitrile, 2-Benzothiazolylacetates, and Bis(2-benzothiazolyl)methane. Russian Journal of Organic Chemistry, 39(12), 1781–1788. https://doi.org/10.1023/b:rujo.0000019744.08100.85

Sokolov, V. B., & Aksinenko, A. Y. (2005). Synthesis of fluoro-containing pyrimidinones from hexafluoroacetone(ethoxycarbonylimine). Russian

Chemical Bulletin, 54(6), 1518–1522. https://doi.org/10.1007/s11172-005-0439-5

Yang, L.-J., Li, S., Wang, S., Nie, J., & Ma, J.-A. (2014). Nucleophilic Lewis Base Dependent Addition Reactions of Allenoates with Trifluoromethylated

Cyclic Ketimines. The Journal of Organic Chemistry, 79(8), 3547–3558. https://doi.org/10.1021/jo500356t

Sukach, V. A., Tkachuk, V. M., Shoba, V. M., Pirozhenko, V. V., Rusanov, E. B., Chekotilo, A. A., … Vovk, M. V. (2014). Control of Regio- and Enantioselectivity in the Asymmetric Organocatalytic Addition of Acetone to 4-(Trifluoromethyl)pyrimidin-2(1H)-ones. European Journal of Organic

Chemistry, 2014(7), 1452–1460. https://doi.org/10.1002/ejoc.201301542

Tkachuk, V. M., Sukach, V. A., Kovalchuk, K. V., Vovk, M. V., & Nenajdenko, V. G. (2015). Development of an efficient route to CF3-substituted pyrrolopyrimidines through understanding the competition between Michael and aza-Henry reactions. Organic & Biomolecular Chemistry, 13(5),

–1428. https://doi.org/10.1039/c4ob02233e

Melnykov, S. V., Pataman, A. S., Dmytriv, Y. V., Shishkina, S. V., Vovk, M. V., & Sukach, V. A. (2017). Regioselective decarboxylative addition of malonic

acid and its mono(thio)esters to 4-trifluoromethylpyrimidin-2(1H)-ones. Beilstein Journal of Organic Chemistry, 13, 2617–2625. https://doi.

org/10.3762/bjoc.13.259

Corbett, J. W., Pan, S., Markwalder, J. A., Cordova, B. C., Klabe, R. M., Garber, S., … Erickson-Viitanen, S. K. (2001). 3,3a-Dihydropyrano[4,3,2- de ]

quinazolin-2(1 H )-ones are potent non-nucleoside reverse transcriptase inhibitors. Bioorganic & Medicinal Chemistry Letters, 11(2), 211–214.

https://doi.org/10.1016/s0960-894x(00)00624-7

Jiang, B., & Si, Y.-G. (2004). Highly Enantioselective Construction of a Chiral Tertiary Carbon Center by Alkynylation of a CyclicN-Acyl Ketimine: An

Efficient Preparation of HIV Therapeutics. Angewandte Chemie International Edition, 43(2), 216–218. https://doi.org/10.1002/anie.200352301

Jiang, B., Dong, J. J., Si, Y. G., Zhao, X. L., Huang, Z. G., & Xu, M. (2008). Highly Enantioselective Construction of a Quaternary Carbon Center of

Dihydroquinazoline by Asymmetric Mannich Reaction and Chiral Recognition. Advanced Synthesis & Catalysis, 350(9), 1360–1366. https://doi.

org/10.1002/adsc.200800039

Zhang, F.-G., Zhu, X.-Y., Li, S., Nie, J., & Ma, J.-A. (2012). Highly enantioselective organocatalytic Strecker reaction of cyclic N-acyl trifluoromethylketimines:

synthesis of anti-HIV drug DPC 083. Chemical Communications, 48(94), 11552–11554. https://doi.org/10.1039/c2cc36307k

Yuan, H.-N., Wang, S., Nie, J., Meng, W., Yao, Q., & Ma, J.-A. (2013). Hydrogen-Bond-Directed Enantioselective Decarboxylative Mannich Reaction

of β-Ketoacids with Ketimines: Application to the Synthesis of Anti-HIV Drug DPC 083. Angewandte Chemie International Edition, 52(14),

–3873. https://doi.org/10.1002/anie.201210361

Yuan, H.-N., Li, S., Nie, J., Zheng, Y., & Ma, J.-A. (2013). Highly Enantioselective Decarboxylative Mannich Reaction of Malonic Acid Half Oxyesters with Cyclic Trifluoromethyl Ketimines: Synthesis of β-Amino Esters and Anti-HIV Drug DPC 083. Chemistry - A European Journal, 19(47), 15856–15860.

