DOI: https://doi.org/10.24959/ophcj.20.186967

Reactions of Cookson’s diketone with potassium halides in the polyphosphoric acid medium

Oleksandr V. Gaidai, Yevheniia Yu. Zhyhadlo, Igor A. Levandovskiy, Olena G. Sidorenko, Oleg V. Shishkin, Svitlana V. Shishkina, Yuliya V. Rassukana

Abstract


Aim. To study the rearrangement of Cookson’s diketone by the action of potassium halides under conditions of polyphosphoric acid catalysis.

Results and discussion. Chemical behaviour of Cookson’s diketone (CS-trishomocubane-8,11-dione) in the reactions with potassium halides (KCl, KBr, KI) in the polyphosphoric acid (PPA) medium have been studied. When treated with the KI/PPA mixture Cookson’s diketone undergoes reduction leading to tetracyclo[6.3.0.0.4,11.05,9]undecane-2,7-dione. The use of KBr instead of KI leads to formal addition of HBr to the cyclobutane ring of CS-trishomocubane-8,11-dione and gives 3-bromotetracyclo[6.3.0.04,11.05,9]undecane-2,7-dione. The general scheme of the cycle opening mechanism has been proposed. In the case of using the KCl/PPA mixture the reaction does not occur.

Experimental part. The structure and composition of compounds were proved by the methods of 1H and 13C NMR-spectroscopy, and also X-ray diffraction analysis. Elemental analysis was performed for the compounds obtained.

Conclusions. It has been shown that hydrohalic acids generated in situ under the reaction conditions do not induce the rearrangement of Cookson’s diketone to the D3-trishomocubane system. The cyclobutane ring opening and reduction take place instead.

 

Received: 12.12.2019
Revised: 10.01.2020
Accepted: 27.02.2020


Keywords


Cookson’s diketone; polyphosphoric acid; ring opening; CS-trishomocubane; reduction

Full Text:

PDF

References


Levandovsky, I. A.; Sharapa, D. I.; Cherenkova, O. A.; Gaidai, A. V.; Shubina, T. E. The chemistry of D3-trishomocubane. Russ. Chem. Rev. 2010, 79 (11), 1005-1026. http://doi.org/10.1070/RC2010v079n11ABEH004119.

Sharapa, D. I.; Gayday, A. V.; Mitlenko, A. G.; Levandovskiy, I. A.; Shubina, T. E. A Convenient Road to 1-Chloropentacycloundecanes – A Joint Experimental and Computational Investigation. Eur. J. Org. Chem. 2011, 2011 (13), 2554-2561. https://doi.org/10.1002/ejoc.201001731.

Mishura, A.; Sklyarova, A.; Sharapa, D.; Levandovsky, I.; Serafin, M.; Fokin, A.; Rodionov, V. Stereoselective preparation of mono- and bis-derivatives of pentacyclo[6.3.0.02.6.03.10.05.9] undecane (D3-trishomocubane). Open Chemistry 2013, 11 (12), 2144-2150.

https://doi.org/10.2478/s11532-013-0339-8.

Tolstikov, G. A.; Lerman, B. M.; Galin, F. Z.; Struchkov, Y. T.; Andrianov, V. G. Synthesis of trishomocubane and dihomobasketane derivatives via the skeletal. Rearrangement under the action of chlorosulphonic acid. Tetrahedron Lett. 1978, 19 (43), 4145-4148. https://doi.org/10.1016/S0040-4039(01)95166-4.

Zhyhadlo, Y. Y.; Gaidai, A. V.; Sharapa, D. I.; Mitlenko, A. G.; Shishkin, O. V.; Shishkina, S. V.; Levandovskiy, I. A.; Fokin, A. A. Functionalised Cookson’s Diketones in Chlorosulfonic Acid: Towards Polysubstituted D3-Trishomocubanes. Journal of Chemical Research 2017, 41 (12), 718-721. https://doi.org/10.3184/174751917X15125690124264.

Cookson, R. C.; Crundwell, E.; Hill, R. R.; Hudec, J. 586. Photochemical cyclisation of Diels–Alder adducts. Journal of the Chemical Society (Resumed) 1964, (0), 3062-3075. https://doi.org/10.1039/JR9640003062.

Kent, G. J.; Godleski, S. A.; Osawa, E.; Schleyer, P. v. R. Syntheses and relative stability of (D3)-trishomocubane (pentacyclo[6.3.0.02,6.03,10.05,9]undecane), the pentacycloundecane stabilomer. J. Org. Chem. 1977, 42 (24), 3852-3859. https://doi.org/10.1021/jo00444a012.

Smith, E. C.; Barborak, J. C. Syntheses of the pentacyclo[6.3.0.02,6.03,10.05,9]undecyl (trishomocubyl) and tetracyclo[6.3.0.04,11.05,9]undeca-2,6-dienyl (homohypostrophenyl) systems. J. Org. Chem. 1976, 41 (8), 1433-1437. https://doi.org/10.1021/jo00870a032.

Butler, D. N.; Munshaw, T. J. The synthesis of 2,3,5,6-endo,endo,endo,endo-tetrakis-substituted bicyclo[2.2.1]heptanes. Can.J. Chem. 1981, 59 (24), 3365-3371. https://doi.org/10.1139/v81-500.

Kotha, S.; Manivannan, E.; Sreenivasachary, N. Allylation of caged diketones via fragmentation methodology. J. Chem. Soc., Perkin Trans. 1 1999, (19), 2845-2848. https://doi.org/10.1039/A902629K.

Dobmeier, M.; Herrmann, J. M.; Lenoir, D.; König, B. Reduction of benzylic alcohols and α-hydroxycarbonyl compounds by hydriodic acid in a biphasic reaction medium. Beilstein Journal of Organic Chemistry 2012, 8, 330-336. https://doi.org/10.3762/bjoc.8.36.

Gordon, P.; Fry, A.; Hicks, L. Further studies on the reduction of benzylic alcohols by hypophosphorous acid/iodine. ARKIVOC 2005, 2005, 393-400.

Deno, N. C.; Friedman, N.; Hodge, J. D.; MacKay, F. P.; Saines, G. The Hydride Transfer Nature of the Reduction of Carbonium Ions by HBr, HIand a Pt and an Ir Hydride. J. Am. Chem. Soc. 1962, 84 (24), 4713-4715. https://doi.org/10.1021/ja00883a019.

Pekhk, T. I.; Petrenko, A. E.; Aleksandrov, A. M.; Sorochinskii, A. E.; Golovatyi, V. G.; Kukhar’, V. P. ChemInform Abstract: Bromo and Hydroxy Derivatives of Tetracyclo(6.3.0.04,11.05,9)undecane- 2,7-dione. ChemInform 1992, 23 (36), 2560. https://doi.org/10.1002/chin.199236121.

Sheldrick, G. A short history of SHELX. Acta Crystallographica Section A 2008, 64 (1), 112-122. https://doi.org/10.1107/S0108767307043930.


GOST Style Citations






Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: J. Org. Pharm. Chem.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)