α(β)-Sulfonyl(phosphoryl)acrylonitriles and enamines in the synthesis of biologically active heterocycles

Authors

DOI:

https://doi.org/10.24959/ophcj.20.194402

Keywords:

acrylonitriles, α-sulfonylacrylonitriles, phosphonylacrylonitriles, enamines, sulfonylenamines, phosphonylenenamines, heterocyclization, biological activity

Abstract

Functionalization of heterocyclic systems with sulfur- and phosphorus-containing pharmacophores has long shown itself as an effective method for construction of new bioactive substances. At the same time, some types of the compounds are represented by only a few examples, and it prevents further evaluation of the contribution of certain structural elements to biological effects of the sulfonyl- and phosphoryl-substituted heterocyclic derivatives studied. Therefore, a relevant task for organic and medicinal chemistry still remains development of new methods for the synthesis of heterocyclic compounds with sulfonyl and phosphoryl groups, as well as determination of the biological activity of these substances. A structural variety of sulfonyl- and phosphoryl-substituted heterocycles can be achieved by using heterofunctional low-molecular compounds with sulfonyl and phosphoryl groups. This review highlights the information on biologically active heterocyclic compounds synthesized from acrylonitriles and enamines of sulfones, phosphine oxides, and phosphonates series.

Received: 05.02.2020

Revised: 25.05.2020

Accepted: 27.08.2020

Supporting Agencies

  • NASU theme «Purposeful synthesis of nitrogen and oxygen containing heterocyclic compounds as low molecular bioregulators» (№ 0120U100309
  • 2020–2024 years)

Downloads

Download data is not yet available.

