Convenient approaches to the synthesis of 6-amino- and 6-oxoimidazo[4,5-b]pyrazolo[3,4-e]pyridines

Authors

  • G. G. Yakovenko Iнститут органiчної хiмiї НАН України, Ukraine https://orcid.org/0000-0003-2575-4266
  • M. V. Vovk Iнститут органiчної хiмiї НАН України, Ukraine

DOI:

https://doi.org/10.24959/ophcj.21.224583

Keywords:

N-Boc-4-aminopyrazole-5-carbaldehyde; creatinine; 5-aminopyrazolo[4,3-b]pyridine-6-carboxylic acid; diphenylphosphorylazide; 6-amino(oxo)imidazo[4,5-b]pyrazolo[3,4-e]pyridines; cyclocondensation

Abstract

Aim. To develop convenient approaches to the synthesis of 6-amino- and 6-oxoimidazo[4,5-b]pyrazolo[3,4-e]pyridines as promising biologically active scaffolds.
Results and discussion. It has been found that cyclocondensation of N-Boc-4-aminopyrazole-5-carbaldehydes with creatinine can be used as an effective method for obtaining 6-aminoimidazo[4,5-b]pyrazolo[3,4-e]pyridines previously unknown. For the synthesis of their 6-oxoanalogs, the reaction of 5-aminopyrazolo[4,3-b]pyridine-6-carboxylic acids used in a modifed Curtius rearrangement with diphenylphosphorylazide was successful. This method was implemented through the stage of the intermediate aminoisocyanates formation.
Experimental part. The reaction of N-Boc-4-aminopyrazole-5-carbaldehydes with creatinine in the presence of pyrrolidine as a catalyst in refluxing acetic acid allowed to obtain 6-aminoimidazo[4,5-b]pirazolo[3,4-e]pyridines with the yields of 54 – 70 %. The structure of the compounds synthesized was proven by spectral measurements. In the 1H NMR spectra there were singlets of H-3 (7.63 – 7.88 ppm) and H-8 (7.87 – 8.26 ppm) protons, as well as broad singlets of the NH2 group in the range of 7.05 – 7.21 ppm. Heating of 5-aminopyrazolo[4,3-b]pyridine-6-carboxylic acids with triethylamine and diphenylphosphorylazide in dioxane for 6 hours gave 1-substituted imidazo[4,5-b]pyrazolo[3,4-е]pyridine-6(5Н)-ones with the yields of 67 – 80 %. The IR-spectra of the compounds synthesized were characterized by the absorption bands of the C=O (1705 – 1708 cm-1) and NH (3275 – 3281 cm-1) groups. 1H NMR-spectra were characterized by singlets of H-3 and H-8 protons in the intervals of 7.43 – 8.08 ppm and 7.92 – 8.32 ppm respectively, as well as by two broad singlets of NH-protons in the ranges of 10.90 – 11.12 ppm and 11.25 – 11.37 ppm.
Conclusions. Effective approaches to the synthesis of new promising heterocyclic systems of 6-amino- and
6-oxoimidazo[4,5-b]pirazolo[3,4-e]pyridines have been developed. Cyclocondensations of N-Boc-4-aminopyrazole-5-carbaldehydes with creatinine and 5-aminopyrazolo[4,3-b]pyridine-6-carboxylic acids with diphenylphosphorylazide have been proven to be convenient ways to obtain these compounds with good yields.
Key words: N-Boc-4-aminopyrazole-5-carbaldehyde; creatinine; 5-aminopyrazolo[4,3-b]pyridine-
6-carboxylic acid; diphenylphosphorylazide; 6-amino(oxo)imidazo[4,5-b]pyrazolo[3,4-e]pyridines;
cyclocondensation

Downloads

Download data is not yet available.

