DOI: https://doi.org/10.24959/ophcj.20.199828

P-Stereogenic diamondoid phosphines

Kateryna D. Butova, Vladislav V. Bahonsky, Raisa I. Yurchenko, Sergey O. Butov, Maryna M. Moroz, Andrey A. Fokin

Abstract


Despite diamondoid phosphines have found many synthetic applications and are even available commercially the chemistry of chiral diamondoid phosphines remains largely unexplored.

Aim. To develop the convenient preparative method for the preparation of sterically-congested P-stereogenic secondary diamodoidyl phosphines as potential organocatalysts and ligands in the asymmetric synthesis.

Results and discussion. A convenient method for the synthesis of P-stereogenic diamondoid phosphines with high yields through the phosphorylation of hydroxydiamondoids in trifluoroacetic acid followed by the reduction of the corresponding asymmetric chlorophosphonates has been proposed. The secondary phosphines obtained form stable complexes with borane that can be used to separate diamondoid phosphines into enantiomers.

Experimental part. The experimental procedures for the preparation of 1- and 4-diamantyl-1-adamantyl- and phenylphosphines were developed; the structures of new compounds were confirmed by NMR and HRMS spectral data.

Conclusions. A number of P-stereogenic mixed diamondoidylaryl phosphines and the secondary phosphines containing exclusively diamondoid substituents has been prepared. A degree of steric bulkiness is determined by the combination of diamondoid substituents around a phosphorus atom where 1-diamantyl derivatives are the most sterically-congested. The compounds obtained are potential ligands in asymmetric catalysis.

Received: 31.03.2020

Revised: 24.06.2020

Accepted: 27.08.2020


Keywords


phosphine borane complexes; 1-adamantyldiamantylphosphine; 4-adamantyldiamantylphosphine; 1-phenyldiamantylphosphine; 4-phenyldiamantylphosphine; P-stereogenic phosphines

Full Text:

PDF

References


Knowles, W. S. Asymmetric Hydrogenations (Nobel Lecture). Angew. Chem., Int. Ed. 2002, 41 (12), 1998 – 2007. https://doi.org/10.1002/1521-3773(20020617)41:12<1998::aid-anie1998>3.0.co;2-8.

Salomó, E.; Orgué, S.; Riera, A.; Verdaguer, X. Efficient Preparation of (S)- and (R)-tert-Butylmethylphosphine-Borane: A Novel Entry to Important P-Stereogenic Ligands. Synthesis 2016, 48 (16), 2659 – 2663. https://doi.org/10.1055/s-0035-1561854.

Shibata, Y.; Tanaka, K. Rhodium-Catalyzed Highly Enantioselective Direct Intermolecular Hydroacylation of 1,1-Disubstituted Alkenes with Unfunctionalized Aldehydes. J. Am. Chem. Soc. 2009, 131 (35), 12552 – 12553. https://doi.org/10.1021/ja905908z.

Yorke, J.; Dent, C.; Decken, A.; Xia, A. Synthesis, characterization, and applications of novel di-2-pyridyl imine ligands. Inorg. Chem. Commun. 2010, 13 (1), 54 – 57. https://doi.org/10.1016/j.inoche.2009.10.013.

Kagan, H. B.; Dang, T.-P. Asymmetric catalytic reduction with transition metal complexes. I. Catalytic system of rhodium(I) with (–)-2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane, a new chiral diphosphine. J. Am. Chem. Soc. 1972, 94 (18), 6429 – 6433. https://doi.org/10.1021/ja00773a028.

Dang, T. P.; Kagan, H. B. The asymmetric synthesis of hydratropic acid and amino-acids by homogeneous catalytic hydrogenation. J. Chem. Soc. D: Chem.Commun. 1971, 10, 481 – 481. https://doi.org/10.1039/C29710000481.

Cabré, A.; Riera, A.; Verdaguer, X. P-Stereogenic Amino-Phosphines as Chiral Ligands: From Privileged Intermediates to Asymmetric Catalysis. Acc. Chem. Res. 2020, 53 (3), 676 – 689. https://doi.org/10.1021/acs.accounts.9b00633.

Zapf, A.; Ehrentraut, A.; Beller, M. A New Highly Efficient Catalyst System for the Coupling of Nonactivated and Deactivated Aryl Chlorides with Arylboronic Acids. Angew. Chem., Int. Ed. 2000, 39 (22), 4153 – 4155. https://doi.org/10.1002/1521-3773(20001117)39:22<4153::aid-anie4153>3.0.co;2-t.

Wille, S.; Hein, M.; Miethchen, R. First cross-coupling reactions on halogenated 1H-1,2,4-triazole nucleosides. Tetrahedron 2006, 62 (14), 3301 – 3308. https://doi.org/10.1016/j.tet.2006.01.053.

