DOI: https://doi.org/10.24959/ophcj.20.193511
The synthesis, analgesic and anti-inflammatory activity of 3-aryl(heteryl)-2-(6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-3-yl)-acrylonitrile derivatives.
Abstract
Aim. To synthesize, prove the structure and study the analgesic and anti-inflammatory activities of 3-(het)-aryl-2-(6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-3-yl)acrylonitrile derivatives.
Results and discussion. Condensation of 2-methoxy-3,4,5,6-tetrahydro-7H-azepine with cyanoacetic acid hydrazide leads to formation of 2-(6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-3-yl)acetonitrile. The latter readily reacts with the corresponding (het)arenecarbaldehydes in refluxing ethanol in the presence of catalytic amount of piperidine yielding a series of new 3-(het)aryl-2-(6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-3-yl)acrylonitrile derivatives. Further functionalization of 3-(4-hydroxy-3-R-phenyl)-2-(6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-3-yl)acrylonitriles has been done by modification of the OH group. One of the compounds synthesized, namely 3-(4-hydroxyphenyl)-2-(6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-3-yl)acrylonitrile, exhibits a high level of the analgesic activity on the “hot plate” model, and a similar level of the activity on the model of “acetic acid-induced writhings” as compared to ketorolac. The results obtained indicate the pronounced antinociceptive activity for the test compound.
Experimental part. 1H NMR spectra of the compounds synthesized were recorded on a Bruker VXR-300 spectrometer (Germany) operating at a frequency of 299.945 MHz, in DMSO-d6, using tetramethylsilane (TMS) as an internal standard. Melting points were measured using a RNMK 05 device (VEB Analytik,Dresden). The elemental analysis was performed on a EuroEA 3000 elemental analyzer. The analgesic and anti-inflammatory activities of 3-(4-hydroxyphenyl)-2-(6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-3-yl)acrylonitrile were determined using models of “carrageenan induced paw edema”, ”hot plate” and “acetic acid-induced writhings”, and compared to the reference drug ketorolac.
Conclusions. A series of new 3-(het)aryl-2-(6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-3-yl)acrylonitrile derivatives can be easily synthesized by the interaction of 2-(6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-3-yl)acetonitrile with (het)arenecarbaldehydes. The hydroxy group in 3-(4-hydroxy-3-R-phenyl)-2-(6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-3-yl)acrylonitriles can be modified to obtain phenyl esters of aliphatic and aromatic carboxylic acids. The high level of the analgesic activity for 3-(4-hydroxyphenyl)-2-(6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-3-yl)acrylonitrile has been determined.
Received: 30.01.2020
Revised: 17.05.2020
Accepted: 29.05.2020
Keywords
Full Text:
PDFReferences
Kaplan, B.; Swain, R. A. NSAIDs: Are There Any Differences? Archives of Family Medicine 1993, 2 (11), 1167–1174.
Bacchi, S.; Palumbo, P.; Sponta, A.; Coppolino, M. F. Clinical Pharmacology of Non-Steroidal Anti-Inflammatory Drugs: A Review. Anti-Inflammatory Anti-Allergy Agents Med. Chem. 2012, 11 (1), 52–64. http://dx.doi.org/10.2174/187152312803476255.
Sostres, C.; Gargallo, C. J.; Arroyo, M. T.; Lanas, A. Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. Best Pract. Res., Clin. Gastroenterol. 2010, 24 (2), 121–132. https://doi.org/10.1016/j.bpg.2009.11.005.
Conaghan, P. G. A turbulent decade for NSAIDs: update on current concepts of classification, epidemiology, comparative efficacy, and toxicity. Rheumatol. Int. 2012, 32 (6), 1491–1502. https://doi.org/10.1007/s00296-011-2263-6.
Demchenko, S. A.; Yeromina, H. O.; Perekhoda, L. O.; Bukhtiarova, T. A.; Bobkova, L. S.; Demchenko, A. M. Synthesis and anаlgеsic properties of (3-allyl-4-aryl-3H-thiazol-2-ylidene)-[4-(6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-3-yl)phenyl]amine derivatives. Farm. Zh. 2018, 1, 67–73. https://doi.org/10.32352/0367-3057.1.17.09.
Демченко, С. А.; Ядловський, О. Є.; Бухтіарова, Т. А.; Серединська, Н. М.; Голубов, М. І.; Демченко, А. М. 3-(4-Гідроксифеніл)-2-(6,7,8,9-тетрагідро-5Н-[4,3-а]азепін-3-іл)акрилонітрил, що проявляє анальгетичну та протизапальну активності. Патент України 120416, Листоп 25, 2019.
Lyon, C.; Claus, L. W. Less is more when it comes to ketorolac for pain. The Journal of Family Practice 2019, 1, 41–42.
Стефанов, В. Доклінічні дослідження лікарських засобів; Авіценна: Київ, 2001.
Komlos, E.; Porszasz, J.; Knoll, J. Morfin–prostigmin synergismus. Acta Physiol. Acad. Sci. Hung. 1950, 1 (1), 77–90.
Wood, P. L. Animal models in analgesic testing. In Analgesics: Neurochemical, Behavioral and Clinical Perspectives; Kuhar, M., Pasternak, J., Eds.; Raven Press: New-York, 1984; Vol. 42, pp 175–194.
Тринус, Ф. П.; Мохорт, Н. А.; Клебанов, Б. М. Нестероидные противовоспалительные средства; Здоров’я: Київ, 1975.
Лапач, С. Н.; Чубенко, А. В.; Бабич, П. Н. Статистика в науке и бизнесе; Морион: Київ, 2002.
Vogel, H. G. Drug Discovery and Evaluation: Pharmacological Assays. 2 ed.; Springer-Verlag Berlin Heidelberg: New York, 2002. https://doi.org/10.1007/3-540-29837-1.
Petersen, S.; Tietze, E. Reaktionen Cyclischer Lactimäther mit Acylierten Hydrazinderivaten. Chem. Ber. 1957, 90 (6), 909–921. https://doi.org/10.1002/cber.19570900609.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abbreviated key title: J. Org. Pharm. Chem.
ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)