DOI: https://doi.org/10.24959/ophcj.19.970

The synthesis and antimicrobial activity of 5-aroxy-2,6-dihydro-1H-pyrrolo[3,4-d] pyridazine-1-ones

A. M. Grozav, M. Z. Fedoriv, V. O. Chornous, N. D. Yakovychuk, S. Ye. Deineka, S. V. Kemskyi

Abstract


Aim. To develop an effective method for the synthesis of 5-aroxy-2,6-dihydro-1Н-pyrrolo[3,4-d]pyridazine-1-ones as promising objects to be investigated in the context of their antimicrobial activity.
Results and discussion. It has been found that ethyl 4-formyl-5-chloro-1Н-pyrrole-3-carboxylates can be used as convenient source substrates for building 5-aroxy-2,6-dihydro-1Н-pyrrolo[3,4-d]pyridazine-1-one systems. MBsC (MFsC) and MBcC (MFcC) of the pyrrolo[3,4-d]pyridazine-1-ones synthesized were within the range
of 31.25-125 μg/ml.
Experimental part. The two-stage synthesis of 5-aroxy-2,6-dihydro-1Н-pyrrolo[3,4-d]pyridazine-1-ones was performed. The chemical composition and the structure of the compounds synthesized were confirmed by chromatography-mass spectra, IR- and NMR 1Н (13С) spectra. The screening of the antimicrobial activity using the micromethod of the double series dilutions in the liquid nutrient medium allowed identifying compounds with a moderate activity.
Conclusions. A preparative convenient synthesis of 5-aroxy-2,6-dihydro-1Н-pyrrolo[3,4-d]pyridazine-1-ones has been developed. This method assumes the nucleophilic substitution of the chlorine atom in ethyl 4-formyl-5-chloro-1Н-pyrrole-3-carboxilates with an aroxyl fragment followed by the subsequent pyridazinoanelination of
ethyl 5-aroxy-4-formyl-1Н-pyrrole-3-carboxylates by hydrazine hydrate. The results of the antimicrobial activity of the substances synthesized substantiate the feasibility of further in-depth studies in this area.


Keywords


polyfunctional pyrroles; hydrazine hydrate; pyridazinoanelination; 1H-pyrrolo[3,4-d]pyridazine-1-one; antimicrobial activity

References


Malinka, W. (2001). Synthesis of some pyrrol o[3,4–d]pyridazinones and their preliminaryanticancer, antimycobacterial and CNS screening.

Pharmazie, 56 (5), 384–389.

Malinka, W., Redzicka, A., Lozach, O. (2004). New derivatives of pyrrolo[3,4–d]pyridazinone and their anticancer effects. Il farmaco, 59 (6), 457–462. https://doi.org/10.1016/j.farmac.2004.03.002

Murarka, S., Martín–Gago, P., Schultz–Fademrecht, C., Al Saabi, A., Baumann, M., Fansa, E. K., … Waldmann, H. (2016). Development of Pyridazinone Chemotypes Targeting the PDEδ Prenyl Binding Site. Chemistry – A European Journal, 23 (25), 6083–6093. https://doi.org/10.1002/chem.201603222

Hasvold, L. A., Sheppard, G. S., Wang, L., Fidanze, S. D., Liu, D., Pratt, J. K., … McDaniel, K. F. (2017). Methylpyrrole inhibitors of BET bromodomains. Bioorganic & Medicinal Chemistry Letters, 27 (10), 2225–2233. https://doi.org/10.1016/j.bmcl.2017.02.057

Tang, P. C., Feng, J., Huang, L., Xu, Z., Cheng, L., Zhang, X., … Hu, B. (2009). Synthesis and biological evaluation of pyrrolopyridazine derivatives as novel HER–2 tyrosine kinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 19 (22), 6437–6440. https://doi.org/10.1016/j.bmcl.2009.09.038

Stearns, B. A., Anker, N., Arruda, J. M., Campbell, B. T., Chen, C., Cramer, M., … Munoz, B. (2004). Synthesis and biological evaluation of 6–aryl–6H–pyrrolo[3,4–d]pyridazine derivatives : high-affinity ligands to the α 2 δ subunit of voltage gated calcium channels. Bioorganic & Medicinal Chemistry Letters, 14 (5), 1295–1298. https://doi.org/10.1016/j.bmcl.2003.12.036

Malinka, W., Redzicka, A., Jastrzębska – Więsek, M., Filipek, B., Dybała, M., Karczmarzyk, Z., … Kalicki, P. (2011). Derivatives of pyrrolo[3,4–d]pyridazinone, a new class of analgesic agents. European Journal of Medicinal Chemistry, 46 (10), 4992–4999. https://doi.org/10.1016/j.ejmech.2011.08.006

Metten, B., Kostermans, M., Baelen, G. V., Smet, M., Dehaen, W. (2006). Synthesis of 5–aryl–2–oxopyrrole derivatives as synthons for highly substituted pyrroles. Tetrahedron, 62, 6018-6028. https://doi.org/10.1016/j.tet.2006.04.005

Grozav, A. N., Fedoriv, M. Z., Chornous, V. A., Palamar, A. A., Bratenko, M. K., Vovk, M. V. (2019). Synthesis of thieno[2,3–b]pyrrole–2(4)–carboxylic and 2,4–dicarboxylic acids. Chemistry of Heterocyclic Compounds, 55 (4), 293–299.