References

  1. Mantlo, N. B.; Chakravarty, P. K.; Ondeyka, D. L.; Siegl, P. K.; Chang, R. S.; Lotti, V. J.; Faust, K. A.; Chen, T. B.; Schorn, T. W.; Sweet, C. S. Potent, orally active imidazo[4,5-b]pyridine-based angiotensin II receptor antagonists. J. Med. Chem. 1991, 34 (9), 2919 – 2922. https://doi.org:10.1021/jm00113a035.
  2. Nicolai, E.; Goyard, J.; Benchetrit, T.; Teulon, J.-M.; Caussade, F.; Virone, A.; Delchambre, C.; Cloarec, A. Synthesis and structure-activity relationships of novel benzimidazole and imidazo[4,5-b]pyridine acid derivatives as thromboxane A2 receptor antagonists. J. Med. Chem. 1993, 36 (9), 1175 – 1187. https://doi.org:10.1021/jm00061a008.
  3. Penning T. D.; Chandrakumar N. S.; Desai B. N.; Djuric S. W.; Gasiecki A. F.; Malecha J. W.; Miyashiro J. M.; Russell M. A.; Askonas L. J.; Gierse J. K.; Harding E. I.; Highkin M. K.; Kachur J. F.; Kim S. H.; Villani-Price D.; Pyla E. Y.; Ghoreishi-Haack N. S.; Smith W. G. Synthesis of imidazopyridines and purines as potent inhibitors of leukotriene A4 hydrolase. Bioorg. Med. Chem. Lett. 2003, 13 (6), 1137 – 1139. https://doi.org:10.1016/s0960-894x(03)00039-8.
  4. Cristalli, G.; Vittori, S.; Eleuteri, A.; Volpini, R.; Camaioni, E.; Lupidi, G.; Mahmood, N.; Bevilacqua, F.; Palu G. Synthesis and biological evaluation of N6-cycloalkyl derivatives of 1-deazaadenine nucleosides: a new class of anti-human immunodeficiency virus agents. J. Med. Chem. 1995, 38 (20), 4019 – 4025. https://doi.org/10.1021/jm00020a017.
  5. Ménard, D.; Niculescu-Duvaz, I.; Dijkstra, H. P.; Niculescu-Duvaz, D.; Suijkerbuijk, B. M. J. M.; Zambon, A.; Nourry, A.; Roman, E.; Davies, E; Manne, H. A.; Friedlos, F.; Kirk, R.; Whittaker, S.; Gill, A.; Taylor, R. D.; Marais, R.; Springer C. J. Novel Potent BRAF Inhibitors: toward 1 nm compounds through optimization of the central phenyl ring. J. Med. Chem. 2009, 52 (13), 3881 – 3891. https://doi.org/10.1021/jm900242c.
  6. Shu, C.; Ge, H.; Song, M.; Chen, J.; Zhou, H.; Qi, Q.; Wang, F.; Ma, X.; Yang, X.; Zhang, G.; Ding, Y.; Zhou, D.; Peng, P.; Shih, C.; Xu, J.; Wu, F. Discovery of Imigliptin, a Novel Selective DPP-4 Inhibitor for the treatment of type 2 diabetes. ACS Med. Chem. Lett. 2014, 5 (8), 921 – 926. https://doi.org/10.1021/ml5001905.
  7. Lindström, S.; Ahmad, T.; Grivas, S. Synthesis of the mutagenic 2-amino-1,6-dimethylimidazo[4,5-b]pyridine (1,6-DMIP) and five of its isomers. Heterocycles 1994, 38 (3), 524 – 540. https://doi.org/10.3987/COM-93-6573.
  8. Tanga, M. J.; Bradford, W. W.; Bupp J. E.; Kozocas J. A. Syntheses of two potential food mutagens. J. Heterocycl. Chem. 2009, 40 (3), 569 – 573. https://doi.org/10.1002/jhet.5570400403.
  9. Ronne, E.; Olsson, K.; Grivas, S. One-Step Synthesis of 2-Amino-1-methylimidazo[4,5-b]quinolone. Synt. Commun. 1994, 24 (10), 1363 – 1366. https://doi.org/10.1080/00397919408011739.
  10. Björk, M.; Grivas, S. Synthesis of novel 2-aminoimidazo[4,5-b]pyridines, including the thieno analogue of the cooked-food mutagen IFP. J. Heterocycl. Chem. 2009, 43 (1), 101 – 109. https://doi.org/10.1002/jhet.5570430116.
