Synthesis, the antiexudative and antimicrobial activity of 6-arylidene substituted imidazo[2,1-b]thiazoles
DOI:
https://doi.org/10.24959/ophcj.21.227378Keywords:
2-methyl-2,3-dihydroimidazo[2,1-b]thiazolone; arylaldehydes; Knoevenagel condensation; 6-arylidene-2-methyl-2,3-dihydroimidazo[2,1-b]thiazolones; antiexudative activity; antimicrobial activityAbstract
Aim. To expand the range of 6-arylidene-2-methyl-2,3-dihydroimidazo[2,1-b]thiazolones as potential objects for studying the antiexudative and antimicrobial activities.
Results and discussion. It has been shown that the condensation of synthetically affordable 2-methyl-2,3-dihydroimidazo[2,1-b]thiazolone with aromatic aldehydes can be successfully used for obtaining the corresponding 6-ylidene-functionalized derivatives. The biological screening of the compounds synthesized revealed that they possessed a low or moderate anti-inflammatory activity and inhibited the inflammation process in the range from 3 to 44 %. During the study of the antimicrobial activity of the substances obtained it was determined that their minimum bacteriostatic and minimum fungistatic concentrations ranged from 31.25 to 250 μg/mL.
Experimental part. The interaction of 2-methyl-2,3-dihydroimidazo[2,1-b]thiazolone with a series of benzaldehydes and salicylic aldehydes in refluxing acetic acid in the presence of anhydrous sodium acetate leads to new 6-arylidene-2-methyl-2,3-dihydroimidazo[2,1-b]thiazolones. The antiexudative activity screening was performed on the model of carrageenan-induced paw oedema of white outbred male rats. The antimicrobial activity of the compounds was studied using the microtechnique of two-fold serial dilutions in a liquid nutrient medium.
Conclusions. It has been found that the Knoevenagel condensation of 2-methyl-2,3-dihydroimidazo[2,1-b]thiazolone with aromatic aldehydes is a convenient way for the structural modification of the position 6 of the heterocyclic system by the arylidene moiety. The arylidene derivatives obtained show a moderate antiexudative activity in the carrageenan-induced rat paw oedema assay, as well as the antimicrobial activity against some gram-positive and gram-negative bacteria and fungi.
Supporting Agency
- Роботу виконано відповідно до основного напряму досліджень кафедри органічної хімії та фармації Волинського національного університету ім. Лесі Українки «Синтез та функціоналізація конденсованих сполук, які є похідними імідазолів, тіазолів, піридинів, та дослідження їх біологічної активності» (протокол №2 від 16.09.2020), у рамках бюджетних наукових тем відділу механізмів органічних реакцій ІОХ НАН України «Дослідження закономірностей циклоутворення та структурна модифікація нових типів функціональних азинових і азепінових систем» (№ держреєстрації: 0115U004724, період досліджень: 2016 – 2020 рр.), кафедри медичної та фармацевтичної хімії та кафедри мікробіології та вірусології Буковинського державного медичного університету «Цілеспрямоване конструювання потенційно біоактивних систем на основі нітрогеновмісних гетероциклів» (№ держреєстрації: 0120U101532, період досліджень: 2020 – 2024 рр.).
Downloads
References
- Saliyeva, L. N.; Diachenko, I. V.; Vas’kevich, R. I.; Slyvka, N. Yu.; Vovk, M. V. Imidazothiazoles and their hydrogenated analogs: methods of synthesis and biomedical potential. Chem. Heterocycl. Compd. 2020, 56 (11), 1394 – 1407. https://doi.org/10.1007/s10593-020-02827-w.
- Tikhonova, T. A.; Rassokhina, I. V.; Kondrakhin, E.A.; Fedosov, M. A.; Bukanova, J. V.; Rossokhin, A. V.; Sharonova, I. N.; Kovalev, G. I.; Zavarzin, I. V.; Volkova, Yu. A. Development of 1,3-thiazole analogues of imidazopyridines as potent positive allosteric modulators of GABAA receptors. Bioorg. Chem. 2020, 94, 103334. https://doi.org/10.1016/j.bioorg.2019.103334.
- Cole, D. C.; Stock, J. R.; Lennox, W. J.; Bernotas, R. C.; Ellingboe, J. W.; Boikess, S.; Coupet, J.; Smith, D. L.; Leung, L.; Zhang, G.-M.; Feng, X.; Kelly, M. F.; Galante, R.; Huang, P.; Dawson, L. A.; Marquis, K.; Rosenzweig-Lipson, S.; Beyer, C. E.; Schechter, L. E. Discovery of N1-(6-Chloroimidazo[2,1-b][1,3]thiazole-5-sulfonyl)tryptamine as a Potent, Selective, and Orally Active 5-HT6 Receptor Agonist. J. Med. Chem. 2007, 50 (23), 5535 – 5538. https://doi.org/10.1021/jm070521y.
