The synthesis of cis- and trans-3-(4-hydroxyphenyl)cyclobutanecarboxylic acids and the study of their derivatives as GPR-40 receptor ligands

Authors

  • I. O. Feskov V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine; Enamine Ltd., Ukraine
  • I. S. Kondratov V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine; Enamine Ltd., Ukraine https://orcid.org/0000-0003-0192-0725
  • Yu. O. Kuchkovska Enamine Ltd; Taras Shevchenko National University of Kyiv, Ukraine https://orcid.org/0000-0003-1660-2324
  • V. S. Naumchyk Enamine Ltd., Ukraine
  • O. V. Onopchenko Enamine Ltd., Ukraine
  • O. O. Grygorenko Enamine Ltd.; Taras Shevchenko National University of Kyiv, Ukraine https://orcid.org/0000-0002-6036-5859

DOI:

https://doi.org/10.24959/ophcj.20.210383

Keywords:

cyclobutane, GPR-40, FFAR, agonist, diabetes mellitus

Abstract

Aim. To synthesize cis- and trans-isomers of 3-(4-hydroxyphenyl)cyclobutanecarboxylic acid and evaluate the biological activity of their derivatives against GPR-40.

Results and discussion. Cis- and trans-isomers of 3-(4-hydroxyphenyl)cyclobutanecarboxylic acid were synthesized. The derivatives of this compound were tested as GPR-40 agonists and exhibited the micromolar activity.

Experimental part. The methyl ester of 3-(4-hydroxyphenyl)cyclobutanecarboxylic acid was obtained as a mixture of cis/trans-isomers in 3 steps starting from a commercially available 3-oxocyclobutanecarboxylic acid. Further transformation of this compound into isomerically pure 3-(4-hydroxyphenyl)cyclobutanecarboxylic acids was achieved in five steps based on the chromatographic separation of diastereomeric amide derivatives. New GPR-40 ligands were obtained by O-alkylation of a phenolic oxygen atom of the corresponding carboxylic acid methyl ester. The biological activity of the agonists synthesized was studied using a fluorometric bioassay and the engineered Chinese hamster ovary (CHO) stable cell line expressing the human GPR-40.

Conclusions. An effective synthetic approach to 3-(4-hydroxyphenyl)cyclobutanecarboxylic acid allowing to isolate two single cis/trans-stereoisomers of this compound has been developed. In order to demonstrate the possibility for the bioisosteric replacement of the ethylene moiety in the structures of free fatty acid receptor (FFAR) agonists by the cyclobutane ring, four new GPR-40 ligands possessing the micromolar activity have been synthesized.

Received: 22.08.2020
Revised: 11.10.2020
Accepted: 17.10.2020

Supporting Agencies

  • The theme of the Ministry of Education and Science of Ukraine «Promising molecular instruments on the basis of natural and synthetic (carbo) heterocycles for solving problems of chemistry
  • medicine
  • industry» (№19BF037-03
  • 2019-2021 years)

Downloads

Download data is not yet available.