References

  1. Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. Rings in Drugs. J. Med. Chem. 2014, 57 (14), 5845 – 5859. https://doi.org/10.1021/jm4017625.
  2. Chen, X.; Hussain, S.; Parveen, S.; Zhang, S.; Yang, Y.; Zhu, C. Sulfonyl Group-Containing Compounds in the Design of Potential Drugs for the Treatment of Diabetes and Its Complications. Curr. Med. Chem. 2012, 19 (21), 3578 – 3604. http://dx.doi.org/10.2174/092986712801323225.
  3. Rodriguez, J. B.; Gallo-Rodriguez, C. The Role of the Phosphorus Atom in Drug Design. ChemMedChem 2019, 14 (2), 190 – 216. https://doi.org/ 10.1002/cmdc.201800693.
  4. Neplyuev, V. M.; Sinenko, T. A.; Pel’kis, P. S. Synthesis of pyrazole, isoxazole, and pyrimidine derivatives from 2-arylsulfonyl-2-cyanovinyl ethyl ethers. Chem. Heterocycl. Compd. (N. Y., NY, U. S.) 1978, 14 (7), 782 – 784. https://doi.org/10.1007/BF00471653.
  5. Ivachtchenko, A. V.; Golovina, E. S.; Kadieva, M. G.; Koryakova, A. G.; Mitkin, O. D.; Tkachenko, S. E.; Kysil, V. M.; Okun, I. 2-Substituted 5,6-dimethyl-3-phenylsulfonyl-pyrazolo[1,5-a]pyrimidines: New series of highly potent and specific serotonin 5-HT6 receptor antagonists. Eur. J. Med. Chem. 2011, 46 (4), 1189 – 1197. https://doi.org/10.1016/j.ejmech.2011.01.038.
  6. Neplyuev, V. M.; Sinenko, T. A. 2-Arylsulfonyl-2-cyanovinyl ethyl esters. Russ. J. Org. Chem. 1978, 14 (9), 1953 – 1958.
  7. Slivchuk, S. R.; Rusanov, E. B.; Brovarets, V. S. A convenient approach to the synthesis of 3-arylsulfonylpyrazolo[1,5-a]pyrimidines and their condensed analogs. J. Org. Pharm. Chem. 2006, 4 (3(15)), 62 – 68.
  8. Yakovenko, I. N.; Slivchuk, S. R.; Brovarets, V. S. The investigation of vasoactive properties of new pyridine and pyrimidine bases and their condensed analogues. J. Org. Pharm. Chem. 2007, 5 (3(19)), 74 – 77.
  9. Lunt, E.; Newton, C. G.; Smith, C.; Stevens, G. P.; Stevens, M. F. G.; Straw, C. G.; Walsh, R. J. A.; Warren, P. J.; Fizames, C. Antitumor imidazotetrazines. 14. Synthesis and antitumor activity of 6- and 8-substituted imidazo[5,1-d]-1,2,3,5-tetrazinones and 8-substituted pyrazolo[5,1-d]-1,2,3,5-tetrazinones. J. Med. Chem. 1987, 30 (2), 357 – 366. https://doi.org/10.1021/jm00385a018.
  10. Yasuma, T.; Mori, A.; Kawase, M.; Kimura, H.; Yoshida, M.; Gyorkos, A. C.; Pratt, S. A.; Corrette, C. P. Substituted pyrazolo[1,5-a]pyrimidines as calcium receptor modulating agents. US 2014155416 A1, June 5, 2014.
  11. Buntain, I. G.; Hatton, L. R.; Hawkins, D. W.; Pearson, C. J.; Roberts, D. A. Derivatives of N-phenylpyrazoles. EP 0295117 A1, Dec 14, 1988.
  12. Hatton, L. R.; Buntain, I. G.; Hawkins, D. W.; Parnell, E. W.; Pearson, C. J.; Roberts, D. A. Derivatives of N-phenylpyrazoles. US 5232940 A, Aug 3, 1993.
  13. Faraci, W. S.; Welch, Jr. W. M. Pyrazoles and pyrazolopyrimidines having CRF antagonistic activity. US 2002016333 A1, Feb 07, 2002.
  14. Faraci, W. S., Welch, Jr. W. M. Pyrazoles and pyrazolopyrimidines having CRF antagonistic activity. US 5712303 A, Jan 27, 1998.
