Optimization of the process of dissolution of phosphate calculi of the human kidney in vitro

Natalia M. Bogdan, Diana S. Stepanova, Serhii L. Bogza


Aim. To study the influence of physicochemical parameters of litholytic compositions on the degree of dissolution of phosphate calculi.

Results and discussion. A number of factors affecting the effectiveness of litholytic compositions on dissolution of phosphate renal calculi have been studied. It has been shown that with increasing the temperature of the solution above 38.5°C the increase of the dissolution rate of the mineral component and denaturation of the protein matrix of the calculi are competitive processes. It has been determined that the degree of litholysis while increasing the speed of the calculus washing increases linearly. The optimal values of temperature, solution feed rate and complexon concentration for dissolution of renal calculi in vivo have been determined taking into account the physiological capabilities of the kidney.

Experimental part. 73 native, surgically removed calculi were used in the experiment. The stratification of the calculus was visualized by staining with Kumassi R-250. The chemical and structural homogeneity of phosphate calculi was determined by analyzing their infrared spectra. IR spectra were obtained on a Specord M-80 spectrophotometer in KBr tablets. An ION 700 instrument (Eutec Instruments) was used to control the pH of the medium.

Conclusions. It has been shown that taking into account the physiological capabilities of the kidney the temperature of litholysis solutions should not exceed 37.5°C, the optimum feed rate of the solution is 5 mL/min, and the effective complexon concentration is 0.02 – 0.20 mol/L.

Received: 13.03.2020
Revised: 05.05.2020
Accepted: 29.05.2020


renal calculus; litholysis; temperature; litholysis rate; complexon concentration


Saidakova, N. O.; Shuliak, O. V.; Shylo, V. N.; Dmytryshyn, A. A.; Kononova G. E. Urolithiasis: the state and problematic questions in rendering the specialized service to the population in Kyiv. Urologiya 2018, 22 (1), 33–40.

Romero, V.; Akpinar, H.; Assimos, D. G. Kidney Stones: A Global Picture of Prevalence, Incidence, and Associated Risk Factors. Reviews in urology 2010, 12 (2/3): e86–e96.

Golovanova, O. A.; Frank-Kamenetskaya, O. V.; Punin, Yu. O. Specific features of pathogenic mineral formation in the human body. Russ. J. Gen. Chem. 2011, 81 (6), 1392–1406.

Rule, A. D.; Lieske, J. C.; Li, X.; Melton, L. J.; Krambeck, A. E.; Bergstralh, E. J. The ROKS Nomogram for Predicting a Second Symptomatic Stone Episode. J. Am. Soc. Nephrol. 2014, 25 (12), 2878–2886.

Yachi, L.; Bennis, S.; Aliat, Z.; Cheikh, A.; Idrissi, M. O. B.; Draoui, M.; Bouatia, M. In vitro litholytic activity of some medicinal plants on urinary stones. African Journal of Urology 2018, 24 (3), 197–201.

Богдан, Н. М. О выборе кальций-связывающих реагентов для растворения биоминеральных патологий. Проблеми екології та охорони природи техногенного регіону 2007, 7, 174–181.

Нельсон, Д.; Кокс, М. Основы биохимии Ленинджера. 3-е изд.; Лаборатория знаний: Москва, 2017; Т. 1.

Gonzalez, R. D.; Whiting, B. M.; Canales, B. K. The History of Kidney Stone Dissolution Therapy: 50 Years of Optimism and Frustration with Renacidin. Journal of Endourology 2012, 26 (2), 110–118.

Богдан, Н. М. Физико-химические особенности образования и растворения фосфатных почечных конкрементов. Диссертация канд. хим. наук, Институт физико-органической химии и углехимии им. Л. Н. Литвиненко НАН Украины, Донецк, 1994.

Билобров, В. М.; Литвиненко, Л. М.; Чугай, А. В. Химический состав мочевых камней. Урология и нефрология 1984, 3, 21–26.

Kravdal, G.; Helgø, D.; Moe, M. K. Infrared spectroscopy is the gold standard for kidney stone analysis. Tidsskr. Nor. Laegeforen. 2015, 135 (4), 313–314.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: J. Org. Pharm. Chem.

ISSN 2518-1548 (Online), ISSN 2308-8303 (Print)