DOI: https://doi.org/10.24959/ophcj.19.972

The synthesis of polisubstituted thienylpyrroles and the study of their activity as plant growth stimulators

O. I. Mikhedkina, O. S. Pelipets, I. V. Peretiatko, D. T. Kozhich, I. I. Melnik, O. V. Tsygankov, I. I. Klimenko, M. V. Vasyleiko

Abstract


Aim. To develop the optimal method for the synthesis of new polysubstituted thienylpyrroles and study them as cereal growth stimulants.
Results and discussion. Preparative methods for the synthesis of 4-(5-carboxythiophen-2-yl)-3,5-dimethyl-1H-pyrrole-2-carboxylic acid, 5-(5-carboxythiophen-2-yl)-2,4-dimethyl-1H-pyrrol-3-carboxylic acid and ethyl 4-(4-amino-5)-thoxycarbonyl (thiophen-2-yl)-3,5-dimethyl-1H-pyrrole-2-carboxylate have been developed by step reactions. 4-(5-Carboxythiophen-2-yl)-3,5-dimethyl-1H-pyrrole-2-carboxylic acid is the most promising for the study of the growth-stimulating activity on grain seeds.
Experimental part. Using ethyl 4-acyl-3,5-dimethyl-1H-pyrrole-2-carboxylate and ethyl 5-acetyl-2,4-dimethyl-
1H-pyrrole-3-carboxylate as starting compounds 4-(5-carboxythiophen-2-yl)-3,5-dimethyl-1H-pyrrole-2-carboxylic and 5-(5-carboxythiophen-2-yl) 2,4-dimethyl-1H-pyrrol-3-carboxylic acid were obtained. By the action of the Wilsmeier-Haack reagent on the latter the corresponding pyrroles with the chlorvinylcarbaldehyde fragment were isolated; their post-cyclization with ethyl ester of thioglycolic acid and the subsequent hydrolysis leads to the formation of thienylpyroldicarboxylic acids. The study of the physiological activity of the compounds synthesized was performed on seeds of different varieties of wheat and barley.
Conclusions. By means of sequential reactions the polysubstituted thienylpyrrolcarboxylic acids previously unknown and their esters have been synthesized. The features of the study of these compounds as plant growth
stimulants have been revealed.


Keywords


4-(5-carboxythiophen-2-yl)-pyrol-2(3)-carboxylic acids; ethyl 4(5)-acetylpyrrol-2(3)- carboxylates; plant growth regulators; cyclic condensation

References


Melnikov, N. N. (1987). Pestitcidy. Khimiia, tekhnologiia i primenenie. Moscow : Khimiia, 712.

Gholap, S. S. (2016). Pyrrole : An emerging scaffold for construction of valuable therapeutic agents. European Journal of Medicinal Chemistry,110, 13–31. https://doi.org/10.1016/j.ejmech.2015.12.017

Domagala, A., Jarosz, T., & Lapkowski, M. (2015). Living on pyrrolic foundations – Advances in natural and artificial bioactive pyrrole derivatives. European Journal of Medicinal Chemistry, 100, 176–187. https://doi.org/10.1016/j.ejmech.2015.06.009

Bhardwaj, V., Gumber, D., Abbot, V., Dhiman, S., & Sharma, P. (2015). Pyrrole : a resourceful small molecule in key medicinal hetero-aromatics. RSC Advances, 5 (20), 15233–15266. https://doi.org/10.1039/c4ra15710a

Asif, M. (2016). Progress in synthesis, chemical properties and biological activity of biologically diverse thiophene derivatives. Int. J. of Curr. Res. in Appl. Chem. & Chem. Eng, 2 (1), 42–55.

Chaudhary, A., Jha, K. K., Kumar, S. (2012). Biological Diversity of Thiophene : A Review. J. Adv. Sci. Res., 3 (3), 3–10.

Mishra, R., Sharmam, P. K. (2015). A Review on Synthesis and Medicinal Importance of Thiophene. Int. J. of Eng. and Allied Sci., 1 (1), 46–59.

