DOI: https://doi.org/10.24959/ophcj.18.948

Development and validation of the HPLC/UV-procedure of secnidazole determination

O. V. Shovkova, L. Yu. Klimenko, Z. V. Shovkova, T. A. Kostina

Abstract


Secnidazole is one of antiprotozoal medicines from the group of 5-nitroimidazoles, the method of HPLC with different types of detection is widely used for secnidazole determination.
Aim. To develop the HPLC/UV-procedure of secnidazole quantification with application of the system of a “MiLiChrome® A-02” HPLC-analyzer and carry out the step-by-step validation of the procedure developed. Results and discussion. The specificity of the chromatographic conditions proposed was confirmed in relation to other medicines of the group of 5-nitroimidazoles (metronidazole, tinidazole, ornidazole and nimorazole). The retention time for secnidazole was 8.16 min. 0.01 M solution of hydrochloric acid was proposed for preparation of the reference and model solutions in developing the HPLC/UV-procedure of secnidazole quantification. To prove the possibility of application of the procedure proposed in further analysis its validation was carried out in the variants of the method of the calibration curve and the method of standard. Such validation parameters as in-process stability, linearity/calibration model, accuracy and precision (repeatability) were estimated using model solutions.      Experimental part. The HPLC/UV analyses were performed using a MiLiChrome® A-02 high pressure liquid chromatograph (EcoNova, Russia). Eluent A (0.2 M LiClO4 – 0.005 M HClO4) and Eluent B (acetonitrile) were used as the mobile phase components. The HPLC microcolumn with the size of Ø2 × 75 mm and the ProntoSIL 120-5-C18 AQ reversed phase, 5 μm (BISCHOFF Analysentechnik und -geräte GmbH, Germany) was used as an analytical column. The analysis was performed at 40 °С and the flow rate of 100 μl/min. The mobile phase was run in the gradient elution mode, namely from 5 % to 100 % of Eluent B for 40 min, then 100 % of Eluent B for 3 min. Detection was performed at 277 nm.                                                                      Conclusions. A new procedure of the secnidazole quantitative determination by the method of HPLC/UV has been developed. Its validation has been carried out, and acceptability for its application has been shown.


Keywords


secnidazole; high-performance liquid chromatography; validation

Full Text:

PDF

References


Videau, D., Niel, G., Siboulet, A., & Catalan, F. (1978). Secnidazole. A 5-nitroimidazole derivative with a long half-life. Sexually Transmitted Infections,

(2), 77–80. https://doi.org/10.1136/sti.54.2.77

Symonds, J. (1979). Secnidazole—a nitroimidazole with a prolonged serum half-life. Journal of Antimicrobial Chemotherapy, 5(4), 484–486.

https://doi.org/10.1093/jac/5.4.484

Brook, I. (2016). Spectrum and treatment of anaerobic infections. Journal of Infection and Chemotherapy, 22(1), 1–13. https://doi.org/10.1016/j.

jiac.2015.10.010

Lamp, K. C., Freeman, C. D., Klutman, N. E., & Lacy, M. K. (1999). Pharmacokinetics and Pharmacodynamics of the Nitroimidazole Antimicrobials.

Clinical Pharmacokinetics, 36(5), 353–373. https://doi.org/10.2165/00003088-199936050-00004

Jarrad, A. M., Debnath, A., Miyamoto, Y., Hansford, K. A., Pelingon, R., Butler, M. S., … Cooper, M. A. (2016). Nitroimidazole carboxamides as antiparasitic agents targeting Giardia lamblia, Entamoeba histolytica and Trichomonas vaginalis. European Journal of Medicinal Chemistry, 120,

–362. https://doi.org/10.1016/j.ejmech.2016.04.064

Sobel, R., & Sobel, J. D. (2015). Metronidazole for the treatment of vaginal infections. Expert Opinion on Pharmacotherapy, 16(7), 1109–1115.

https://doi.org/10.1517/14656566.2015.1035255

Castelli, M. (1997). In-vitro studies of two 5-nitroimidazole derivatives. Journal of Antimicrobial Chemotherapy, 40(1), 19–25. https://doi.

org/10.1093/jac/40.1.19

Mandalapu, D., Kushwaha, B., Gupta, S., Singh, N., Shukla, M., Kumar, J., … Sharma, V. L. (2016). 2-Methyl-4/5-nitroimidazole derivatives potentiated

against sexually transmitted Trichomonas: Design, synthesis, biology and 3D-QSAR study. European Journal of Medicinal Chemistry, 124,