Mashkovskiy, M. D. (2012). Lekarstvennyie sredstva. Moscow : Novaya volna, 949–950.

Yakovychuk, N. D., Deyneka, S. Y., Grozav, A. M., Humenna, A. V., Popovych, V. B., & Djuiriak, V. S. (2018). Аntifungal activity of 5–(2–nitrovinyl) imidazoles and their derivatives against the causative agents of vulvovaginal candidiasis. Regulatory Mechanisms in Biosystems, 9 (3), 369–373. https://doi.org/10.15421/021854


GOST Style Citations


1. Malinka, W. Synthesis of some pyrrol o[3,4–d]pyridazinones and their preliminaryanticancer, antimycobacterial and CNS screening / W. Malinka // Pharmazie. – 2001. – Vol. 56, Issue 5. – P. 384–389.

2. Malinka, W. New derivatives of pyrrolo[3,4–d]pyridazinone and their anticancer effects / W. Malinka, A. Redzicka, O. Lozach // Il farmaco. –
2004. – Vol. 59 (6). – P. 457–462. https://doi.org/10.1016/j.farmac.2004.03.002

3. Development of pyridazinone chemotypes targeting the PDEd prenyl binding site / S. Murarka, P. Martin–Gago, C. Schultz–Fademrecht et al. // Chem. Eur. J. – 2017. – Vol. 23. – P. 6083–6093. https://doi.org/10.1002/chem.201603222

4. Methylpyrrole inhibitors of BET bromodomains / L. A. Hasvold, G. S. Sheppard, L. Wang et al. // Bioorg. Med. Chem. Lett. – 2017. – Vol. 27. – P. 2225–2233. https://doi.org/10.1016/j.bmcl.2017.02.057

5. Synthesis and biological evaluation of pyrrolopyridazine derivatives as novel HER–2 tyrosine kinase inhibitors / T. P. Cho, F. Jun., H. Li et al. // Bioorg. Med. Chem. Lett. – 2009. – Vol. 19. – P. 6437–6440. https://doi.org/10.1016/j.bmcl.2009.09.038

6. Synthesis and biological evaluation of 6–aryl–6H–pyrrolo[3,4–d]pyridazine derivatives : high–affinity ligands to the α2 subunit of voltage gated calciumchannels / B. A. Stearns, N. Anker, J. M. Arruda et al. // Bioorg. Med. Chem. Lett. – 2004. – Vol. 14. – P. 1295–1298. https://doi.org/10.1016/j.bmcl.2003.12.036

7. Derivatives of pyrrolo[3,4–d]pyridazinone, a new class of analgesic agents / W. Malinka, A. Redzicka, M. Jastrzebska-Wiesek et al. // Eur. J. Med. Chem. – 2011. – Vol. 46. – P. 4992–4999. https://doi.org/10.1016/j.ejmech.2011.08.006

8. Synthesis of 5–aryl–2–oxopyrrole derivatives as synthons for highly substituted pyrroles / B. Metten, M. Kostermans, G. V. Baelen et al. // Tetrahedron. – 2006. – Vol. 62. – P. 6018–6028. https://doi.org/10.1016/j.tet.2006.04.005

9. Synthesis of thieno[2,3–b]pyrrole-2(4)–carboxylic and 2,4–dicarboxylic acids / A. N. Grozav, M. Z. Fedoriv, V. A. Chornous et al. // Chem. Het. Comp. – 2019. – Vol. 55 (4). – P. 293–299.

10. Машковский, М. Д. Лекарственные средства / М. Д. Машковский. – М. : Новая волна, 2012. – C. 949–950.

11. Аntifungal activity of 5–(2–nitrovinyl) imidazoles and their derivatives against the causative agents of vulvovaginal candidiasis / N. D. Yakovychuk, S. Y. Deyneka, A. M. Grozav et al. // Regulatory Mechanisms in Biosystems. – 2018. – Vol. 9 (3). – P. 369–373. https://doi.org/10.15421/021854





Abbreviated key title: J. Org. Pharm. Chem.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)