- Bemis, J.; Disch, J. S.; Jirousek, M.; Lunsmann, W. J.; Ng, P. Y.; Vu, C. B. Sirtuin Modulating Imidazothiazole Compounds. International Patent WO2008156866A1, Dec 24, 2008.
- Bekaddour, B. N.; Rodero, M.; Herbeu-Val, J.-P.; Pietrancosta, N.; Smith, N. Imidazoline Derivatives as CXCR4 Modulators. International Patent WO2020201096A1, Oct 8, 2020.
- Koudad, M.; Hamouti, C. E.; Elaatiaoui, A.; Dadou, S.; Oussaid, A.; Abrigach, F.; Pilet, G.; Benchat, N.; Allali, M. Synthesis, crystal structure, antimicrobial activity and docking studies of new imidazothiazole derivatives. J. Iran. Chem. Soc. 2020, 17, 297 – 306. https://doi.org/10.1007/s13738-019-01766-4.
- Shareef, M. A.; Sirisha, K.; Sayeed, I. B.; Khan, I.; Ganapathi, T.; Akbar, S.; Kumar, C. G.; Kamal, A.; Nagendra Babu, B. Synthesis of new triazole fused imidazo[2,1-b]thiazole hybrids with emphasis on Staphylococcus aureus virulence factors. Bioorg. Med. Chem. Lett. 2019, 29 (19), 126621. https://doi.org/10.1016/j.bmcl.2019.08.025.
- Leoni, A.; Frosini, M.; Locatelli, A.; Micucci, M.; Carotenuto, C.; Durante, M.; Cosconati, S.; Budriesi, R. 4-Imidazo[2,1-b]thiazole-1,4-DHPs and neuroprotection: preliminary study in hits searching. Eur. J. Med. Chem. 2019, 169, 89 – 102. https://doi.org/10.1016/j.ejmech.2019.02.075.
- Baig, M. F.; Nayak, V. L.; Budaganaboyina, P.; Mullagiri, K.; Sunkari, S.; Gour, J.; Kamal, A. Synthesis and biological evaluation of imidazo[2,1-b]thiazole-benzimidazole conjugates as microtubule-targeting agents. Bioorg. Chem. 2018, 77, 515 – 526. https://doi.org/10.1016/j.bioorg.2018.02.005.
- Nagireddy, P. K. R.; Kommalapati, V. K.; Krishna, V. S.; Sriram, D.; Tangutur, A. D.; Kantevari, S. Imidazo[2,1-b]thiazole-Coupled Natural Noscapine Derivatives was Anticancer Agents. ACS Omega 2019, 21 (4), 19382 – 19398. https://doi.org/10.1021/acsomega.9b02789.
- Noha, R. M.; Abdelhameid, M. K.; Ismail, M. M.; Manal, R. M.; Salwa, E. Design, Synthesis and Screening of Benzimidazole Containing Compounds with Methoxylated Aryl Radicals as Cytotoxic Molecules on (HCT-116) Colon Cancer Cells. Eur. J. Med. Chem. 2020, 209, 112870. https://doi.org/10.1016/j.ejmech.2020.112870.
- Zhang, Q.; Zhao, K.; Zhang, L.; Jiao, X.; Zhang, Y.; Tang, C. Synthesis and biological evaluation of diaryl urea derivatives as FLT3 inhibitors. Bioorg. Med. Chem. Lett. 2020, 30 (23), 127525. https://doi.org/10.1016/j.bmcl.2020.127525.
- Diana, S.; Moghimi, S.; Mahdavi, M.; Nadri, H.; Moradi, A.; Firoozpour, L.; Emami, S.; Mouradzadegun, A.; Shafiee, A.; Foroumadi, A. Quinoline-based imidazole-fused heterocycles as new inhibitors of 15-lipoxygenase. J. Enzyme Inhib. Med. Chem. 2016, 31 (sup3), 205 – 209. https://doi.org/10.1080/14756366.2016.1206087.
- Serafini, M.; Torre, E.; Aprile, S.; Massarotti, A.; Fallarini, S.; Pirali, T. Synthesis, Docking and Biological Evaluation of a Novel Class of Imidazothiazoles as IDO1 Inhibitors. Molecules 2019, 24 (10), 1874. https://doi.org/10.3390/molecules24101874.
