DOI: https://doi.org/10.24959/ophcj.19.183342

The electronic properties of carbenes

N. I. Korotkikh, G. F. Rayenko, V. Sh. Saberov, V. I. Yenya, O. P. Shvaika

Abstract


For carbenes as ambiphilic compounds there is no single scale for estimating their electron properties.
Aim. To consider the known methods of estimating the electron-donating and electron-withdrawing properties of carbenes, first of all, created by the authors of the article, and show their possibilities in predicting the properties of carbenes.
Materials and methods. The studies were performed using the DFT (B3LYP5/6-311G/RHF) method to estimate proton affinity, DFT (B3LYP5/3-21G/RHF and B3LYP5/3-21G/UHF) to determine chemical hardness and electronic indices.
Results and discussion. The electronic properties of carbenes, including thermodynamic parameters, such as proton affinity (PA), chemical hardness η, and new electronic indices Ie, are discussed in the paper. With their help, the electron-donating and electron-withdrawing ability of a wide range of carbenes of both nucleophilic and electrophilic type has been estimated. It has been shown quantitatively that the electronic properties of carbenes depend both on the backbone of the molecule (for example, the type of the heterocyclic nucleus) and on substituents. The above data show the ways of regulating the structure of carbenes to achieve certain characteristics, which together with stability factors can be used in the design of structures for the synthesis and practical application.
Conclusions. The author’s results of estimating proton affinity, chemical hardness and electronic indices for the design and use of carbene compounds are considered. Electronic indices have been shown to have some advantages over others for determining the nature (electron-donating and electron-withdrawing) of carbenes.

Keywords


carbenes; proton affinity; chemical hardness; electronic indices

References


Korotkikh, N. I., Shvaika, O. P. (2013). Karbenovyi ta carbenocomplexnyi catalyz organichnykh reakcii. Donetsk: DonNU, 372.

Korotkikh, N., Shvaika, O. (2015). Organic reactions catalysis by carbenes and metal carbene complexes. LAP Lambert Academic Publishing, 385.

Martin, D., Melaimi, M., Soleilhavoup, M., Bertrand, G. (2011). A brief survey of our contribution to stable carbene chemistry. Organometallics, 30 (20), 5304–5313. https://doi.org/10.1021/om200650x

Jahnke, M. C., Ekkehardt Hahn, F. (2011). Chapter 1. Introduction to N-heterocyclic carbenes: synthesis and stereoelectronic parameters. N-Heterocyclic carbenes: from laboratory curiosities to efficient synthetic tools. Royal Society of Chemistry, 1–41. doi:10.1039/9781849732161-00001

Bourissou, D., Guerret, O., Gabbaï, F. P., Bertrand, G. (2000). Stable carbenes. Chemical Reviews, 100 (1), 39–91. https://doi.org/10.1021/cr940472u

Kirmse, W. (2010). The beginnings of N-heterocyclic carbenes. Angewandte Chemie International Edition, 49 (47), 8798–8801. https://doi.org/10.1002/anie.201001658

Korotkikh, N. I., Cowley, A. H., Clyburne, J. A. C., Robertson, K. N., Saberov, V. Sh., Glinyanaya, N. V., Rayenko, G. F., Shvaika, O. P. (2017). Synthesis and properties of heteroaromatic carbenes of the imidazole and triazole series and their fused analogues. Arkivoc, I, 257–355. https://doi.org/10.24820/ark.5550190.p010.110

Pérez, P. (2003). Theoretical evaluation of the global and local electrophilicity patterns of singlet carbenes. The Journal of Physical Chemistry A, 107 (4), 522–525. https://doi.org/10.1021/jp021779x

Nelson, D. J., Nolan, S. P. (2013). Quantifying and understanding the electronic properties of N-heterocyclic carbenes. Chemical Society Reviews, 42 (16), 6723–6753. https://doi.org/10.1039/c3cs60146c

Clavier, H., Nolan S. P. (2010). Percent buried volume for phosphine and N-heterocyclic carbene ligands: steric properties in organometallic chemistry. Chemical Communications, 46 (6), 841–861. https://doi.org/10.1039/b922984a

Tolman, C. A. (1977). Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis. Chemical Reviews, 77 (3), 313–348. https://doi.org/10.1021/cr60307a002