  11. Meanwell, N. A.; Roth, H. R.; Smith, E. C. R.; Wedding, D. L.; Wright, J. J. K.; Fleming, J. S.; Gillespie, E. 1,3-Dihydro-2H-imidazo[4,5-b]quinolin-2-ones – inhibitors of blood platelet cAMP phosphodiesterase and induced aggregation. J. Med. Chem. 1991, 34 (9), 2906 – 2916. https://doi.org/10.1021/jm00113a033.
  12. Meanwell, N. A.; Pearce, B. C.; Roth, H. R.; Smith, E. C. R.; Wedding, J. D. L.; Wright, J. K.; Buchanan, J. O.; Baryla, U. M.; Gamberdella, M.; Gillespie, E; Hayes, D. C.; Zavoico, G. B.; Fleming, J. S. Inhibitors of blood platelet cAMP phosphodiesterase. 2. Structure-activity relationships associated with 1,3-dihydro-2H-imidazo[4,5-b]quinolin-2-ones substituted with functionalized side chains. J. Med. Chem. 1992, 35 (14), 2672 – 2687. https://doi.org/10.1021/jm00092a019.
  13. Meanwell, N. A.; Dennis, R. D.; Roth, H. R.; Rosenfeld, M. J.; Smith, C. R. E.; Wright, J. J. K.; Buchanan, J. O.; Brassard, C. L.; Gamberdella, M.; Gillespie, E; Seiler, S. M.; Zavoico, G. B.; Fleming, J. S. Inhibitors of blood platelet cAMP phosphodiesterase. 3. 1,3-Dihydro-2H-imidazo[4,5-b]quinolin-2-one derivatives with enhanced aqueous solubility. J. Med. Chem. 1992, 35 (14), 2688 – 2696. https://doi.org/10.1021/jm00092a020.
  14. Meanwell, N. A.; Hewawasam, P.; Thomas, J. A.; Wright, J. J. K.; Russell, J. W.; Gamberdella, M.; Goldenberg, H. J.; Seiler, S. M.; Zavoico, G. B. Inhibitors of blood platelet cAMP phosphodiesterase. 4. Structural variation of the side-chain terminus of water-soluble 1,3-dihydro-2H-imidazo[4,5-b]quinolin-2-one derivatives. J. Med. Chem. 1993, 36 (22), 3251 – 3264. https://doi.org/10.1021/jm00074a005.
  15. Li, Y.; Guo, Q.; Zhang, C.; Huang, Z.; Wang, T.; Wang, X.; Wang, X.; Xu, G.; Liu, Y.; Yang, S.; Fan, Y.; Xiang, R. Discovery of a highly potent, selective and novel CDK9 inhibitor as an anticancer drug candidate. Bioorg. Med. Chem. Lett. 2017, 27 (15), 3231 – 3237. https://doi.org/10.1016/j.bmcl.2017.06.041.
  16. Faria, J. V.; Vegi, P. F.; Miguita, A. G. C.; Dos Santos, M. S.; Boachat, N.; Bernadino, A. M. R. Recently reported biological activities of pyrazole compounds. Bioorg. Med. Chem. Lett. 2017, 25 (21), 5891 – 5903. https://doi.org/10.1016/j.bmc.2017.09.035.
  17. Kumar, V.; Kaur, K.; Gupta, G. K.; Sharma, A. K. Pyrazole containing natural products: synthetic preview and biological significance. Eur. J. Med. Chem. 2013, 69, 735 – 753. https://doi.org/10.1016/j.ejmech.2013.08.053.
  18. Küçükgüzel, Ş. G.; Şenkardeş, S.; Recent advances in bioactive pyrazoles. Eur. J. Med. Chem. 2015, 97, 786 – 815. https://doi.org/10.1016/j.ejmech.2014.11.059.
  19. Zhang, H.-Z.; Gan, L.-L.; Wang, H.; Zhou, C.-H. New progress in azole compounds as antimicrobial agents. Mini-Rev. Med. Chem. 2017, 17 (2), 122 – 166. https://doi.org/10.2174/1389557516666160630120725.
  20. Komogortsev, A. N.; Lichitsky, B. V.; Dudinov, A. A.; Krylov, K. S.; Krayushkin, M. M.; Bogacheva, A. M.; Kobeleva, O. P.; Barachevskii, V. A. Three-component condensation of iminoazolidines with aldehydes and 5-aminopyrazole. Mendeleev Commun. 2013, 23 (4), 222 – 223. https://doi.org/10.1016/j.mencom.2013.07.015.