Kozhich, D. T., Vasilevskii, V. I., Mironov, A. F., Evstigneeva, R. P. (1980). ZhOrKh, 16 (4), 849–855.

Mikhed’kina, Ye. I., Bylina, O. S., Mel’nik, I. I. Kozhich, D. T. (2009). ZhOrKh, 45 (4), 578–585.

Hauptmann, S., & Werner, E.-M. (1972). Zur Reaktion von 2–Chlorvinylcarbonylverbindungen mit Thioglycolsäureester. Journal Für Praktische Chemie, 314 (3-4), 499–506. https://doi.org/10.1002/prac.19723140315

Bhat, B., Bhaduri, A. P. (1984). A Novel One-Step Synthesis of 2–Methoxycarbonylthieno[2,3–b]quinolines and 3–Hydroxy–2–methoxycarbonyl–2,3–dihydrothieno[2,3–b]–quinolines. Synthesis, 8, 673–676. https://doi.org/10.1055/s-1984-30929

Iddon, B., Khan, N., & Lim, B. L. (1987). Azoles. Part 7. A convenient synthesis of thieno[2,3–d]imidazoles. Journal of the Chemical Society, Perkin Transactions 1, 1457. https://doi.org/10.1039/p19870001457

Kirsch, G., Prim, D., Leising, F., & Mignani, G. (1994). New thiophene derivatives as potential materials for non linear optics. Journal of Heterocyclic Chemistry, 31 (4), 1005–1009. https://doi.org/10.1002/jhet.5570310451

Breitmaier, E. (2002). Structure elucidation by NMR in organic chemistry. John Wiley&Sons, Ltd., 258.

Kovalenko, V. N., Viktorova, A. P. (2001). Kompendium. Lekarstvennyye preparaty. Kyiv : MORION, 1536.

Gordon, A., Ford, R. (1976). Sputnik khimika. Moscow : Mir, 541.

Benson, W. R., & Pohland, A. E. (1965). Aliphatic β–hlorovinyl Aldoximes1a. The Journal of Organic Chemistry, 30 (4), 1126–1129. https://doi.org/10.1021/jo01015a043

Hartmann, H., & Liebscher, J. (1984). A Simple Method for the Synthesis of 5–Aryl–3–amino–2–lkoxycarbonylthiophenes. Synthesis, 1984 (03),275–276 https://doi.org/10.1055/s-984-30808

Vlasenko, Yu. D., Parkhomenko, O. O., Kovalenko, S. M. (2005). ZhOrKh, 3 (4), 43–49.

Dospekhov, B. A. (1985). Metodika polevogo opyta. Moscow : Agropromizdat, 351.


GOST Style Citations


1. Мельников, Н. Н. Пестициды. Химия, технология и применение / Н. Н. Мельников. – М. : Химия, 1987. – 712 с.


2. Gholap, S. S. Pyrrole : An emerging scaffold for construction of valuable therapeutic agents / S. S. Gholap // Eur. J. of Med. Chem. – 2016. – Vol. 110. –P. 13–31. https://doi.org/10.1016/j.ejmech.2015.12.017


3. Domagala, А. Living on pyrrolic foundations – Advances in natural and artificial bioactive pyrrole derivatives / A.Domagala, T. Jarosz, M. Lapkowski // Eur. J. of Med. Chem. – 2015. – Vol. 100. – P. 176–187. https://doi.org/10.1016/j.ejmech.2015.06.009


4. Pyrrole : a resourceful small molecule in key medicinal hetero-aromatics / V. Bhardwaj, D. Gumber, V. Abbot et al. // RSC Adv. – 2015. – Vol. 5. – P. 15233–15266. https://doi.org/10.1039/c4ra15710a


5. Asif, M. Progress in synthesis, chemical properties and biological activity of biologically diverse thiophene derivatives / M. Asif // Int. J. of Curr. Res. in Appl. Chem. & Chem. Eng. – 2016. – Vol. 2. Issue 1. – P. 42–55.