–839. https://doi.org/10.1016/j.ejmech.2016.09.006

Pasupuleti, V., Escobedo, A. A., Deshpande, A., Thota, P., Roman, Y., & Hernandez, A. V. (2014). Efficacy of 5-Nitroimidazoles for the Treatment

of Giardiasis: A Systematic Review of Randomized Controlled Trials. PLoS Neglected Tropical Diseases, 8(3), e2733. https://doi.org/10.1371/

journal.pntd.0002733

Thulkar, J., Kriplani, A., & Agarwal, N. (2012). A comparative study of oral single dose of metronidazole, tinidazole, secnidazole and ornidazole in

bacterial vaginosis. Indian Journal of Pharmacology, 44(2), 243. https://doi.org/10.4103/0253-7613.93859

Li, X., Sun, J., Wang, G., Zheng, Y., Yan, B., Xie, H., … Ren, H. (2007). Determination of secnidazole in human plasma by high-performance liquid

chromatography with UV detection and its application to the bioequivalence studies. Biomedical Chromatography, 21(3), 304–309. https://doi.

org/10.1002/bmc.758

Ravi, S. K., Naidu, M. U. R., Sekhar, E. C., Rao, T. R. K., Shobha, J. C., Rani, P. U., & Surya, K. J. (1997). Rapid and selective analysis of secnidazole in

human plasma using high-performance liquid chromatography with ultraviolet detection. Journal of Chromatography B: Biomedical Sciences

and Applications, 691(1), 208–211. https://doi.org/10.1016/s0378-4347(96)00419-7

El Walily, A. F. M., Abdine, H. H., Razak, O. A., & Zamel, S. (2000). Spectrophotometric and HPLC determination of secnidazole in pharmaceutical

tablets. Journal of Pharmaceutical and Biomedical Analysis, 22(6), 887–897. https://doi.org/10.1016/s0731-7085(99)00290-3

Mitrowska, K., & Antczak, M. (2017). Development and validation of a liquid chromatography with tandem mass spectrometry method for the determination

of nitroimidazole residues in beeswax. Journal of Separation Science, 40(5), 1158–1166. https://doi.org/10.1002/jssc.201600928

Hernández-Mesa, M., Orazio, G. D., Rocco, A., García-Campaña, A. M., Blanco, C. C., & Fanali, S. (2015). Capillary electrochromatography-mass spectrometry for the determination of 5-nitroimidazole antibiotics in urine samples. Electrophoresis, 36(20), 2606–2615. https://doi.org/10.1002/

elps.201500126

Rúbies, A., Sans, G., Kumar, P., Granados, M., Companyó, R., & Centrich, F. (2015). High-throughput method for the determination of nitroimidazoles

in muscle samples by liquid chromatography coupled to mass spectrometry. Analytical and Bioanalytical Chemistry, 407(15), 4411–4421.

https://doi.org/10.1007/s00216-014-8436-x

Du, J., Zhang, Y., Chen, Y., Liu, D., Chen, X., & Zhong, D. (2014). Enantioselective HPLC determination and pharmacokinetic study of secnidazole

enantiomers in rats. Journal of Chromatography B, 965, 224–230. https://doi.org/10.1016/j.jchromb.2014.06.036

Sun, H., Wang, F., Ai, L., Guo, C., Chen, R. (2009). Validated method for determination of eight banned nitroimidazole residues in natural casings

by LC/MS/MS with solid-phase extraction. Journal of AOAC International, 92 (2), 612–621.

Sun, H.-W., Wang, F.-C., & Ai, L.-F. (2007). Simultaneous determination of seven nitroimidazole residues in meat by using HPLC-UV detection with

solid-phase extraction. Journal of Chromatography B, 857(2), 296–300. https://doi.org/10.1016/j.jchromb.2007.07.039

Bakshi, M., & Singh, S. (2004). ICH guidance in practice: establishment of inherent stability of secnidazole and development of a validated

stability-indicating high-performance liquid chromatographic assay method. Journal of Pharmaceutical and Biomedical Analysis, 36(4), 769–775.

https://doi.org/10.1016/j.jpba.2004.08.008

Shovkova, O. V., Klimenko, L. Yu., Kovalenko, S. M., Zhukova, T. V. (2017). Development and Validation of UV-Spectrophotometric Procedures for

Secnidazole Quantitative Determination. Journal of Pharmaceutical Sciences and Research, 9 (4), 338–348.

Azarova, I. N., Baram, G. I. (2014). Sorbtcionnye i khromatograficheskie protcessy, 14 (1), 858–867.