Tewari, A.; Hein, M.; Zapf, A.; Beller, M. Efficient palladium catalysts for the amination of aryl chlorides: a comparative study on the use of phosphium salts as precursors to bulky, electron-rich phosphines. Tetrahedron 2005, 61 (41), 9705 – 9709. https://doi.org/10.1016/j.tet.2005.06.067.

Ehrentraut, A.; Zapf, A.; Beller, M. Progress in the Palladium-Catalyzed α-Arylation of Ketones with Chloroarenes. Adv. Synth. Catal. 2002, 344 (2), 209 – 217. https://doi.org/10.1002/1615-4169(200202)344:2<209::aid-adsc209>3.0.co;2-5.

Köllhofer, A.; Pullmann, T.; Plenio, H. A Versatile Catalyst for the Sonogashira Coupling of Aryl Chlorides. Angew. Chem., Int. Ed. 2003, 42 (9), 1056 – 1058. https://doi.org/10.1002/anie.200390273.

Yang, Y.-C.; Lin, Y.-C.; Wu, Y.-K. Palladium-Catalyzed Cascade Arylation of Vinylogous Esters Enabled by Tris(1-adamantyl)phosphine. Org. Lett. 2019, 21 (23), 9286 – 9290. https://doi.org/10.1021/acs.orglett.9b03071.

Sawatsugawa, Y.; Tamura, K.; Sano, N.; Imamoto, T. A Bulky Three-Hindered Quadrant Bisphosphine Ligand: Synthesis and Application in Rhodium-Catalyzed Asymmetric Hydrogenation of Functionalized Alkenes. Org. Lett. 2019, 21 (22), 8874 – 8878. https://doi.org/10.1021/acs.orglett.9b02702.

Moncea, O.; Gunawan, M. A.; Poinsot, D.; Cattey, H.; Becker, J.; Yurchenko, R. I.; Butova, E. D.; Hausmann, H.; Šekutor, M.; Fokin, A. A.; Hierso, J.-C.; Schreiner, P. R. Defying Stereotypes with Nanodiamonds: Stable Primary Diamondoid Phosphines. J. Org. Chem. 2016, 81 (19), 8759 – 8769. https://doi.org/10.1021/acs.joc.6b01219.

Fokina, N. A.; Tkachenko, B. A.; Merz, A.; Serafin, M.; Dahl, J. E. P.; Carlson, R. M. K.; Fokin, A. A.; Schreiner, P. R. Hydroxy Derivatives of Diamantane, Triamantane, and [121]Tetramantane: Selective Preparation of Bis-Apical Derivatives. Eur. J. Org. Chem. 2007, 2007 (28), 4738 – 4745. https://doi.org/10.1002/ejoc.200700378.

Erokhina, E. V.; Shokova, E. A.; Luzikov, Y. N.; Kovalev, V. V. Dichlorophosphorylation of Adamantanols and 1-Adamantylcarbinols in Trifluoroacetic Acid. Synthesis 1995, 1995 (07), 851 – 854. https://doi.org/10.1055/s-1995-3999.

Fokin, A. A.; Yurchenko, R. I.; Tkachenko, B. A.; Fokina, N. A.; Gunawan, M. A.; Poinsot, D.; Dahl, J. E. P.; Carlson, R. M. K.; Serafin, M.; Cattey, H.; Hierso, J.-C.; Schreiner, P. R. Selective Preparation of Diamondoid Phosphonates. J. Org. Chem. 2014, 79 (11), 5369 – 5373. https://doi.org/10.1021/jo500793m.

Imamoto, T.; Matsuo, M.; Nonomura, T.; Kishikawa, K.; Yanagawa, M. Synthesis and reactions of optically pure cyclohexyl(o-methoxyphenyl)phosphine-borane and t-butyl-(o-methoxyphenyl)phosphine-borane. Heteroat. Chem. 1993, 4 (5), 475 – 486. https://doi.org/10.1002/hc.520040511.

Wolfe, B.; Livinghouse, T. A Direct Synthesis of P-Chiral Phosphine−Boranes via Dynamic Resolution of Lithiated Racemic tert-Butylphenylphosphine−Borane with (−)-Sparteine. J. Am. Chem. Soc. 1998, 120 (20), 5116 – 5117. https://doi.org/10.1021/ja973685k.

Nordheider, A.; Chivers, T.; Schön, O.; Karaghiosoff, K.; Athukorala Arachchige, K. S.; Slawin, A. M. Z.; Woollins, J. D. Isolatable Organophosphorus(III)–Tellurium Heterocycles. Chem. Eur. J. 2014, 20 (3), 704 – 712. https://doi.org/10.1002/chem.201303884.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: J. Org. Pharm. Chem.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)