Alder, R. W., Allen, P. R., Williams, S. J. (1995). Stable carbenes as strong bases. Journal of the Chemical Society, Chemical Communications, 12, 1267–1268. https://doi.org/10.1039/c39950001267

Kim, Y.-J., Streitwieser, A. (2002). Basicity of a stable carbene, 1,3-di-tert-butylimidazol-2-ylidene, in THF. Journal of the American Chemical Society, 124 (20), 5757–5761. https://doi.org/10.1021/ja025628j

Magill, A. M., Cavell, K. J., Yates, B. F. (2004). Basicity of nucleophilic carbenes in aqueous and nonaqueous solvents – theoretical predictions. Journal of the American Chemical Society, 126 (28), 8717–8724. https://doi.org/10.1021/ja038973x

Vogt, J., Beauchamp, J. L. (1975). Reactions of CHF2 + with n-donor bases by ion cyclotron resonance spectroscopy. The proton affinity of difluorocarbene. Journal of the American Chemical Society, 97 (23), 6682–6685. https://doi.org/10.1021/ja00856a014

Ausloos, P., Lias, S. G. (1978). Proton affinity of dichlorocarbene. Journal of the American Chemical Society, 100 (14), 4594–4595. https://doi.org/10.1021/ja00482a046

Hopkinson, A. C., Lien, M. H. (1985). Substituent effects in carbocations CX+, CHX+•, and CH2X+, and in singlet and triplet carbenes CHX. Proton affinities of singlet carbenes. Canadian Journal of Chemistry, 63 (12), 3582–3586. https://doi.org/10.1139/v85-588

Parr, R. G., v. Szentpály, L., Liu, S. (1999). Electrophilicity index. Journal of the American Chemical Society, 121 (9), 1922–1924. https://doi.org/10.1021/ja983494x

Domingo, L. R., Pérez, P. (2013). Global and local reactivity indices for electrophilic/nucleophilic free radicals. Organic and Biomolecular Chemistry, 11 (26), 4350–4358. https://doi.org/10.1039/c3ob40337h

Pratihar, S., Roy, S. (2010). Nucleophilicity and site selectivity of commonly used arenes and heteroarenes. The Journal of Organic Chemistry, 75 (15), 4957–4963. https://doi.org/10.1021/jo100425a

Guha, A. K., Das, C., Phukan, A. K. (2011). Heterocyclic carbenes of diverse flexibility: a theoretical insight. Journal of Organometallic Chemistry, 696 (2), 586–593. https://doi.org/10.1016/j.jorganchem.2010.09.066

Domingo, L. R., Pérez, P. (2011). The nucleophilicity N index in organic chemistry. Organic and Biomolecular Chemistry, 9 (20), 7168–7175. https://doi.org/10.1039/c1ob05856h

Domingo, L. R., Pérez, P., Sáez, J. A. (2013). Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Advances, 3 (5), 1486–1494. https://doi.org/10.1039/c2ra22886f

Rezaee, N., Ahmadi, A., Kassaee, M. Z. (2016). Nucleophilicity of normal and abnormal N-heterocyclic carbenes at DFT: steric effects on tetrazole-5-ylidenes. RSC Advances, 6 (16), 13224–13233. https://doi.org/10.1039/c5ra21247b

Wu, C.-S., Su, M.-D. (2012). Reactivity for boryl(phosphino)carbenyl carbene analogues with group 14 elements (C, Si, Ge, Sb, and Pb) as a heteroatom: a theoretical study. Dalton Transactions, 41 (11), 3253–3265. https://doi.org/10.1039/c2dt11464j

Korotkikh, M. I., Saberov, V. Sh., Rayenko, G. F., Shvaika, O. P. (2016). Sporidnenist do protona heterotsyklichnykh karbeniv. Naukovi zapysky Ternopilskoho natsionalnoho pedahohichnoho universytetu. Seriia: khimiia, 23, 3–11.

Korotkikh, M. I., Rayenko, G. F., Saberov, V. Sh., Popov, А. F., Shvaika, O. P. (2018). Proton affinity of a series of heterocyclic carbenes and their ionic forms. Ukrainian Chemistry Journal, 84 (11), 38–50.