  21. Lougiakis, N.; Marakos, P.; Pouli, N.; Fragopoulou, E.; Tenta, R. Synthesis of new nebularine analogues and their inhibitory activity against adenosine deaminase. Chem. Pharm. Bull. 2015, 63 (2), 134 – 142. https://doi.org/10.1248/cpb.c14-00731.
  22. Papadakis, G.; Gerasi, M.; Snoeck, R.; Marakos, P.; Andrei, G.; Lougiakis, N.; Pouli N. Synthesis of new imidazopyridine nucleoside derivatives designed as maribavir analogues. Molecules 2020, 25 (19), 4531 – 4544. https://doi.org/10.3390/molecules25194531.
  23. Chrisman, W.; Tanga, M. J.; Knize, M. G. Synthesis and mutagenic potency of structural isomers of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. J. Heterocycl. Chem. 2008, 45 (6), 1641 – 1645. https://doi.org/10.1002;l’k/jhet.5570450614.
  24. Nguyen, T.-M.; Novak, M. Synthesis and decomposition of an ester derivative of the procarcinogen and promutagen, PhIP, 2-amino-1-methyl-6-phenyl-1H-imidazo[4,5-b]pyridine: Unusual Nitrenium Ion Chemistry. J. Org. Chem. 2007, 72 (13), 4698 – 4706. https://doi.org/10.1021/jo070306p.
  25. Deasy, R. E.; Slattery, C. N.; Maguire, A. R.; Kjell, D. P.; Hawk, M. K. N.; Joo, J. M.; Gu, R. L.; Moynihan, H. Preparation of 2-aminopyridoimidazoles and 2-aminobenzimidazoles via phosphorus oxychloride-mediated cyclization of aminoureas. J. Org. Chem. 2014, 79 (8), 3688 – 3695. https://doi.org/10.1021/jo500360k.
  26. Gritzalis, D.; Park, J.; Chiu, W.; Cho, H.; Lin, Y. S.; Schutter, J. W.; Lacbay, C. M.; Zielinski, M.; Berghuis, A. M.; Tsantrizos, Y. S. Probing the molecular and structural elements of ligands binding to the active site versus an allosteric pocket of the human farnesyl pyrophosphate synthase. Bioorg. Med. Chem. Lett. 2015, 25 (5), 1117 – 1123. https://doi.org/10.1016/j.bmcl.2014.12.089.
  27. Rosenberg, A. J.; Zhao, J.; Clark, D. A. Synthesis of imidazo[4,5-b]pyridines and imidazo[4,5-b]pyrazines by palladium catalyzed amidation of 2-chloro-3-amino-heterocycles. Org. Lett. 2012, 14 (7), 1764 – 1767. https://doi.org/10.1021/ol300359s.
  28. Choshi, T.; Tonari, A.; Yoshioka, H.; Harada, K.; Sugino, E.; Hibino, S. Synthesis of mutagenic heterocyclic amines PhIP and DMIP. J. Org. Chem. 1993, 58 (27), 7952 – 7954. https://doi.org/10.1021/jo00079a055.
  29. Takeda, K.; Ogura, H. Studies on Heterocyclic Compounds. XLIII. Insertion reaction of carbonyl group using disuccinimido carbonate (DSC). Synt. Commun. 1982, 12 (3), 213 – 217. https://doi.org/10.1080/00397918208063680.
  30. Liu, Y.; Zhang, W.; Sayre, L. M. A straightforward synthesis of pentosidine framework. J. Heterocyclic Chem. 2010, 47 (3), 683 – 686. https://doi.org/10.1002/jhet.374.
  31. Kourafalos, V. N.; Marakos, P.; Pouli, N.; Terzis, A.; Townsend, L. B. Synthesis of 7-aminopyrazolo[3,4-c]pyridine as a probe for the preparation of compounds of pharmacological interest. Heterocycles 2002, 57 (12), 2335 – 2343. https://doi.org/10.3987/COM-02-9621.
  32. Rodgers, G. R.; Neish, W. J. P.; Linear expanded xanthines. Monatsh. Chem. 1986, 117 (5-6), 879 – 882. https://doi.org/10.1007/BF00810080.
  33. Dornow, A.; Hahmann, O. Synthesis of 2-hydroxy-4, 5-imidazolo-2, 3-pyridines. Arch. Pharm. 1957, 290 (1), 20 – 31. https://doi.org/10.1002/ardp.19572900104.