- Amarouch, H.; Loiseau, P. R.; Bacha, C.; Caujolle, R.; Payard, M.; Loiseau, P. M.; Bories, C.; Gayral, P. Imidazo[2,1-b]thiazoles: analogues of levamisole. Eur. J. Med. Chem. 1987, 22 (5), 463 – 466. https://doi.org/10.1016/0223-5234(87)90037-7.
- Saliyeva, L. M.; Slyvka, N. Yu.; Vas’kevych, R. I.; Vovk, M. V. Synthesis of 2,3-dihydroimidazo[2,1-b][1,3]thiazole derivatives by electrophilic cyclization of 3-allyl-2-thioxoimidazolidin-4-ones. Ukrainian Chemistry Journal 2016, 82 (5), 64 – 70.
- Saliyeva, L. N.; Slyvka, N. Yu.; Mel’nyk, D. A.; Rusanov, E. B.; Vas’kevich, R. I.; Vovk, M. V. Synthesis of spiro[imidazo[2,1-b][1,3]thiazole-6,3’-pyrrolidine]derivatives. Chem. Heterocycl. Compd. 2018, 54 (2), 130 – 137. https://doi.org/10.1007/s10593-018-2244-8.
- Ye, X.; Zhou, W.; Li, Y.; Sun, Y.; Zhang, Y.; Ji, H.; Lai, Y. Darbufelone, a novel anti-inflammatory drug, induces growth inhibition of lung cancer cells both in vitro and in vivo. Cancer Chemother Pharmacol. 2010, 66, 277 – 285. https://doi.org/10.1007/s00280-009-1161-z.
- Kouzi, O.; Pontiki, E.; Hadjipavlou-Litina, D. 2-Arylidene-1-indandiones as Pleiotropic Agents with Antioxidant and Inhibitory Enzymes Activities. Molecules 2019, 24 (23), 4411. https://doi.org/10.3390/molecules24234411.
- Jain, S.; Kumar, A.; Saini, D. Novel arylidene derivatives of quinoline based thiazolidinones: Synthesis, in vitro, in vivo and in silico study as antimalarials. Exp. Parasitol. 2018, 185, 107 – 114. https://doi.org/10.1016/j.exppara.2018.01.015.
- Rajagopalan, P.; Dera, A.; Abdalsamad, M. R.; Chandramoorthy, H. C. Rational combinations of indirubin and arylidene derivatives exhibit synergism in human non-small cell lung carcinoma cells. J. Food Biochem. 2019, 43 (7), 12861. https://doi.org/10.1111/jfbc.12861.
- Khodair, A. I.; Gesson, J.-P. Sulfur glycosylation reactions involving 3-allyl-2-thiohydantoin nucleoside bases as potential antiviral and antitumor agents. Phosphorus, Sulfur Silicon Relat. Elem. 1998, 142 (1), 167 – 190. https://doi.org/10.1080/10426509808029674.
- Desai, N. C.; Vaghani, H. V.; Rajpara, K. M.; Joshi, V. V.; Satodiya, H. M. Novel approach for synthesis of potent antimicrobial hybrid molecules containing pyrimidine-based imidazole scaffolds. Med. Chem. Res. 2014, 23 (10), 4395 – 4403. https://doi.org/10.1007/s00044-014-1005-1.
- Winter, C. A.; Risley, E. A.; Nuss, G. W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc. Soc. Exp. Biol. Med. 1962, 111 (3), 544 – 547. https://doi.org/10.3181/00379727-111-27849.
- Yakovychuk, N. D.; Deyneka, S. Y.; Grozav, A. M.; Humenna, A. V.; Popovych, V. B.; Djuiriak, V. S. Аntifungal activity of 5-(2-nitrovinyl)imidazoles and their derivatives against the causative agents of vulvovaginal candidiasis. Regulatory Mechanisms in Biosystems 2018, 9 (3), 369 – 373. https://doi.org/https://doi.org/10.15421/021854.
- Про затвердження методичних вказівок «Визначення чутливості мікроорганізмів до антибактеріальних препаратів». https://zakon.rada.gov.ua/rada/show/v0167282-07#Text (accessed May 15, 2021), Міністерство охорони здоров’я України, Наказ №167 від 05.04.2007.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 National University of Pharmacy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors publishing their works in the Journal of Organic and Pharmaceutical Chemistry agree with the following terms:
1. Authors retain copyright and grant the journal the right of the first publication of the work under Creative Commons Attribution License allowing everyone to distribute and re-use the published material if proper citation of the original publication is given.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book) providing proper citation of the original publication.
3. Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on authors’ personal websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access).