Klimenko, L. Yu., Petyunin, G. P. (2014). Development of approaches to validation of UV-spectrophotometric methods of quantitative determination

in forensic and toxicological analysis: linearity and application range. Farmats. chasopys, 2 (30), 46–51.

Klimenko, L. Yu., Petyunin, G. P., Trut, S. M., Moroz, V. P. (2014). Aktualni pytannia farmatsii i medychnoi nauky ta praktyky, 2 (15), 15–22.

Klimenko, L. Yu., Trut, S. M., Petyunin, G. P., Kostina, T. A. (2014). Determining accuracy in validation of UV-spectrophotometric methods of quantitative measurement in forensic toxicological analysis. Ukraïns’kij bìofarmacevtičnij žurnal, 2 (31), 55–67.

Klimenko, L. Yu., Trut, S. M., Mykytenko, O. Ye. (2014). Approaches to determination of precision for UV-spectrophotometric methods of quantitative

determination in forensic and toxicological analysis. Farmatciia Kazakhstana, 3 (154), 44–48.

Klimenko, L. Yu. (2016 Kompleksnyi pidkhid do rozrobky ta validatsii metodyk kilkisnoho vyznachennia analitiv u biolohichnykh ridynakh v

khimiko-toksykolohichnomu analizi.DSc thesis, National University of Pharmacy (Kharkiv, Ukraine).

Klimenko, L. Yu. (2014). Farmatsyia Kazakhstana, 4 (155), 31–35.

Klimenko, L. Yu., Trut, S. M., Poluyan, S. М. (2014). Determination of validation characteristics of UV-spec-trophotometric method of doxylamine

quantitative determination in blood in the variant of the method of standard. Vìsnik farmacìï, 2 (78). 53–58. https://doi.org/10.24959/nphj.14.1969

Derzhavna farmakopeia Ukrainy, 2–e vyd. (2015). Kharkiv: Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv, 1, 1128.

Gryzodub, O. I. (2016). Standartizovannye protcedury validatcii metodik kontrolia kachestva lekarstvennykh sredstv. Kharkiv. DP “Ukrainskyi

naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv”, 396.

Guidance for the Validation of Analytical Methodology and Calibration of Equipment used for Testing of Illicit Drugs in Seized Materials and Biological

Specimens (2009). United Nations Office on Drugs and Crime, Laboratory and Scientific Section, New York.

Moffat, A. C., Osselton, M. D., Widdop, B. (eds.). (2011). Clarke’s analysis of drugs and poisons in pharmaceuticals, body fluids and postmortem

material. Pharmaceutical Press, London, 4th ed. https://doi.org/10.1080/00450618.2011.620006

Danzer, K., Otto, M., Currie, L. A. (2004). Guidelines for calibration in analytical chemistry. Part 2. Multispecies calibration. Pure and Applied

Chemistry, 76 (6), 1215–1225.


GOST Style Citations


1. Secnidazole. A 5-nitroimidazole derivative with a long half-life / D. Videau, G. Niel, A. Siboulet et al. // Br. J. Vener. Dis. – 1978. – Vol. 54, Issue 2.
– P. 77 – 80. https://doi.org/10.1136/sti.54.2.77

2. Symonds, J. Secnidazole – a nitroimidazole with a prolonged serum half-life / J. Symonds // J. Antimicrob. Chemother. – 1979. – Vol. 5, Issue 4. –
P. 484 – 486. https://doi.org/10.1093/jac/5.4.484

3. Brook, I. Spectrum and treatment of anaerobic infections / I. Brook // J. Infect. Chemother. – 2016. – Vol. 22, Issue 1. – P. 1 – 13. https://doi.
org/10.1016/j.jiac.2015.10.010

4. Pharmacokinetics and pharmacodynamics of the nitroimidazole antimicrobials / K. C. Lamp, C. D. Freeman, N. E. Klutman et al. // Clin. Pharmacokinet.
– 1999. – Vol. 36, Issue 5. – P. 353 – 373. https://doi.org/10.2165/00003088-199936050-00004

5. Nitroimidazole carboxamides as antiparasitic agents targeting Giardia lamblia, Entamoeba histolytica and Trichomonas vaginalis / A. M. Jarrad,
A. Debnath, Y. Miyamoto et al. // Eur. J. Med. Chem. – 2016. – Vol. 120. – P. 353 – 362. https://doi.org/10.1016/j.ejmech.2016.04.064

6. Sobel, R. Metronidazole for the treatment of vaginal infections / R. Sobel, J. D. Sobel // Expert. Opin. Pharmacother. – 2015. – Vol. 16, Issue 7. –
P. 1109 – 1115. https://doi.org/10.1517/14656566.2015.1035255