https://doi.org/10.1002/chem.201303307

Zhang, F.-G., Ma, H., Nie, J., Zheng, Y., Gao, Q., & Ma, J.-A. (2012). Enantioselective Diynylation of Cyclic N-Acyl Ketimines: Access to Chiral Trifluoromethylated Tertiary Carbinamines. Advanced Synthesis & Catalysis, 354(8), 1422–1428. https://doi.org/10.1002/adsc.201100926

Zhang, K.-F., Nie, J., Guo, R., Zheng, Y., & Ma, J.-A. (2013). Chiral Phosphoric Acid-Catalyzed Asymmetric Aza-Friedel-Crafts Reaction of Indoles

with CyclicN-Acylketimines: Enantioselective Synthesis of Trifluoromethyldihydroquinazolines. Advanced Synthesis & Catalysis, 355(17), 3497–3502. https://doi.org/10.1002/adsc.201300534

Zhou, D., Huang, Z., Yu, X., Wang, Y., Li, J., Wang, W., & Xie, H. (2015). A Quinine-Squaramide Catalyzed Enantioselective Aza-Friedel–Crafts Reaction

of Cyclic Trifluoromethyl Ketimines with Naphthols and Electron-Rich Phenols. Organic Letters, 17(22), 5554–5557. https://doi.org/10.1021/

acs.orglett.5b02668

Zhou, B., Jiang, C., Gandi, V. R., Lu, Y., & Hayashi, T. (2016). Palladium-Catalyzed Asymmetric Arylation of Trifluoromethylated/Perfluoroalkylated 2-Quinazolinones with High Enantioselectivity. Chemistry - A European Journal, 22(37), 13068–13071. https://doi.org/10.1002/chem.201603105

Dai, J., Xiong, D., Yuan, T., Liu, J., Chen, T., & Shao, Z. (2017). Chiral Primary Amine Catalysis for Asymmetric Mannich Reactions of Aldehydes

with Ketimines: Stereoselectivity and Reactivity. Angewandte Chemie International Edition, 56(41), 12697–12701. https://doi.org/10.1002/

anie.201706304

Biginelli, P. (1891). Ueber Aldehyduramide des Acetessigäthers. Berichte Der Deutschen Chemischen Gesellschaft, 24(1), 1317–1319. https://doi.

org/10.1002/cber.189102401228

Rutter, H. A., & Gustafson, L. O. (1954). Synthesis of some 2-oxo-4-aryl-5-carbethoxy-6-trifluoromethyl1,2,3,4-tetrahydropyrimidines. Journal of

the Franklin Institute, 258(5), 413–415. https://doi.org/10.1016/0016-0032(54)90837-6

Kappe, C. O., & Falsone, S. F. (1998). Polyphosphate Ester-Mediated Synthesis of Dihydropyrimidines. Improved Conditions for the Biginelli Reaction.

Synlett, 1998(7), 718–720. https://doi.org/10.1055/s-1998-1764

Oliver Kappe, C., Fabio Falsone, S., M. F. Fabian, W., & Belaj, F. (1999). Isolation, Conformational Analysis and X-Ray Structure Determination of a Trifluoromethyl- stabilized Hexahydropyrimidine — An Intermediate in the Biginelli Reaction. Heterocycles, 51(1), 77. https://doi.org/10.3987/com-98-8336

Barrow, J. C., Nantermet, P. G., Selnick, H. G., Glass, K. L., Rittle, K. E., Gilbert, K. F., … Forray, C. (2000). In Vitro and in Vivo Evaluation of Dihydropyrimidinone C-5 Amides as Potent and Selective α1AReceptor Antagonists for the Treatment of Benign Prostatic Hyperplasia. Journal of Medicinal

Chemistry, 43(14), 2703–2718. https://doi.org/10.1021/jm990612y

Ma, Y., Qian, C., Wang, L., & Yang, M. (2000). Lanthanide Triflate Catalyzed Biginelli Reaction. One-Pot Synthesis of Dihydropyrimidinones under

Solvent-Free Conditions. The Journal of Organic Chemistry, 65(12), 3864–3868. https://doi.org/10.1021/jo9919052

Yadav, J. S., Reddy, B. V. S., Bhaskar Reddy, K., Sarita Raj, K., & Prasad, A. R. (2001). Ultrasound-accelerated synthesis of 3,4-dihydropyrimidin-2(1H)-ones

with ceric ammonium nitrate†. Journal of the Chemical Society, Perkin Transactions 1, (16), 1939–1941. https://doi.org/10.1039/b102565c