6. Chaudhary, A. Biological Diversity of Thiophene : A Review / A. Chaudhary, K. K. Jha, S. Kumar // J. Adv. Sci. Res. – 2012. – Vol. 3, Issue 3. – P. 3–10.


7. Mishra, R. A Review on Synthesis and Medicinal Importance of Thiophene / R. Mishra, P. K. Sharmam // Int. J. of Eng. and Allied Sci. – 2015. – Vol. 1, Issue 1. – P. 46–59.


8. Новый способ получения пирролилацетиленов / Д. Т. Кожич, В. И. Василевский, А. Ф. Миронов и др. // Журн. орг. хим. – 1980. – Т. 16, № 4. – С. 849–855.


9. Взаимодействие этил–3,5–диметил–4–[(Е)–3–оксо–1–хлорпроп–1–енил]–1Н–пиррол–2–карбоксилата с гидразинами / Е. И. Михедькина, О. С. Былина., И. И. Мельник и др. // Журн. орг. хим. – 2009. – Т. 45, № 4. – С.578–585.


10. Hauptmann, V. S. Zur Reaktion von 2–Chlorvinylcarbonylverbindungen mit Thioglycolsäureester / V.S. Hauptmann, E. M. Werner // J. Für Prakt.Chem. – 1972. – Vol. 314, Issue 3–4. – P. 499–506. https://doi.org/10.1002/prac.19723140315


11. Bhat, B. A Novel One–Step Synthesis of 2–Methoxycarbonylthieno[2,3–b]quinolines and 3–Hydroxy–2–methoxycarbonyl–2,3–dihydrothieno[2,3–b]–quinolines / B. Bhat, A. P. Bhaduri // Synthesis. –1984. – Vol. 8. – P. 673–676. https://doi.org/10.1055/s-1984-30929


12. Iddon, B. Azoles. Part 7. A convenient synthesis of thieno[2,3–d]imidazoles / B. Iddon, N. Khan, B. L. Lim // J. Chem. Soc. Perkin Trans. – 1987. –Vol. 1. – P. 1457–1463. https://doi.org/10.1039/p19870001457


13. New thiophene derivatives as potential materials for nonlinear optics / Kirsch, G., Prim, D., Leising, F. et al. // J. Heterocycl. Chem. – 1994. – Vol. 31, Issue 4. – P.1005–1009. https://doi.org/10.1002/jhet.5570310451


14. Breitmaier, E. Structure elucidation by NMR in organic chemistry. – John Wiley&Sons, Ltd., 2002. – 258 p.


15. Компендиум 2001/2002. Лекарственные препараты / под ред. В. Н. Коваленко, А. П. Викторова. – К. : МОРИОН, 2001. – 1536 с.


16. Гордон, А. Спутник химика / А. Гордон, Р. Форд. – М. : Мир, 1976. – 541 с.


17. Benson, W. R., Aliphatic β–Chlorovinyl Aldoximes1a. / W. R. Benson, A. E. Pohland // J. of Org. Chem. – 1965. – Vol. 30, Issue 4. – P. 1126–1129. https://doi.org/10.1021/jo01015a043


18. Hartmann, H. A Simple Method for the Synthesis of 5–Aryl–3–amino–2–alkoxycarbonylthiophenes / H. Hartmann, J. Liebscher // Synthesis. –1984. – Vol. 3. – P. 275–276. https://doi.org/10.1055/s-1984-30808


19. Синтез 2–ароїл–3–аміно–4–арилсульфоніл–5–ариламінотіофенів / Ю. Д. Власенко, О. О. Пархоменко, С. М. Коваленко та ін. // Журн. орг. хим. –2005. – Т. 3, № 4 (12). – С. 43–49.


20. Доспехов, Б. А. Методика полевого опыта / Б. А. Доспехов. – М. : Агропромиздат, 1985. – 351 c.





Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: J. Org. Pharm. Chem.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)