  34. Banda, V.; Gautham, S. K.; Pillalamarri, S. R.; Chavva, K.; Banda, N. Synthesis of novel 1,2,3-triazole/isoxazole-functionalized imidazo[4,5-b]pyridine-2(3H)-one derivatives, their antimicrobial and anticancer activity. J. Heterocycl. Chem. 2016, 53 (4), 1168 – 1175. https://doi.org/10.1002/jhet.2370.
  35. Senanayake, C. H.; Fredenburgh, L. E.; Reamer, R. A.; Liu, J.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J. Magnesium-assisted imidazole formation from unreactive ureas. Tetrahedron Lett. 1994, 35 (32), 5775 – 5778. https://doi.org/10.1016/S0040-4039(00)78181-0.
  36. Lee, H.; Kim, D.-G.; Banskota, S.; Lee, Y. K.; Nam, T.; Kim, J.-A.; Jeong, B.-S. Pyridoxine-derived bicyclic amido-, ureido-, and carbamato-pyridinols: synthesis and antiangiogenic activities. Org. Biomol. Chem. 2014, 12 (43), 8702 – 8710. https://doi.org/10.1039/C4OB01221F.
  37. Casimiro-Garcia, A.; Filzen, G. F.; Flynn, D.; Bigge, C. F.; Chen, J.; Davis, J. A.; Dudley, D. A.; Edmunds, J. J.; Esmaeil, N.; Geyer, A.; Heemstra, R. J.; Jalaie, M.; Ohren, J. F.; Ostroski, R.; Ellis, T.; Schaum, R. P.; Stoner, C. Discovery of a series of imidazo[4,5-b]pyridines with dual activity at angiotensin II type 1 receptor and peroxisome proliferator-activated receptor-γ. J. Med. Chem. 2011, 54 (12), 4219 – 4233. https://doi.org/10.1021/jm200409s.
  38. Senanayake, C. H.; Fredenburgh, L. E.; Reamer, R. A.; Liu, J.; Roberts, F. E.; Humphrey, G.; Thompson, A. S.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J.; Sinkai, I. New approach to the imidazolutidine moiety of MK-996. Heterocycles 1996, 42 (2), 821 – 830. https://doi.org/10.3987/COM-95-S91.
  39. Prakash, O.; Batra, H.; Kaur, H.; Sharma, P. K.; Sharma, V.; Singh, S. P.; Moriarty, R. M. Hypervalent iodine oxidative rearrangement of anthranilamides, salicylamides and some β-substituted amides: a new and convenient synthesis of 2-benzimidazolones, 2-benzoxazolones and related compounds. Synthesis 2001, 2001 (4), 541 – 543. https://doi.org/10.1055/s-2001-12346.
  40. Zhu, Z.; Lippa, B. S.; Townsend, L. B. A novel photo-assisted annulation reaction for the synthesis of 6,7-dichloroimidazo[4,5-b]quinolin-2-one. Tetrahedron Lett. 1993, 37 (12), 1937 – 1940. https://doi.org/10.1016/0040-4039(96)00308-5.
  41. Yakovenko, G. G.; Lukianov, O. A.; Bol’but, A. V.; Vovk, M. V. N-Boc-4-aminopyrazole-5-carbaldehydes in Friendländer synthesis of pyrazolo[4,3-b]pyridines. Chem. Heterocycl. Compd. 2019, 55 (4-5), 379 – 385. https://doi.org/10.1007/s10593-019-02468-8.
  42. Yakovenko, G. G.; Lukianov, O. A.; Yahodkina-Yakovenko, M. S.; Vovk, M. V. Synthesis of 5-amino-1H-pyrazolo[4,3-b]pyridine derivatives and annulation of imidazole and pyrimidine rings thereto. Chem. Heterocycl. Compd. 2020, 56 (3), 347 – 354. https://doi.org/10.1007/s10593-020-02666-9.

Published

2021-03-15

How to Cite

(1)
Yakovenko, G. G.; Vovk, M. V. Convenient Approaches to the Synthesis of 6-Amino- and 6-oxoimidazo[4,5-b]pyrazolo[3,4-e]pyridines. J. Org. Pharm. Chem. 2021, 19, 10-15.

Issue

Section

Original Researches