The synthesis and antiviral activity of 1-(4-сhlorophenyl)-4-(para-tolyl)-5,6,7,8-tetrahydro-2а,4a-diazacyclopenta[cd]-azulene-2-carboxylic acid derivatives

Authors

  • S. A. Demchenko Institute of Pharmacology and Toxicology of the National Academy of Medical Sciences of Ukraine, Ukraine
  • Yu. A. Fedchenkova Nizhyn Mykola Gogol State University, Ukraine https://orcid.org/0000-0003-1240-3053
  • V. V. Sukhoveev Nizhyn Mykola Gogol State University, Ukraine
  • O. S. Bagreeva Nizhyn Mykola Gogol State University, Ukraine
  • A. M. Demchenko Institute of Pharmacology and Toxicology of the National Academy of Medical Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.24959/ophcj.19.182036

Keywords:

1-(4-chlorophenyl)-4-(para-tolyl)-5, 6, 7, 8-tetrahydro-2a, 4a-diazacyclopenta[cd]azulene-2-carboxylic acid substituted (thio)amides, Ribavirin, Amizone, antiviral activity, Flu A H1N1 California/07/2009 virus

Abstract

Aim. To synthesize, prove the structural framework and study the antiviral activity of 1-(4-chlorophenyl)-4-(para-tolyl)-5,6,7,8-tetrahydro-2a,4a-diazacyclopenta[cd]azulene-2-carboxylic acid derivatives.
Results and discussion. The antiviral activity of 1-(4-chlorophenyl)-4-(para-tolyl)-5,6,7,8-tetrahydro-2a,4adiazacyclopenta[cd]azulene-2-carboxylic acid (4-methoxyphenyl)amide was determined in the Southern Research Institute (SRI, Birmingham, Alabama). The efficacy of this compound was expressed by EC50, IC50 and SI values determined in vitro within a range of concentrations of 0.1 – 100 μg/mL. The antiviral drug Ribavirin (Sigma) and the active substance of Amizon – 4-(N-benzyl)aminocarbonyl-1-methylpyridinium iodide were used as the reference drugs.
Experimental part. Condensation of 2-methoxy-3,4,5,6-tetrahydro-7H-azepine with α-amino-4-methylacetophenone hydrochloride led to 3-(4-methylphenyl)-6,7,8,9-tetrahydro-5H-imidazo[1,2-a]azepine. By boiling the latter with α-bromo-4-chloroacetophenone in ethyl acetate 1-[2-(4-chlorophenyl)-2-oxoethyl]-3-(para-tolyl)-6,7,8,9-tetrahydro-5H-imidazo[1,2-a]azepin-1-ium bromide was isolated, which in aqueous alkali solution was converted into 1-(4-chlorophenyl)-4-(para-tolyl)-5,6,7,8-tetrahydro-2а,4a-diazacyclopenta[cd]azulene. The latter while reacting with the corresponding aryliso(thio)cyanates in a dry benzene gave 1-(4-chlorophenyl)-4-(para-tolyl)-5,6,7,8-tetrahydro-2a,4a-diazacyclopenta[cd]azulene-2-carboxylic acid (thio)amides. 1H NMR-spectra for the compounds synthesized were recorded on a Bruker VXR-300 spectrometer (Germany) with the operating frequency of 299.945 MHz, and also on a Bruker DRX300 (Germany) spectrometer with the operating frequency of 500.13 MHz, in DMSO-d6 using tetramethylsilane (TMS) as an internal standard. The melting points were measured using a RNMK 05 apparatus (VEB Analytik, Dresden).
Conclusions. The series of new 1-(4-chlorophenyl)-4-(para-tolyl)-5,6,7,8-tetrahydro-2a,4a-diazacyclopenta[cd]azulene-2-carboxylic acid (thio)amides has been synthesized. The antiviral activity of 1-(4-chlorophenyl)-4-(para-tolyl)-5,6,7,8-tetrahydro-2a,4a-diazacyclopenta[cd]azulene-2-carboxylic acid (4-methoxyphenyl)amide has been studied in the Southern American Research Institute (SRI, Birmingham, Alabama), and the high level of the antiviral activity has been found against Flu A H1N1 California/07/2009 virus.

Downloads

Download data is not yet available.