Shvaika, O. P., Korotkikh, N. I., Aslanov, A. F. (1992). Heteroaromatic carbenes (review). Chemistry of Heterocyclic Compounds, 28 (9), 971–984. https://doi.org/10.1007/BF00531470

Moss, R. A. (1989). Carbenic reactivity revisited. Accounts of Chemical Research, 22 (1), 15–21. https://doi.org/10.1021/ar00157a003


GOST Style Citations


1. Короткіх, М. І. Карбеновий та карбенокомплексний каталіз органічних реакцій / М. І. Короткіх, О. П. Швайка. – Донецьк: ДонНУ, 2013. – 372 с.


2. Korotkikh, N. Organic reactions catalysis by carbenes and metal carbene complexes / N. Korotkikh, O. Shvaika. – LAP Lambert Academic Publishing, 2015. – 385 p.


3. A brief survey of our contribution to stable carbene chemistry / D. Martin, M. Melaimi, M. Soleilhavoup, G. Bertrand // Organometallics. – 2011. – Vol. 30, Issue 20. – P. 5304–5313. https://doi.org/10.1021/om200650x


4. Jahnke, M. C. Chapter 1. Introduction to N-heterocyclic carbenes: synthesis and stereoelectronic parameters / M. C. Jahnke, F. Ekkehardt Hahn // N-Heterocyclic carbenes: from laboratory curiosities to efficient synthetic tools. – Royal Society of Chemistry, 2011. – P. 1–41. doi:10.1039/9781849732161-00001


5. Stable carbenes / D. Bourissou, O. Guerret, F. P. Gabbaï, G. Bertrand // Chem. Rev. – 2000. – Vol. 100, Issue 1. – P. 39–91. https://doi.org/10.1021/cr940472u


6. Kirmse, W. The beginnings of N-heterocyclic carbenes / W. Kirmse // Angew. Chem. Int. Ed. – 2010. – Vol. 49, Issue 47. – P. 8798–8801. https://doi.org/10.1002/anie.201001658


7. Synthesis and properties of heteroaromatic carbenes of the imidazole and triazole series and their fused analogues / N. І. Korotkikh, А. H. Cowley, J. A. C. Clyburne et al. // Arkivoc. – 2017. – Vol. I. – P. 257–355. https://doi.org/10.24820/ark.5550190.p010.110


8. Pérez, P. Theoretical evaluation of the global and local electrophilicity patterns of singlet carbenes / P. Pérez // J. Phys. Chem. A. – 2003. – Vol. 107, Issue 4. – P. 522–525. https://doi.org/10.1021/jp021779x


9. Nelson, D. J. Quantifying and understanding the electronic properties of N-heterocyclic carbenes / D. J. Nelson, S. P. Nolan // Chem. Soc. Rev. – 2013. – Vol. 42, Issue 16. – P. 6723–6753. https://doi.org/10.1039/c3cs60146c


10. Clavier, H. Percent buried volume for phosphine and N-heterocyclic carbene ligands: steric properties in organometallic chemistry / H. Clavier, S. P. Nolan // Chem. Commun. – 2010. – Vol. 46, Issue 6. – P. 841–861. https://doi.org/10.1039/b922984a


11. Tolman, C. A. Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis / C. A. Tolman // Chem. Rev. – 1977. – Vol. 77, Issue 3. – P. 313–348. https://doi.org/10.1021/cr60307a002


12. Alder, R. W. Stable carbenes as strong bases / R. W. Alder, P. R. Allen, S. J. Williams // J. Chem. Soc., Chem. Commun. – 1995. – Issue 12. – P. 1267–1268. https://doi.org/10.1039/c39950001267


13. Kim, Y.–J. Basicity of a stable carbene, 1,3-di-tert-butylimidazol-2-ylidene, in THF / Y.-J. Kim, A. Streitwieser // J. Am. Chem. Soc. – 2002. – Vol. 124, Issue 20. – P. 5757–5761. https://doi.org/10.1021/ja025628j


14. Magill, A. M. Basicity of nucleophilic carbenes in aqueous and nonaqueous solvents – theoretical predictions / A. M. Magill, K. J. Cavell, B. F. Yates // J. Am. Chem. Soc. – 2004. – Vol. 126, Issue 28. – P. 8717–8724. https://doi.org/10.1021/ja038973x


15. Vogt, J. Reactions of CHF2 + with n-donor bases by ion cyclotron resonance spectroscopy. The proton affinity of difluorocarbene / J. Vogt, J. L. Beauchamp // J. Am. Chem. Soc. – 1975. – Vol. 97, Issue 23. – P. 6682–6685. https://doi.org/10.1021/ja00856a014