References

  1. DeFronzo, R. A.; Ferrannini, E.; Groop, L.; Henry, R. R.; Herman, W. H.; Holst, J. J.; Hu, F. B.; Kahn, C. R.; Raz, I.; Shulman, G. I.; Simonson, D. C.; Testa, M. A.; Weiss, R. Type 2 diabetes mellitus. Nat. Rev. Dis. Primers 2015, 1 (1), 15019. https://doi.org/10.1038/nrdp.2015.19.
  2. Eizirik, D. L.; Pasquali, L.; Cnop, M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat. Rev. Endocrinol. 2020, 16 (7), 349 – 362. https://doi.org/10.1038/s41574-020-0355-7.
  3. Zheng, Y.; Ley, S. H.; Hu, F. B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14 (2), 88-98. https://doi.org/10.1038/nrendo.2017.151.
  4. International Diabetes Federation Home page. https://idf.org (Accessed Aug 3, 2020).
  5. Burant, C. F. Activation of GPR40 as a Therapeutic Target for the Treatment of Type 2 Diabetes. Diabetes Care 2013, 36 (Supplement 2), S175 – S179. https://doi.org/10.2337/dcS13-2037.
  6. Ahrén, B. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat. Rev. Drug Discov. 2009, 8 (5), 369 – 385. https://doi.org/10.1038/nrd2782.
  7. Itoh, Y.; Kawamata, Y.; Harada, M.; Kobayashi, M.; Fujii, R.; Fukusumi, S.; Ogi, K.; Hosoya, M.; Tanaka, Y.; Uejima, H.; Tanaka, H.; Maruyama, M.; Satoh, R.; Okubo, S.; Kizawa, H.; Komatsu, H.; Matsumura, F.; Noguchi, Y.; Shinohara, T.; Hinuma, S.; Fujisawa, Y.; Fujino, M. Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40. Nature 2003, 422 (6928), 173 – 176. https://doi.org/10.1038/nature01478.
  8. Mancini, A. D.; Poitout, V. GPR40 agonists for the treatment of type 2 diabetes: life after ‘TAKing’ a hit. Diabetes Obes. Metab. 2015, 17 (7), 622 – 629.
  9. https://doi.org/10.1111/dom.12442.
  10. Chen, C.; Li, H.; Long, Y.-Q. GPR40 agonists for the treatment of type 2 diabetes mellitus: The biological characteristics and the chemical space. Bioorg. Med. Chem. Lett. 2016, 26 (23), 5603 – 5612. https://doi.org/10.1016/j.bmcl.2016.10.074.
  11. Defossa, E.; Wagner, M. Recent developments in the discovery of FFA1 receptor agonists as novel oral treatment for type 2 diabetes mellitus. Bioorg. Med. Chem. Lett. 2014, 24 (14), 2991 – 3000. https://doi.org/10.1016/j.bmcl.2014.05.019.
  12. Zahanich, I.; Kondratov, I.; Naumchyk, V.; Kheylik, Y.; Platonov, M.; Zozulya, S.; Krasavin, M. Phenoxymethyl 1,3-oxazoles and 1,2,4-oxadiazoles as potent and selective agonists of free fatty acid receptor 1 (GPR40). Bioorg. Med. Chem. Lett. 2015, 25 (16), 3105 – 3111. https://doi.org/10.1016/j.bmcl.2015.06.018.
  13. Liu, J.; Wang, Y.; Ma, Z.; Schmitt, M.; Zhu, L.; Brown, S. P.; Dransfield, P. J.; Sun, Y.; Sharma, R.; Guo, Q.; Zhuang, R.; Zhang, J.; Luo, J.; Tonn, G. R.; Wong, S.; Swaminath, G.; Medina, J. C.; Lin, D. C. H.; Houze, J. B. Optimization of GPR40 Agonists for Type 2 Diabetes. ACS Med. Chem. Lett. 2014, 5 (5), 517 – 521. https://doi.org/10.1021/ml400501x.
  14. Houze, J. B.; Zhu, L.; Sun, Y.; Akerman, M.; Qiu, W.; Zhang, A. J.; Sharma, R.; Schmitt, M.; Wang, Y.; Liu, J.; Liu, J.; Medina, J. C.; Reagan, J. D.; Luo, J.; Tonn, G.; Zhang, J.; Lu, J. Y.-L.; Chen, M.; Lopez, E.; Nguyen, K.; Yang, L.; Tang, L.; Tian, H.; Shuttleworth, S. J.; Lin, D. C. H. AMG 837: A potent, orally bioavailable GPR40 agonist. Bioorg. Med. Chem. Lett. 2012, 22 (2), 1267 – 1270. https://doi.org/10.1016/j.bmcl.2011.10.118.