  15. Takahashi, M.; Mamiya, T.; Wakao, M. Preparation of 5-sulfonylpyrimidines from β-keto-, β-cyano-, and β-ethoxycarbonyl-β-sulfonylenamines. J. Heterocycl. Chem. 1986, 23 (1), 77 – 80. https://doi.org/10.1002/jhet.5570230116.
  16. Straub, A.; Feurer, A.; Alonso-Alija, C.; Stasch, J.-P.; Perzborn, E.; Huetter, J.; Dembowsky, K.; Stahl, E. Substituted pyrazole derivatives condensed with six-membered heterocyclic rings. US 6743798 B1, June 1, 2004.
  17. Shaaban, M. R. Synthesis and Antimicrobial Evaluation of Novel Pyrazolo[1,5-a]pyrimidine, Pyrimido[1,2-a]benzimidazole, Triazolo[4,3-a]pyrimidine and Pyrido[1,2-a]benzimidazole Derivatives Incorporated Phenylsulfonyl Moiety. Heterocycles 2008, 75 (12), 3005 – 3014. https://doi.org/10.3987/COM-08-11471.
  18. El-Wahab, H. A.; Saleh, T. S.; Zayed, E. M.; El-Sayed, A. S.; Assaker, R. S. A. Synthesis and Evaluation of New Anti-microbial Additives Based on Pyrazole and Triazole Derivatives Incorporated Physically into Polyurethane Varnish for Surface Coating and into Printing Ink Paste. Egypt. J. Chem. 2014, 57 (1), 27 – 43. https://doi.org/10.21608/ejchem.2014.1030.
  19. Tominaga, Y.; Sakai, S.; Kohra, S.; Tsuka, J.; Matsuda, Y.; Kobayashi, G. Pyrimidine and Fused Pyrimidine Derivatives. III. Synthesis of s-Triazolo[1,5-а]pyrimidine Derivatives by Using Ketene Dithioacetals. Chem. Pharm. Bull. 1985, 33 (3), 962 – 970. https://doi.org/10.1248/cpb.33.962.
  20. Wu, Y.-J.; He, H.; Hu, S.; Huang, Y.; Scola, P. M.; Grant-Young, K.; Bertekap, R. L.; Wu, D.; Gao, Q.; Li, Y.; Klakouski, C.; Westphal, R. S. Identification of a Potent and Selective 5-HT6 Antagonist: One-Step Synthesis of (E)-3-(Benzenesulfonyl)-2-(methylsulfanyl)pyrido[1,2-a]pyrimidin-4-ylidenamine from 2-(Benzenesulfonyl)-3,3-bis(methylsulfanyl)acrylonitrile. J. Med. Chem. 2003, 46 (23), 4834 – 4837. https://doi.org/10.1021/jm034142q.
  21. Hu, S.; Huang, Y.; Wu, Y.-J.; He, H.; Grant-Young, K. A.; Bertekap, R. L.; Whiterock, V.; Brassil, P.; Lentz, K.; Sivaprakasam, P.; Langley, D. R.; Westphal, R. S.; Scola, P. M. Structure activity relationship studies of 3-arylsulfonylpyrido[1,2-a]pyrimidin-4-imines as potent 5-HT6 antagonists. Bioorg. Med. Chem. 2014, 22 (5), 1782 – 1790. https://doi.org/10.1016/j.bmc.2014.01.003.
  22. Jakobi, H.; Minn, K.; Buscato Arsequell, E.; Dietrich, H.; Gatzweiler, E.; Rosinger, C. H.; Schmutzler, D. Substituted furano-/thienocycloalkylamino-2-pyrimidine derivatives and use thereof for controlling undesired plant growth. US 2018213780 A1, Aug 2, 2018.
  23. Pérez, M. A.; Soto, J. L.; Guzmán, F.; Alcalá, H. Synthesis of isomeric 5-(phenylsulphonyl)pyrimidines. J. Chem. Soc., Perkin Trans. 1 1985, 87 – 91. https://doi.org/10.1039/P19850000087.
  24. Solomyannii, R. N.; Pil’o, S. G.; Slivchuk, S. R.; Prokopenko, V. M.; Rusanov, E. B.; Brovarets, V. S. Synthesis of 5-methylsulfonylpyrimidines and their fused derivatives. Russ. J. Gen. Chem. 2017, 87 (3), 407 – 413. https://doi.org/10.1134/S1070363217030082.