7. Castelli, M. In-vitro studies of two 5-nitroimidazole derivatives / M. Castelli // J. Antimicrob. Chemother. – 1997. – Vol. 40, Issue 1. – P. 19 – 25.
https://doi.org/10.1093/jac/40.1.19

8. 2-Methyl-4/5-nitroimidazole derivatives potentiated against sexually transmitted Trichomonas: Design, synthesis, biology and 3D-QSAR study /
D. Mandalapu, B. Kushwaha, S. Gupta et al. // Eur. J. Med. Chem. – 2016. – Vol. 124. – P. 820 – 839. https://doi.org/10.1016/j.ejmech.2016.09.006

9. Efficacy of 5-nitroimidazoles for the treatment of giardiasis: a systematic review of randomized controlled trials / V. Pasupuleti, A. A. Escobedo,
A. Deshpande [et al.] // PLOS Negl. Trop. Dis. – 2014. – Vol. 8, Issue 3. – e2733. https://doi.org/10.1371/journal.pntd.0002733

10. Thulkar, J. A comparative study of oral single dose of metronidazole, tinidazole, secnidazole and ornidazole in bacterial vaginosis / J. Thulkar,
A. Kriplani, N. Agarwal // Indian J. Pharmacol. – 2012. – Vol. 44, Issue 2. – P. 243 – 245. https://doi.org/10.4103/0253-7613.93859

11. Determination of secnidazole in human plasma by high-performance liquid chromatography with UV detection and its application to the bioequivalence
studies / X. Li, J. Sun, G. Wang et al. // Biomed. Chromatogr. – 2007. – Vol. 21, Issue 3. – P. 304 – 309. https://doi.org/10.1002/bmc.758

12. Rapid and selective analysis of secnidazole in human plasma using high-performance liquid chromatography with ultraviolet detection / S. K. Ravi,
M. U. Naidu, E. C. Sekhar et al. // J. Chromatogr. B Biomed. Sci. Appl. – 1997. – Vol. 691, Issue 1. – P. 208 – 211. https://doi.org/10.1016/s0378-
4347(96)00419-7

13. Spectrophotometric and HPLC determination of secnidazole in pharmaceutical tablets / A. F. El Wallily, H. H. Abdine, O. A. Razak et al. // J. Pharm. Biomed. Anal. – 2000. – Vol. 22, Issue 6. – P. 887 – 897. https://doi.org/10.1016/s0731-7085(99)00290-3

14. Mitrowska, K. Development and validation of a liquid chromatography with tandem mass spectrometry method for the determination of nitroimidazole
residues in beeswax / K. Mitrowska, M. Antczak // J. Sep. Sci. – 2017. – Vol. 40, Issue 5. – P. 1158 – 1166. https://doi.org/10.1002/
jssc.201600928

15. Capillary electrochromatography-mass spectrometry for the determination of 5-nitroimidazole antibiotics in urine samples / M. Hernández-
Mesa, G. D’Orazio, A. Rocco et al. // Electrophoresis. – 2015. – Vol. 36, Issue 20. – P. 2606 – 2615. https://doi.org/10.1002/elps.201500126

16. High-throughput method for the determination of nitroimidazoles in muscle samples by liquid chromatography coupled to mass spectrometry
/ A. Rúbies, G. Sans, P. Kumar et al. // Anal. Bioanal. Chem. – 2015. – Vol. 407, Issue 15. – P. 4411 – 4421. https://doi.org/10.1007/s00216-014-
8436-x

17. Enantioselective HPLC determination and pharmacokinetic study of secnidazole enantiomers in rats / J. Du, Y. Zhang, Y. Chen et al. // J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. – 2014. – Vol. 965. – P. 224 – 230. https://doi.org/10.1016/j.jchromb.2014.06.036

18. Validated method for determination of eight banned nitroimidazole residues in natural casings by LC/MS/MS with solid-phase extraction / H. Sun,
F. Wang, L. Ai et al. // J. AOAC Int. – 2009. – Vol. 92, Issue 2. – P. 612 – 621.