  15. Christiansen, E.; Urban, C.; Grundmann, M.; Due-Hansen, M. E.; Hagesaether, E.; Schmidt, J.; Pardo, L.; Ullrich, S.; Kostenis, E.; Kassack, M.; Ulven, T. Identification of a Potent and Selective Free Fatty Acid Receptor 1 (FFA1/GPR40) Agonist with Favorable Physicochemical and in Vitro ADME Properties. J. Med. Chem. 2011, 54 (19), 6691 – 6703. https://doi.org/10.1021/jm2005699.
  16. Sasaki, S.; Kitamura, S.; Negoro, N.; Suzuki, M.; Tsujihata, Y.; Suzuki, N.; Santou, T.; Kanzaki, N.; Harada, M.; Tanaka, Y.; Kobayashi, M.; Tada, N.; Funami, M.; Tanaka, T.; Yamamoto, Y.; Fukatsu, K.; Yasuma, T.; Momose, Y. Design, Synthesis, and Biological Activity of Potent and Orally Available G Protein-Coupled Receptor 40 Agonists. J. Med. Chem. 2011, 54 (5), 1365 – 1378. https://doi.org/10.1021/jm101405t.
  17. Christiansen, E.; Due-Hansen, M. E.; Urban, C.; Merten, N.; Pfleiderer, M.; Karlsen, K. K.; Rasmussen, S. S.; Steensgaard, M.; Hamacher, A.; Schmidt, J.; Drewke, C.; Petersen, R. K.; Kristiansen, K.; Ullrich, S.; Kostenis, E.; Kassack, M. U.; Ulven, T. Structure−Activity Study of Dihydrocinnamic Acids and Discovery of the Potent FFA1 (GPR40) Agonist TUG-469. ACS Med. Chem. Lett. 2010, 1 (7), 345 – 349. https://doi.org/10.1021/ml100106c.
  18. McKeown, S. C.; Corbett, D. F.; Goetz, A. S.; Littleton, T. R.; Bigham, E.; Briscoe, C. P.; Peat, A. J.; Watson, S. P.; Hickey, D. M. B. Solid phase synthesis and SAR of small molecule agonists for the GPR40 receptor. Bioorg. Med. Chem. Lett. 2007, 17 (6), 1584 – 1589. https://doi.org/10.1016/j.bmcl.2006.12.084.
  19. Garrido, D. M.; Corbett, D. F.; Dwornik, K. A.; Goetz, A. S.; Littleton, T. R.; McKeown, S. C.; Mills, W. Y.; Smalley, T. L.; Briscoe, C. P.; Peat, A. J. Synthesis and activity of small molecule GPR40 agonists. Bioorg. Med. Chem. Lett. 2006, 16 (7), 1840 – 1845. https://doi.org/10.1016/j.bmcl.2006.01.007.
  20. Wang, Y.; Liu, J.; Dransfield, P. J.; Zhu, L.; Wang, Z.; Du, X.; Jiao, X.; Su, Y.; Li, A.-r.; Brown, S. P.; Kasparian, A.; Vimolratana, M.; Yu, M.; Pattaropong, V.; Houze, J. B.; Swaminath, G.; Tran, T.; Nguyen, K.; Guo, Q.; Zhang, J.; Zhuang, R.; Li, F.; Miao, L.; Bartberger, M. D.; Correll, T. L.; Chow, D.; Wong, S.; Luo, J.; Lin, D. C. H.; Medina, J. C. Discovery and Optimization of Potent GPR40 Full Agonists Containing Tricyclic Spirocycles. ACS Med. Chem. Lett. 2013, 4 (6), 551 – 555. https://doi.org/10.1021/ml300427u.
  21. Marson C. M. New and unusual scaffolds in medicinal chemistry. Chem. Soc. Rev., 2011, 40, 5514 – 5533. https://doi.org/10.1039/C1CS15119C.

Published

2020-12-01

How to Cite

(1)
Feskov, I. O.; Kondratov, I. S.; Kuchkovska, Y. O.; Naumchyk, V. S.; Onopchenko, O. V.; Grygorenko, O. O. The Synthesis of Cis- and Trans-3-(4-hydroxyphenyl)cyclobutanecarboxylic Acids and the Study of Their Derivatives As GPR-40 Receptor Ligands. J. Org. Pharm. Chem. 2020, 18, 14-22.

Issue

Section

Original Researches