  25. Tsygankova, V.; Andrusevich, Ya.; Shtompel, O.; Hurenko, A.; Solomyanny, R.; Bondarenko, O.; Mrug, G.; Frasinyuk, M.; Brovarets, V. Stimulating effect of five and six-membered heterocyclic compounds on seed germination and vegetative growth of maize (Zea mays L.). International Journal of Biology Research 2016, 1 (4), 1 – 4.
  26. Santilli, A. A.; Rosenberg, M. D.; Osdene, T. S.; Childress, S. J. Synthesis of amino-5-arylsulfonylpyrimidines. J. Heterocycl. Chem. 1971, 8 (6), 975 – 982. https://doi.org/10.1002/jhet.5570080615.
  27. Solomyannyi, R.; Slivchuk, S.; Smee, D.; Choi, J.-A.; Rusanov, E.; Zhirnov, V.; Brovarets, V. In vitro Activity of the Novel Pyrimidines and Their Condensed Derivatives Against Poliovirus. Curr. Bioact. Compd. 2019, 15 (5), 582 – 591. http://dx.doi.org/10.2174/1573407214666180720120509.
  28. Slivchuk, S. R.; Brovarets, V. S.; Drach, B. S. Convenient synthesis of uracil and cytosine derivatives with arylsulfonyl residues near the C5 center. Reports of the National Academy of Sciences of Ukraine 2006, 3, 146 – 152.
  29. Metelitsa, L. A.; Charochkina, L. L.; Mogilevich, S. Ye.; Slivchuk, S. R.; Brovarets, V. S.; Drach, B. S. Immunomodulating properties of new phenylsulfonyl derivatives of pyrimidine and pyrazolo[1,5-a]pyrimidine bases. J. Org. Pharm. Chem. 2008, 6 (1(21)), 47 – 50.
  30. Atkinson, M. R.; Shaw, G.; Sugowdz, G. 627. Purines, pyrimidines, and glyoxalines. Part VI. Some 5-aryl(or alkyl)sulphonyluracils. Journal of the Chemical Society (Resumed) 1957, 3207 – 3209. https://doi.org/10.1039/JR9570003207.
  31. Solomyannyi, R. M.; Brovarets, V. S.; Shablykina, O. V.; Moskvina, V. S.; Khilya, V. P. 8-(Methylsulfonyl)-2,6-dihydroimidazo[1,2-c]pyrimidine-5-(3H)-ones – new heterocyclic derivatives of sulfones with antiviral activity. Reports of the National Academy of Sciences of Ukraine 2019, 5, 75 – 81. https://doi.org/10.15407/dopovidi2019.05.075.
  32. Solomyannyi, R. N.; Shablykina, O. V.; Moskvina, V. S.; Khilya, V. P.; Rusanov, E. B.; Brovarets, V. S. 8-(Methyl(phenyl)sulfonyl)-2,6-dihydroimidazo[1,2-c]-pyrimidin-5(3Н)-ones and 9-(methyl(phenyl)sulfonyl)-2,3,4,7-dihydro-6H-pyrimido[1,6-a]pyrimidin-6-ones: synthesis and antiviral activity. Chem. Heterocycl. Comp. 2019, 55 (4), 401 – 407. https://doi.org/10.1007/s10593-019-02472-y.
  33. Tsygankova, V.; Andrusevich, Ya.; Shtompel, O.; Kopich, V.; Solomyanny, R.; Bondarenko, O.; Brovarets, V. Phytohormone-like effect of pyrimidine derivatives on regulation of vegetative growth of tomato. International Journal of Botany Studies 2018, 3 (2), 91 – 102.
  34. Tsygankova, V. A.; Andrusevich, Ya. V.; Shtompel, O. I.; Kopich, V. M.; Solomyanny, R. M.; Brovarets, V. S. Study of regulating activity of synthetic low molecular weight heterocyclic compounds, derivatives of pyrimidine on growth of tomato (Solanum lycopersicum L.) seedlings. Int. J. ChemTech Res. 2019, 12 (5), 26 – 38. http://dx.doi.org/10.20902/IJCTR.2019.120504.
