DOI: https://doi.org/10.24959/ophcj.20.189458

Luminescent properties of substituted 4-aminophthalimides: computations vs. experiment

Tatyana S. Zhuk, Svetlana V. Lanovenko, Oleksandr Ye. Pashenko, Andrey A. Fokin

Abstract


Aim. To perform a combined experimental and computational study on the luminescent properties of practically important class of organic dyes – 4-aminophthalimides.

Results and discussion. The absorption and fluorescence spectra of 4-aminophthalimide derivatives in polar protic and aprotic solvents were computed and matched vs. the experimental data. The changes in emission spectra are mainly related to the NH2-group derivatization. The methyl substitution of amide hydrogen causes a batochromic shift of about 7 nm in the absorption peak and a negligible hypsochromic shift in the fluorescence peak, while introducing alkyl substituents to the amine moiety causes bathochromic shifts in absorption and emission peaks of 30 – 40 nm and 10 – 60 nm, respectively.

Experimental part. Absorption and emission wavelengths were computed by the standard algorithm based on the ground state geometry optimization (equilibrium solvation), vertical excitation with nonequilibrium solvation, and the TD-DFT geometry optimization of the excited state structures. A reliable hybrid B3LYP functional was used in combination with DZ and TZ-quality basis sets.

Conclusions. The computed absorption wavelengths are in excellent agreement with the experimental data and are only slightly solvent-dependent. At the same time, the discrepancy with the experiment for Stokes shifts reaches about 20 % at IEF-PCM-TD-B3LYP/6-31G(d). However, the general tendency for both absorption and fluorescence wavelengths is identical for all solvents within one molecule.

 

Received: 24.12.2019
Revised: 31.01.2020
Accepted: 27.02.2020


Keywords


experimental luminescence spectra; absorption; fluorescence; Stokes shifts; 4-aminophthalimides; time-dependent density functional theory; polarizable continuum model

Full Text:

PDF

References


Barja, B. C.; Chesta, C.; Atvars, T. D. Z.; Aramendía, P. F. Relaxations in Poly(vinyl alcohol) and in Poly(vinyl acetate) Detected by Fluorescence Emission of 4-Aminophthalimide and Prodan. J. Phys. Chem. B 2005, 109 (33), 16180-16187. https://doi.org/10.1021/jp050844a.

Benčić, P.; Mandić, L.; Džeba, I.; Tartaro Bujak, I.; Biczók, L.; Mihaljević, B.; Mlinarić-Majerski, K.; Weber, I.; Kralj, M.; Basarić, N. Application of 4-amino-N-adamantylphthalimide solvatochromic dye for fluorescence microscopy in selective visualization of lipid droplets and mitochondria. Sens. Actuators, B 2019, 286, 52-61. https://doi.org/10.1016/j.snb.2019.01.102.

Bhattacharyya, K. Nature of biological water: a femtosecond study. Chem. Commun. 2008, (25), 2848-2857. https://doi.org/10.1039/B800278A.

Saroja, G.; Soujanya, T.; Ramachandram, B.; Samanta, A. 4-Aminophthalimide Derivatives as Environment-Sensitive Probes. J. Fluoresc. 1998, 8 (4), 405-410. https://doi.org/10.1023/A:1020536918438.

Kindahl, T.; Chorell, E. Efficient one-step synthesis of 4-amino substituted phthalimides and evaluation of their potential as fluorescent probes. Org. Biomol. Chem. 2014, 12 (25), 4461-4470. https://doi.org/10.1039/C4OB00342J.

Das, S.; Datta, A.; Bhattacharyya, K. Deuterium Isotope Effect on 4-Aminophthalimide in Neat Water and Reverse Micelles. J. Phys. Chem. A 1997, 101 (18), 3299-3304. https://doi.org/10.1021/jp963054x.

Sueishi, Y.; Matsumoto, Y.; Sohama, J.; Osawa, Y.; Okamoto, H. Distinctive effects on fluorescence quantum yields of 4-substituted N-methylphthalimides by inclusion complexation with β-cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 2019, 93 (3), 275-281. https://doi.org/10.1007/s10847-018-00877-4.

Datta, A.; Das, S.; Mandal, D.; Pal, S. K.; Bhattacharyya, K. Fluorescence Monitoring of Polyacrylamide Hydrogel Using 4-Aminophthalimide. Langmuir 1997, 13 (26), 6922-6926. https://doi.org/10.1021/la970414e.

Saroja, G.; Samanta, A. Hydrophobicity-induced aggregation of N-alkyl-4-aminophthalimides in aqueous media probed by solvatochromic fluorescence. J. Chem. Soc., Faraday Trans. 1998, 94 (20), 3141-3145. https://doi.org/10.1039/A804631J.

Maciejewski, A.; Kubicki, J.; Dobek, K. The Origin of Time-Resolved Emission Spectra (TRES) Changes of 4-Aminophthalimide (4-AP) in SDS Micelles. The Role of the Hydrogen Bond between 4-AP and Water Present in Micelles. J. Phys. Chem. B 2003, 107 (50), 13986-13999. https://doi.org/10.1021/jp036340z.

Weinberger, M.; Berndt, F.; Mahrwald, R.; Ernsting, N. P.; Wagenknecht, H.-A. Synthesis of 4-Aminophthalimide and 2,4-Diaminopyrimidine C-Nucleosides as Isosteric Fluorescent DNA Base Substitutes. J. Org. Chem. 2013, 78 (6), 2589-2599. https://doi.org/10.1021/jo302768f.

Majhi, D.; Das, S. K.; Sahu, P. K.; Pratik, S. M.; Kumar, A.; Sarkar, M. Probing the aggregation behavior of 4-aminophthalimide and 4-(N,N-dimethyl) amino-N-methylphthalimide: a combined photophysical, crystallographic, microscopic and theoretical (DFT) study. Phys. Chem. Chem. Phys. 2014, 16 (34), 18349-18359. https://doi.org/10.1039/C4CP01912A.

Wang, R.; Hao, C.; Li, P.; Wei, N.-N.; Chen, J.; Qiu, J. Time-dependent density functional theory study on the electronic excited-state hydrogen-bonding dynamics of 4-aminophthalimide (4AP) in aqueous solution: 4AP and 4AP–(H2O)1,2 clusters. J. Comput. Chem. 2010, 31 (11), 2157-2163. https://doi.org/10.1002/jcc.21504.

Yang, D.; Zhang, Y. Modulation of the 4-aminophthalimide spectral properties by hydrogen bonds in water. Spectrochim. Acta, Part A 2014, 131, 214-224. https://doi.org/10.1016/j.saa.2014.04.086.

Kim, T. G.; Wolford, M. F.; Topp, M. R. Ultrashort-lived excited states of aminophthalimides in fluid solution. Photochem. Photobiol. Sci. 2003, 2 (5), 576-584. https://doi.org/10.1039/B300493G.

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc.: Wallingford CT, 2013.

Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics 1993, 98 (7), 5648-5652. https://doi.org/10.1063/1.464913.

Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 1996, 256 (4), 454-464. https://doi.org/10.1016/0009-2614(96)00440-X.

Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys. 1998, 109 (19), 8218-8224. https://doi.org/10.1063/1.477483.

Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105 (8), 2999-3094. https://doi.org/ 10.1021/cr9904009.


GOST Style Citations






Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: J. Org. Pharm. Chem.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)