16. Ausloos, P. Proton affinity of dichlorocarbene / P. Ausloos, S. Lias // J. Am. Chem. Soc. – 1978. – Vol. 100, Issue 14. – P. 4594–4595. https://doi.org/10.1021/ja00482a046


17. Hopkinson, A. C. Substituent effects in carbocations CX+, CHX+•, and CH2X+, and in singlet and triplet carbenes CHX. Proton affinities of singlet carbenes / A. C. Hopkinson, M. H. Lien // Can. J. Chem. – 1985. – Vol. 63, Issue 12. – P. 3582–3586. https://doi.org/10.1139/v85-588


18. Parr, R. G. Electrophilicity index / R. G. Parr, L. v. Szentpály, S. Liu // J. Am. Chem. Soc. – 1999. – Vol. 121, Issue 9. – P. 1922–1924. https://doi.org/10.1021/ja983494x


19. Domingo, L. R. Global and local reactivity indices for electrophilic/nucleophilic free radicals / L. R. Domingo, P. Pérez // Org. Biomol. Chem. – 2013. – Vol. 11, Issue 26. – P. 4350–4358. https://doi.org/10.1039/c3ob40337h


20. Pratihar, S. Nucleophilicity and site selectivity of commonly used arenes and heteroarenes / S. Pratihar, S. Roy // J. Org. Chem. – 2010. – Vol. 75, Issue 15. – P. 4957–4963. https://doi.org/10.1021/jo100425a


21. Guha, A. K. Heterocyclic carbenes of diverse flexibility: a theoretical insight / A. K. Guha, C. Das, A. K. Phukan // J. Organomet. Chem. – 2011. – Vol. 696, Issue 2. – P. 586–593. https://doi.org/10.1016/j.jorganchem.2010.09.066


22. Domingo, L. R. The nucleophilicity N index in organic chemistry / L. R. Domingo, P. Pérez // Org. Biomol. Chem. – 2011. – Vol. 9, Issue 20. – P. 7168–7175. https://doi.org/10.1039/c1ob05856h


23. Domingo, L. R. Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions / L. R. Domingo, P. Pérez, J. A. Sáez // RSC Adv. – 2013. – Vol. 3, Issue 5. – P. 1486–1494. https://doi.org/10.1039/c2ra22886f


24. Rezaee, N. Nucleophilicity of normal and abnormal N-heterocyclic carbenes at DFT : steric effects on tetrazole-5-ylidenes / N. Rezaee, A. Ahmadi, M. Z. Kassaee // RSC Adv. – 2016. – Vol. 6, Issue 16. – P. 13224–13233. https://doi.org/10.1039/c5ra21247b


25. Wu, C.-S. Reactivity for boryl(phosphino)carbenyl carbene analogues with group 14 elements (C, Si, Ge, Sb, and Pb) as a heteroatom: a theoretical study / C.-S. Wu, M.-D. Su // Dalton Trans. – 2012. – Vol. 41, Issue 11. – P. 3253–3265. https://doi.org/10.1039/c2dt11464j


26. Спорідненість до протона гетероциклічних карбенів / М. І. Короткіх, В. Ш. Сабєров, Г. Ф. Раєнко, О. П. Швайка // Наук. зап. Терноп. нац. пед. ун-ту. Сер.: хімія. – 2016. – № 23. – C. 3–11.


27. Протонна спорідненість ряду гетероциклічних карбенів та їх йонних форм / М. І. Короткіх, Г. Ф. Раєнко, В. Ш. Сабєров та ін. // Укр. хім. журн. – 2018. – T. 84, № 11.– C. 38–50.


28. Shvaika, O. P. Heteroaromatic carbenes (review) / O. P. Shvaika, N. I. Korotkikh, A. F. Aslanov // Chem. Heter. Compd. – 1992. – Vol. 28, Issue 9. – Р. 971–984. https://doi.org/10.1007/BF00531470


29. Moss, R. A. Carbenic reactivity revisited / R. A. Moss // Acc. Chem. Res. – 1989. – Vol. 22, Issue 1. – P. 15–21. https://doi.org/10.1021/ar00157a003





Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: J. Org. Pharm. Chem.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)