  35. Solomyannyi, R. N.; Slivchuk, S. R.; Vasilenko, A. N.; Rusanov, E. B.; Brovarets, V. S. Synthesis of 3-amino-1-benzyl-4-benzenesulfonyl-2-carbonitrilo-1H-pyrrole and preparation of related pyrrolo[3,2-d]pyrimidines. Russ. J. Gen. Chem. 2012, 82 (2), 317 – 322. https://doi.org/10.1134/S1070363212020235.
  36. Fell, J. B.; Mohr, P.; Stengel, P. J. Heterocyclic antiviral compounds. WO 2007093541 A1, Aug 23, 2007.
  37. Fadda, A.; Refat, H.; Zaki, M. Utility of Sulphones in Heterocyclic Synthesis: Synthesis of Some Pyridine, Chromene and Thiophene Derivatives. Molecules 2000, 5 (5), 701 – 709. https://doi.org/10.3390/50500701.
  38. Fishwick, B. R.; Rowles, D. K.; Stirling, C. J. M. Bromonitromethane – a versatile electrophile. J. Chem. Soc., Perkin Trans. 1 1986, 1171 – 1179. https://doi.org/10.1039/P19860001171.
  39. Mehta, M. R.; Trivedi, J. P. Synthesis of 2,3-Disubstituted-4-thiazolidinones and 3,5-Diaminothiophene-2-carboxylic Acid Derivatives. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1990, 29 (12), 1146 – 1153.
  40. Fadda, A. A.; Berghot, M. A.; Amer, F. A.; Badawy, D. S.; Bayoumy, N. M. Synthesis and Antioxidant and Antitumor Activity of Novel Pyridine, Chromene, Thiophene and Thiazole Derivatives. Arch. Pharm. 2012, 345 (5), 378 – 385. https://doi.org/10.1002/ardp.201100335.
  41. Görmen, M.; Le Goff, R.; Lawson, A. M.; Daïch, A.; Comesse, S. Tandem aza-Michael/spiro-ring closure sequence: access to a versatile scaffold and total synthesis of (±)-coerulescine. Tetrahedron Lett. 2013, 54 (17), 2174 – 2176. https://doi.org/10.1016/j.tetlet.2013.02.047.
  42. Le Goff, R.; Martel, A.; Sanselme, M.; Lawson, A. M.; Daïch, A.; Comesse, S. Simple Access to Highly Functional Bicyclic γ- and δ-Lactams: Origins of Chirality Transfer to Contiguous Tertiary/Quaternary Stereocenters Assessed by DFT. Chem. – Eur. J. 2015, 21 (7), 2966 – 2979. https://doi.org/10.1002/chem.201405094.
  43. Jungheim, L. N.; Barnett, C. J.; Gray, J. E.; Horcher, L. H.; Shepherd, T. A.; Sigmund, S. K. 1,3-Dipolar cycloaddition reactions of pyrazolidinium ylides with vinyl sulfones. A regioselective synthesis of bicyclic pyrazolidinone antibacterial agents. Tetrahedron 1988, 44 (11), 3119 – 3126. https://doi.org/10.1016/S0040-4020(01)85943-3.
  44. Clique, B.; Vassiliou, S.; Monteiro, N.; Balme, G. Integrated Transition Metal Catalysed Reactions: Synthesis of Polysubstituted 4-(Phenoxymethyl)-3-pyrrolines and Their Isomers by One-Pot Coupling of Propargylamines, Vinyl Sulfones (or Nitroalkenes) and Phenols. Eur. J. Org. Chem. 2002, 2002 (9), 1493 – 1499. https://doi.org/10.1002/1099-0690(200205)2002:9<1493::aid-ejoc1493>3.0.co;2-k.
  45. Vyzhdak, R. N.; Danielova, A. A.; Kiselev, V. V.; Drach, B. S. Derivatives of 5-(Dimethylamino)-4-tosyl-1,3-oxazole-2-carbaldehyde and Its Analogs. Russ. J. Gen. Chem. 2005, 75 (6), 946-951. https://doi.org/10.1007/s11176-005-0350-7.
  46. Zhang, H.-Z.; Zhao, Z.-L.; Zhou, C.-H. Recent advance in oxazole-based medicinal chemistry. Eur. J. Med. Chem. 2018, 144, 444 – 492. https://doi.org/10.1016/j.ejmech.2017.12.044.