Varala, R., Alam, M. M., & Adapa, S. A. (2003). Bismuth Triflate Catalyzed One-Pot Synthesis of 3,4-Dihydropyrimidin-2-(1H)-ones: An Improved

Protocol for the Biginelli Reaction. ChemInform, 34(15). https://doi.org/10.1002/chin.200315157

Putilova, E. S., Troitskii, N. A., Zlotin, S. G., Khudina, O. G., Burgart, Y. V., Saloutin, V. I., & Chupakhin, O. N. (2006). One-step solvent-free synthesis

of fluoroalkyl-substituted 4-hydroxy-2-oxo(thioxo)hexahydropyrimidines in the presence of 1-butyl-3-methylimidazolium tetrafluoroborate.

Russian Journal of Organic Chemistry, 42(9), 1392–1395. https://doi.org/10.1134/s1070428006090259

Vijay K., Ganapaty S., Rao A. S. (2010). Synthesis, characterization and biological evaluation of some dihydropyrimidinones. Asian J. Chem., 22 (4),

–2528.

Wu, M., Yu, J., Zhao, W., Wu, J., & Cao, S. (2011). One-pot synthesis of difluoromethyl-containing dihydropyrimidinones catalyzed by Yb(PFO)3 under

solvent and dehydrating agent free conditions. Journal of Fluorine Chemistry, 132(3), 155–159. https://doi.org/10.1016/j.jfluchem.2010.12.010

Konkala, K., Sabbavarapu, N. M., Katla, R., Durga, N. Y. V., Kumar Reddy T, V., Bethala L.A., P. D., & Rachapudi B.N., P. (2012). Revisit to the Biginelli

reaction: a novel and recyclable bioglycerol-based sulfonic acid functionalized carbon catalyst for one-pot synthesis of substituted 3,4-dihydropyrimidin-

-(1H)-ones. Tetrahedron Letters, 53(15), 1968–1973. https://doi.org/10.1016/j.tetlet.2012.02.018

Bigdeli, M. A., Gholami, G., & Sheikhhosseini, E. (2011). P-Dodecylbenzenesulfonic acid (DBSA), a Brønsted acid-surfactant catalyst for Biginelli

reaction in water and under solvent free conditions. Chinese Chemical Letters, 22(8), 903–906. https://doi.org/10.1016/j.cclet.2010.12.030

Timoshenko, V. M., Markitanov, Y. N., & Shermolovich, Y. G. (2011). Preparation of pyrimidine derivatives through three-component reactions of dialkyl (2-oxo-3,3,3-trifluoropropyl)phosphonates. Chemistry of Heterocyclic Compounds, 47(8), 977–982. https://doi.org/10.1007/s10593-011-0863-4

Azizian, J., Mirza, B., Mojtahedi, M. M., Abaee, M. S., & Sargordan, M. (2008). Biginelli reaction for synthesis of novel trifluoromethyl derivatives

of bis(tetrahydropyrimidinone)benzenes. Journal of Fluorine Chemistry, 129(11), 1083–1089. https://doi.org/10.1016/j.jfluchem.2008.06.025

Mirza B., Sargordan M., Fazaeli R. (2012). Microwave-Assisted Synthesis of Bis(dihydropyrimidinone)benzenes. Asian J. Chem., 24 (4), 1421–1424.

Sukach, V. A., Resetnic, A. A., Tkachuk, V. M., Lin, Z., Kortz, U., Vovk, M. V., & Röschenthaler, G.-V. (2015). Synthesis of Trifluoromethylated Analogues

of 4,5-Dihydroorotic Acid. European Journal of Organic Chemistry, 2015(6), 1290–1301. https://doi.org/10.1002/ejoc.201403495

Tkachuk V. M., Melnykov S. V., Sukach V. A., Vovk, M. V. (2017). The addition of β-ketoacids to 4-(trifluoromethyl)pyrimidin-2(1H)-ones with decarboxylation: an effective method for the synthesis of 4-(2-oxoalkyl)-6-(trifluoromethyl)-3,4-dihydropyrimidin-2-ones. Chem. Heterocycl. Compd.,

(10), 1124–1127.

Published

2018-09-19

How to Cite

(1)
Mel’nikov, S. V.; Tkachuk, V. M.; Sukach, V. A.; Vovk, M. V. Trifluoromethyl-Containing 3,4-Dihydropyrimidine-2-Ones and Their Condensed Analogs. J. Org. Pharm. Chem. 2018, 16, 3-23.

Issue

Section

Original Researches