19. Sun, H. W. Simultaneous determination of seven nitroimidazole residues in meat by using HPLC-UV detection with solid-phase extraction / H. W. Sun,
F. C. Wang, L. F. Ai // J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. – 2007. – Vol. 857, Issue 2. – P. 296 – 300. https://doi.org/10.1016/j.
jchromb.2007.07.039

20. Bakshi, M. ICH guidance in practice: establishment of inherent stability of secnidazole and development of a validated stability-indicating highperformance
liquid chromatographic assay method / M. Bakshi, S. Singh // J. Pharm. Biomed. Anal. – 2004. – Vol. 36, Issue 4. – P. 769 – 775.
https://doi.org/10.1016/j.jpba.2004.08.008

21. Development and validation of UV-spectrophotometric procedures for secnidazole quantitative determination / O. V. Shovkova, L. Yu. Klimenko,
S. M. Kovalenko et al. // J. Pharm. Sci. & Res. – 2017. – Vol. 9, Issue 4. – P. 338 – 348.

22. Азарова, И. Н. Применение перхлората лития в обращенно-фазовой высокоэффективной жидкостной хроматографии аминосоединений / И. Н. Азарова, Г. И. Барам // Сорбционные и хроматографические процессы. – 2014. – Т. 14, Вып. 1. – C. 858 – 867.

23. Klimenko, L. Yu. Development of approaches to validation of UV-spectrophotometric methods of quantitative determination in forensic and
toxicological analysis: linearity and application range / L. Yu. Klimenko, G. P. Petyunin // Фармац. часопис. – 2014. – № 2 (30). – С. 46 – 51.

24. Критерии приемлемости линейной зависимости при проведении валидации УФ-спектрофотометрических методик количественного
определения в судебно-токсикологическом анализе / Л. Ю. Клименко, Г. П. Петюнин, С. Н. Трут и др. // Актуальні питання фармац. і
мед. науки та практики. – 2014. – № 2 (15). – С. 15 – 22.

25. Determining accuracy in validation of UV-spectrophotometric methods of quantitative measurement in forensic toxicological analysis / L. Yu. Klimenko,
S. M. Trut, G. P. Petyunin et al. // Укр. біофармац. журн. – 2014. – № 2 (31). – С. 55 – 67.

26. Klimenko, L. Yu. Approaches to determination of precision for UV-spectrophotometric methods of quantitative determination in forensic and
toxicological analysis / L. Yu. Klimenko, S. M. Trut, O. Ye. Mykytenko // Фармация Казахстана. – 2014. – № 3 (154). – С. 44 – 48.

27. Клименко, Л. Ю. Комплексний підхід до розробки та валідації методик кількісного визначення аналітів у біологічних рідинах в хіміко-
токсикологічному аналізі: дис. ... докт. фарм. наук / Л. Ю. Клименко. – Х., 2015. – 816 с.

28. Клименко, Л. Ю. Разработка подходов к определению линейности, правильности и прецизионности УФ-спектрофотометрических
методик количественного определения методом стандарта в судебно-токсикологическом анализе / Л. Ю. Клименко // Фармация
Казахстана. – 2014. – № 4 (155). – С. 31 – 35.

29. Klimenko, L. Yu. Determination of validation characteristics of UV-spectrophotometric method of doxylamine quantitative determination in
blood in the variant of the method of standard / L. Yu. Klimenko, S. M. Trut, S. М. Poluyan // Вісник фармації. – 2014. – № 2 (78). – С. 53 – 58.
https://doi.org/10.24959/nphj.14.1969

30. Державна фармакопея України: в 3-х т. / ДП «Український науковий фармакопейний центр якості лікарських засобів». – 2-е вид. – Х.:
ДП «Український науковий фармакопейний центр якості лікарських засобів», 2015. – Т. 1. – 1128 с.

31. Гризодуб, А. И. Стандартизованные процедуры валидации методик контроля качества лекарственных средств / А. И. Гризодуб. – Х.:
ДП «Український науковий фармакопейний центр якості лікарських засобів», 2016. – 396 с.

32. Guidance for Industry: Bioanalytical Method Validation / U.S. Department of Health and Human Services, Food and Drug Administration (FDA),
Center for Drug Evolution and Research (CDER), Center for Veterinary Medicine (CVM). – Washington, DC: U.S. Government Printing Office,
2001. – 22 p.

33. Clarke’s analysis of drugs and poisons in pharmaceuticals, body fluids and postmortem material / ed. by A. C. Moffat, M. D. Osselton, B. Widdop:
4th ed. – London: Pharmaceutical Press, 2011. – 2609 p. https://doi.org/10.1080/00450618.2011.620006

34. Danzer, K. Guidelines for calibration in analytical chemistry. Part 2. Multispecies calibration / K. Danzer, M. Otto, L. A. Currie // Pure Appl. Chem.
– 2004. – Vol. 76, Issue 6. – P. 1215 – 1225.





Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: Ž. org. farm. hìm.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)