  47. Turov, K. V.; Vinogradova, T. K.; Rusanov, E. B.; Brovarets, V. S. Reaction of 1-tosyl-2,2-dichloroenamines with the Lawesson’s reagent. Russ. J. Gen. Chem. 2012, 82 (5), 848 – 852. https://doi.org/10.1134/S1070363212050076.
  48. Greiner, H.; Bartoszyk, G.; Boettcher, H.; Barnickel, G.; Cezanne, B. Sulphonyloxazolamines as therapeutic active ingredients. US 6441013 B1, Aug 27, 2002.
  49. Aboujaoude, E. E.; Collignon, N.; Savignac, P. Synthèse d’hétérocycles α-phosphoniques. nouveaux développements. Phosphorus Sulfur Relat. Elem. 1987, 31 (3-4), 231 – 243. https://doi.org/10.1080/03086648708080642.
  50. Shidlovskii, A. F.; Peregudov, A. S.; Averkiev, B. B.; Antipin, M. Y.; Chkanikov, N. D. Heterocyclization of 2-chloro-1-cyano-1-diethoxyphosphoryl-2-trifluoromethylethylene and 2-chloro-2-chlorodifluoromethyl-1-cyano-1-diethoxyphosphorylethylene. Russ. Chem. Bull. 2004, 53 (9), 2060 – 2070. https://doi.org/10.1007/s11172-005-0073-2.
  51. Krug, H. G.; Neidlein, R.; Boese, R.; Kramer, W. Synthesis and reactions of dialkyl (1-R-5-amino-3-methylsulfanyl-1H-pyrazol-4-yl)phosphonates. Heterocycles 1995, 41 (4), 721 – 740. https://doi.org/10.3987/COM-94-6976.
  52. Neidlein, R.; Eichinger, T. [(1,3-Dioxolan-2-yliden)methyl]phosphonate und -phosphinate als (einfache) Synthone in der Heterocyclensynthese. Helv. Chim. Acta 1992, 75 (1), 124 – 136. https://doi.org/10.1002/hlca.19920750109.
  53. Günther, O.; Hartke, K. Heterocyclische o-Amino-phosphonester. Arch. Pharm. 1975, 308 (9), 693-700. https://doi.org/10.1002/ardp.19753080905.
  54. Lu, R.; Yang, H. A novel approach to phosphonyl-substituted heterocyclic system(I). Tetrahedron Lett. 1997, 38 (29), 5201 – 5204. https://doi.org/10.1016/S0040-4039(97)01111-8.
  55. Khusainova, N. G.; Bredikhina, Z. A.; Ishmaeva, E. A.; Musina, A. A.; Pudovik, A. N. Reaction of arylazides with vinylphosphonates. Russ. J. Gen. Chem. 1981, 51 (3), 409 – 411.
  56. Solomyannyi, R. N.; Slivchuk, S. P.; Brovarets, V. S. New approach to the synthesis of 4-phosphorylated 1,2,3-trisubstituted pyrroles. Russ. J. Gen. Chem. 2010, 80 (11), 2259 – 2262. https://doi.org/10.1134/S107036321011006X.
  57. Solomyannyi, R. M. Synthesis of bioactive heterocyclic compounds with sulfur and phosphorus-containing groups on the functionalized enamines basis. Ph.D. Thesis, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Kyiv, 2019.
  58. Scheidecker, S.; Köckritz, A.; Schnell, M. α-Substituierte Phosphonate. 56. Synthese und Reaktionen von 1-Formylamino-2,2,2-trichlorethanphosphonaten. J. Prakt. Chem. 1990, 332 (6), 968 – 976. https://doi.org/10.1002/prac.19903320614.
  59. Kondratyuk, K. M.; Lukashuk, E. I.; Golovchenko, A. V.; Rusanov, E. B.; Brovarets, V. S. Reaction of diethyl 1-acylamino-2,2-dichloroethenylphosphonates with amino acids esters. Russ. J. Gen. Chem. 2012, 82 (4), 643 – 651. https://doi.org/10.1134/S1070363212040056.
  60. Brovarets, V. S.; Vydzhak, R. N.; Pil’o, S. G.; Zyuz, K. V.; Drach, B. S. Synthesis and Transformations of 4-Phosphorylated 2-Alkyl(aryl)-5-hydrazinooxazoles. Russ. J. Gen. Chem. 2001, 71 (11), 1726 – 1728. https://doi.org/10.1023/A:1013982122431.