References

  1. Shope, R. E. (1931). Swine influenza: III. Filtration experiments and etiology. Journal of Experimental Medicine, 54 (3), 373–385. https://doi.org/10.1084/jem.54.3.373
  2. Dacso, C. C., Couch, R. B., Six, H. R., Young, J. F., Quarles, J. M., Kasel, J. A. (1984). Sporadic occurrence of zoonotic swine influenza virus infections. Journal of Clinical Microbiology, 20 (4), 833–835.
  3. Hinshaw, V. S., Bean, W. J., Webster, R. G., Easterday, B. C. (1978). The prevalence of influenza viruses in swine and the antigenic and genetic relatedness of influenza viruses from man and swine. Virology, 84 (1), 51–62. https://doi.org/10.1016/0042-6822(78)90217-9
  4. Myers, K. P., Olsen, C. W., Setterquist, S. F., Capuano, A. W., Donham, K. J., Thacker, E. L., Merchant, J. A., Gray, G. C. (2006). Are Swine workers in the United States at increased risk of infection with zoonotic influenza virus? Clinical Infectious Diseases, 42 (1), 14–20. https://doi.org/10.1086/498977
  5. Gray, G. C., McCarthy, T., Capuano, A. W., Setterquist, S. F., Olsen, C. W., Alavanja, M. C., Lynch, C. F. (2007). Swine workers and swine influenza virus infections. Emerging Infectious Diseases, 13 (12), 1871–1878. https://doi.org/10.3201/eid1312.061323
  6. Wells, D. L., Hopfensperger, D. J., Arden, N. H., Harmon, M. W., Davis, J. P., Tipple, M. A., Schonberger, L. B. (1991). Swine influenza virus infections: transmission from ill pigs to humans at a Wisconsin agricultural fair and subsequent probable person-to-person transmission. JAMA, 265 (4), 478–481. https://doi.org/10.1001/ jama.265.4.478
  7. Olsen, C. W. (2002). The emergence of novel swine influenza viruses in North America. Virus Research, 85 (2), 199–210. https://doi.org/10.1016/S0168-1702(02)00027-8
  8. Bartlett, J. G. (2009). H1N1 Influenza — just the facts: what’s new and what to expect. Published: 09/25/2009. Available at: http://www.medscape.com
  9. Dawood, F. S., Jain, S., Finelli, L. M., Shaw, W., Lindstrom, S., Garten, R. J., Gubareva, L. V., Xu, X., Bridges, C. B., Uyeki, T. M. (2009). Emergence of novel swine-origin influenza A (H1N1) virus in human. The New England Journal of Medicine, 360 (25), 2605–2615. https://doi.org/10.1056/NEJMoa0903810
  10. MMWR Morb Mortal Wkly Rep. (2009). Update: drug susceptibility of swine-origin influenza A (H1N1) viruses, April 2009. Centers for Disease Control and Prevention (CDC), 58, 433–435.
  11. FDA. (2002). Antiviral Drug Advisory Committee. Gaithersburg: Centre for Drug Evaluation and Research, 266.
  12. Hayden, F. (2002). WHO Guidelines on the Use of Vaccines and Antivirals during Influenza. Annex 5 – Considerations for the Use of Antivirals during an Influenza pandemic. Geneva, 2–4 October, 2002. Available at: https://www.who.int/influenza/resources/documents/11_29_01_A.pdf
  13. Patent 6752 UA (1994). 4-(N-benzil)amіnokarbonіl-1-metilpіridinіj jodid – znebolyuyuchij zasіb z іnterferonogennimi, protizapal’nimi ta zharoznizhuyuchimi vlastivostyami / Trіnus, F. P., Danilenko, V. P., Buhtіarova, T. A. et al.
  14. Amіzon. (n.d.). Available at: https://www.ift.org.ua/uk/node/91
  15. Effektivnost Amizona v lechenii i profilaktike virusnykh infektcii (k 10-letiiu primeneniia preparata v klinicheskoi praktike). (n.d.). Available at: http://farmak.ua/publication/effektivnost-_amizona_v_lechenii_i_profilaktike_virousnyh_infektsiy_-k_10-etiyu_primeneniya_preparata_v_klinicheskoy_praktike
  16. Normatyvno-dyrektyvni dokumenty MOZ Ukrainy, Amizon. (n.d.). Available at: http://mozdocs.kiev.ua/likiview.php?id=20298
  17. Ribavirin. (n.d.). Available at: https://ru.wikipedia.org/wiki/Рибавирин
  18. Granik, V. G., Zhidkova, A. M., Kuryatov, N. S., Pakhomov, V. P., Glushkov, R. G. (1973). Lactam acetals. VII. A study of the alkylation of N-methyllactams and lactim ethers with dimethyl sulfate. Chemistry of Heterocyclic Compounds, 8 (11), 1387–1390. https://doi.org/10.1007/BF00470348
  19. Reiteng, Yu. (1986). Sintez khlorgidrata α-aminoaczetofenona i ego parazameshhenny`kh proizvodny`kh. Chem. Reagents, 8 (5), 302–325.
  20. Claxton, G. P., Grisar, J. M., Wiech, N. L. (1974). Cyclization of lactamimide ketones to imidazo[1,2-α]azacycloalkanes with hypoglycemic activity. Journal of Medicinal Chemistry, 17 (3), 364–367. https://doi.org/10.1021/jm00249a027

Downloads

Published

2019-11-14

How to Cite

(1)
Demchenko, S. A.; Fedchenkova, Y. A.; Sukhoveev, V. V.; Bagreeva, O. S.; Demchenko, A. M. The Synthesis and Antiviral Activity of 1-(4-сhlorophenyl)-4-(para-Tolyl)-5,6,7,8-Tetrahydro-2а,4a-diazacyclopenta[cd]-Azulene-2-Carboxylic Acid Derivatives. J. Org. Pharm. Chem. 2019, 17, 37-43.

Issue

Section

Original Researches