The synthesis of polisubstituted thienylpyrroles and the study of their activity as plant growth stimulators


  • O. I. Mikhedkina National Technical University “Kharkiv Polytechnic Institute”, Ukraine
  • O. S. Pelipets National Technical University “Kharkiv Polytechnic Institute”, Ukraine
  • I. V. Peretiatko National Technical University “Kharkiv Polytechnic Institute”, Ukraine
  • D. T. Kozhich Belarusian National Technical University, Belarus
  • I. I. Melnik National Technical University “Kharkiv Polytechnic Institute”, Ukraine
  • O. V. Tsygankov National Technical University “Kharkiv Polytechnic Institute”, Ukraine
  • I. I. Klimenko Plant Production Institute named after V. Ya. Yuryev of the National Academy of Agrarian Sciences of Ukraine, Ukraine
  • M. V. Vasyleiko National Technical University “Kharkiv Polytechnic Institute”, Ukraine



4-(5-carboxythiophen-2-yl)-pyrol-2(3)-carboxylic acids, ethyl 4(5)-acetylpyrrol-2(3)- carboxylates, plant growth regulators, cyclic condensation


Aim. To develop the optimal method for the synthesis of new polysubstituted thienylpyrroles and study them as cereal growth stimulants.
Results and discussion. Preparative methods for the synthesis of 4-(5-carboxythiophen-2-yl)-3,5-dimethyl-1H-pyrrole-2-carboxylic acid, 5-(5-carboxythiophen-2-yl)-2,4-dimethyl-1H-pyrrol-3-carboxylic acid and ethyl 4-(4-amino-5)-thoxycarbonyl (thiophen-2-yl)-3,5-dimethyl-1H-pyrrole-2-carboxylate have been developed by step reactions. 4-(5-Carboxythiophen-2-yl)-3,5-dimethyl-1H-pyrrole-2-carboxylic acid is the most promising for the study of the growth-stimulating activity on grain seeds.
Experimental part. Using ethyl 4-acyl-3,5-dimethyl-1H-pyrrole-2-carboxylate and ethyl 5-acetyl-2,4-dimethyl-
1H-pyrrole-3-carboxylate as starting compounds 4-(5-carboxythiophen-2-yl)-3,5-dimethyl-1H-pyrrole-2-carboxylic and 5-(5-carboxythiophen-2-yl) 2,4-dimethyl-1H-pyrrol-3-carboxylic acid were obtained. By the action of the Wilsmeier-Haack reagent on the latter the corresponding pyrroles with the chlorvinylcarbaldehyde fragment were isolated; their post-cyclization with ethyl ester of thioglycolic acid and the subsequent hydrolysis leads to the formation of thienylpyroldicarboxylic acids. The study of the physiological activity of the compounds synthesized was performed on seeds of different varieties of wheat and barley.
Conclusions. By means of sequential reactions the polysubstituted thienylpyrrolcarboxylic acids previously unknown and their esters have been synthesized. The features of the study of these compounds as plant growth
stimulants have been revealed.


Download data is not yet available.


  1. Melnikov, N. N. (1987). Pestitcidy. Khimiia, tekhnologiia i primenenie. Moscow : Khimiia, 712.
  2. Gholap, S. S. (2016). Pyrrole : An emerging scaffold for construction of valuable therapeutic agents. European Journal of Medicinal Chemistry,110, 13–31.
  3. Domagala, A., Jarosz, T., & Lapkowski, M. (2015). Living on pyrrolic foundations – Advances in natural and artificial bioactive pyrrole derivatives. European Journal of Medicinal Chemistry, 100, 176–187.
  4. Bhardwaj, V., Gumber, D., Abbot, V., Dhiman, S., & Sharma, P. (2015). Pyrrole : a resourceful small molecule in key medicinal hetero-aromatics. RSC Advances, 5 (20), 15233–15266.
  5. Asif, M. (2016). Progress in synthesis, chemical properties and biological activity of biologically diverse thiophene derivatives. Int. J. of Curr. Res. in Appl. Chem. & Chem. Eng, 2 (1), 42–55.
  6. Chaudhary, A., Jha, K. K., Kumar, S. (2012). Biological Diversity of Thiophene : A Review. J. Adv. Sci. Res., 3 (3), 3–10.
  7. Mishra, R., Sharmam, P. K. (2015). A Review on Synthesis and Medicinal Importance of Thiophene. Int. J. of Eng. and Allied Sci., 1 (1), 46–59.
  8. Kozhich, D. T., Vasilevskii, V. I., Mironov, A. F., Evstigneeva, R. P. (1980). ZhOrKh, 16 (4), 849–855.
  9. Mikhed’kina, Ye. I., Bylina, O. S., Mel’nik, I. I. Kozhich, D. T. (2009). ZhOrKh, 45 (4), 578–585.
  10. Hauptmann, S., & Werner, E.-M. (1972). Zur Reaktion von 2–Chlorvinylcarbonylverbindungen mit Thioglycolsäureester. Journal Für Praktische Chemie, 314 (3-4), 499–506.
  11. Bhat, B., Bhaduri, A. P. (1984). A Novel One-Step Synthesis of 2–Methoxycarbonylthieno[2,3–b]quinolines and 3–Hydroxy–2–methoxycarbonyl–2,3–dihydrothieno[2,3–b]–quinolines. Synthesis, 8, 673–676.
  12. Iddon, B., Khan, N., & Lim, B. L. (1987). Azoles. Part 7. A convenient synthesis of thieno[2,3–d]imidazoles. Journal of the Chemical Society, Perkin Transactions 1, 1457.
  13. Kirsch, G., Prim, D., Leising, F., & Mignani, G. (1994). New thiophene derivatives as potential materials for non linear optics. Journal of Heterocyclic Chemistry, 31 (4), 1005–1009.
  14. Breitmaier, E. (2002). Structure elucidation by NMR in organic chemistry. John Wiley&Sons, Ltd., 258.
  15. Kovalenko, V. N., Viktorova, A. P. (2001). Kompendium. Lekarstvennyye preparaty. Kyiv : MORION, 1536.
  16. Gordon, A., Ford, R. (1976). Sputnik khimika. Moscow : Mir, 541.
  17. Benson, W. R., & Pohland, A. E. (1965). Aliphatic β–hlorovinyl Aldoximes1a. The Journal of Organic Chemistry, 30 (4), 1126–1129.
  18. Hartmann, H., & Liebscher, J. (1984). A Simple Method for the Synthesis of 5–Aryl–3–amino–2–lkoxycarbonylthiophenes. Synthesis, 1984 (03),275–276
  19. Vlasenko, Yu. D., Parkhomenko, O. O., Kovalenko, S. M. (2005). ZhOrKh, 3 (4), 43–49.
  20. Dospekhov, B. A. (1985). Metodika polevogo opyta. Moscow : Agropromizdat, 351.



How to Cite

Mikhedkina, O. I.; Pelipets, O. S.; Peretiatko, I. V.; Kozhich, D. T.; Melnik, I. I.; Tsygankov, O. V.; Klimenko, I. I.; Vasyleiko, M. V. The Synthesis of Polisubstituted Thienylpyrroles and the Study of Their Activity As Plant Growth Stimulators. J. Org. Pharm. Chem. 2019, 17, 17-25.



Original Researches