  61. Golovchenko, A. V.; Pil’o, S. G.; Brovarets, V. S.; Chernega, A. N.; Drach, B. S. Transformations of Acylation Products of Functionally 4-Substituted 2-Alkyl(aryl)-5-hydrazino-1,3-oxazoles into 1,3,4-Oxadiazole Derivatives. Russ. J. Gen. Chem. 2005, 75 (3), 425 – 431. https://doi.org/10.1007/s11176-005-0244-8.
  62. Kondratyuk, K. M.; Golovchenko, A. V.; Osadchuk, T. V.; Brovarets, V. S. Synthesis of new 4-phosphorylated derivatives of 5-amino-1,3-oxazole. Russ. J. Gen. Chem. 2011, 81 (7), 1470. https://doi.org/10.1134/S1070363211070115.
  63. Kondratyuk, K. M. Synthesis and Properties of New Functionalized Derivatives of 1,3-Oxazol-4-ylphosphonic Acid. Ph.D. Thesis, Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Kyiv, 2013 .
  64. Drach, B. S.; Sviridov, E. P.; Kirsanov, A. V. Reaction of acids of 1,2,2,2-tetrachloroethylamides with ethyl ester of diphenylphosphinic acid and triphenylphosphine. Russ. J. Gen. Chem. 1975, 45 (1), 10 – 13.
  65. Palacios, F.; de Retana, A. M.; Oyarzabal, J.; Ezpeleta, J. M. A simple and efficient strategy for the preparation of 5-phosphorylated imidazol-2-ones from primary β-enaminophosphonates. Tetrahedron 1998, 54 (10), 2281 – 2288. https://doi.org/10.1016/S0040-4020(97)10438-0.
  66. Asadov, K. A.; Guseinov, F. I.; Strunin, B. P.; Beskrovny, D. V.; Litvinov, I. A. C-phosphorylated furazano[3,4-b]piperazines. Chem. Heterocycl. Comp. 2006, 42 (8), 1059 – 1067. https://doi.org/10.1007/s10593-006-0204-1.
  67. Schnell, M.; Ramm, M.; Köckritz, A. α-Substituted phosphonates. 64. Phosphono-Substituted Imidazoles and other heterocycles from diethyl-[(2,2-dichloro-1-isocyano)-ethenyl]phosphonate. J. Prakt. Chem./Chem.-Ztg. 1994, 336 (1), 29 – 37. https://doi.org/10.1002/prac.19943360107.
  68. Drach, B. S.; Sviridov, E. P.; Shaturskyi, Ya. P. Interaction of diethyl esters of 1-acylamido-2,2-dichlorovinylphosfonic acids with primary and secondary amines. Russ. J. Gen. Chem. 1974, 44 (8), 1712 – 1715.
  69. Golovchenko, A. V.; Solomyannyi, R. N.; Brovarets, V. S. Synthesis of C-heteryl-substituted aminomethylphosphonic acids derivatives. Russ. J. Gen. Chem. 2010, 80 (4), 723 – 727. https://doi.org/10.1134/S1070363210040067.
  70. Golovchenko, O. V. Synthesis of novel bioregulators of azole series on the basis of 4,5-difunctionally substituted oxazoles. Ph.D. Thesis, Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Kyiv, 2004.
  71. Popil’nichenko, S. V.; Kondratyuk, K. M.; Solomyannyi, R. N.; Brovarets, V. S. Reaction of diethyl esters of 1-acylamino-2,2-dichlorovinylphosphonic acids and their analogs with the Lawesson’s reagent. Russ. J. Gen. Chem. 2010, 80 (10), 1937 – 1940. https://doi.org/10.1134/S1070363210100105.

Published

2020-09-18

How to Cite

(1)
Solomyannyi, R. M.; Shablykina, O. V.; Moskvina, V. S.; Brovarets, V. S. α(β)-Sulfonyl(phosphoryl)acrylonitriles and Enamines in the Synthesis of Biologically Active Heterocycles. J. Org. Pharm. Chem. 2020, 18, 03-24.

Issue

Section

Original Researches