Modern chemical disinfectants and antiseptics. Part I

Authors

  • Vasyl M. Britsun O.M. Marzeiev Institute for Public Health, NationalAcademy of Medical Science of Ukraine, Ukraine
  • Nataliya V. Simurova National University of Food Technologies, Ukraine https://orcid.org/0000-0003-0310-6153
  • Inna V. Popova National University of Food Technologies, Ukraine
  • Oleksii V. Simurov V. Komisarenko State Institute of Endocrinology and Metabolism National Academy of Medical Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.24959/ophcj.21.231997

Keywords:

antiseptics, disinfectants, microorganisms, viruses, spores, resistance

Abstract

Aim. To generalize and systematize information on the properties of modern chemical disinfectants and antiseptic agents (DA and AA).
Results and discussion. The review provides generalized and systematized information on the properties of modern chemical DA and AA – alkylating reagents, aldehydes, amides, amidines, bisguanidines, dyes, halogenated reagents, halogens and their complexes, 2-nitrofuran derivatives. The classification of DA and AA by their chemical structure was carried out. The activity spectra, possible application ways and forms of DA and AA were given. Their toxicity and impact on the environment were described as well.
Conclusions. On the basis of the analysis carried out it was shown that aldehydes, halogen-active compounds and halogen-containing complexes are modern effective DA and AA with a wide spectrum of biocidal action. Amides, amidines and bisguanidines are characterized by a narrow spectrum of activity. Dyes and 2-nitrofuran derivatives are old-fashioned antiseptics.

Supporting Agency

  • The work is a part of researches of the National University of Food Technologies on the topic "Chemical design and the study of properties of heterocyclic compounds (the state registration No. 0119U103520)

Downloads

Download data is not yet available.

References

  1. Aburto, J. M.; Villavicencio, F.; Basellini, U.; Kjargaard, S. Dynamics of life expectancy and life span equality. PNAS. 2020, 117 (10), 5250 – 5259. https://doi.org/10.1073/pnas.1915884117.
  2. Beltran-Sanchez, H.; Soneji, S.; Crimmins, E. M. Past, Present, and Future of Healthy Life Expectancy. Cold Spring Harb. Perspect. Med. 2015, 5 (11), a025957. https://doi.org/10.1101/cshperspect.a025957.
  3. McDonnell, G. E. Antisepsis, Disinfection, and Sterilization: Types, Action and Resistance, 2nd Ed.; ASM press: Washington, 2017.
  4. Desinfection, Sterilization, Preservation, 5th ed.; Block, S. S., Ed; Lippincott Williams & Wilkins: Philadelphia, 2001.
  5. McDonnell, G.; Russell, A. D. Antiseptics and Disinfectants: Activity, Action, and Resistance. Clinical Microbiology Reviews 1999, 12 (1), 147 – 180. https://doi.org/10.1128/CMR.12.1.147.
  6. Rutala, W. A.; Weber, D. J. Disinfection and sterilization: An overview. Am. J. Infect. Control. 2013, 41 (5), S.2 – S.5. https://doi.org/10.1016/j.ajic.2012.11.005.
  7. Russell, A. D. Mechanisms of antimicrobial action of antiseptics and disinfectants: an increasingly important area of investigation. J. Antimicrob. Chemother. 2002, 49 (4), 597 – 599. https://doi.org/10.1093/jac/49.4.597.
  8. Yoo, J.H. Review of Disinfection and Sterilization – Back to the Basics. Infect Chemother. 2018, 50 (2), 101 – 109. https://doi.org/10.3947/ic.2018.50.2.101.
  9. Culver, A.; Geiger, C.; Simon, D. Safer products and practices for disinfecting and sanitazing surfaces. https://sfenvironment.org/sites/default/files/fliers/files/sfe_th_safer_products_and_practices_for_disinfecting.pdf (accessed Jun 17, 2021).
  10. Jing, J. L.; Thong, P. Y.; Bose R. C.; McCarthy, J. R. Hand Sanitizers: A Review on Formulation Aspects, Adverse Effects, and Regulations. Int. J. Environ. Res. Public Health 2020, 17 (9), 3326. https://doi.org/10.3390/ijerph17093326.
  11. Chemical bonds and bond energy; Sanderson, R. T., Ed.; Physical Chemistry, book series; Academic Press: New York, 1976; Vol. 21.
  12. Harris D. C. Quantative Chemical Analysis, 7th ed.; W. H. Freeman and Company: New York, 2007.
  13. Janin, Y. L. Antituberculosis drugs: ten years of research. Bioorg Med Chem 2007, 15 (7), 2479 – 513. https://doi.org/10.1016/j.bmc.2007.01.030.
  14. Korchak, H. I.; Klimenko, I. V.; Surmasheva, O. V.; Romanenko, L. I.; Gorval, A. K. Mechanisms of the resistance of bacteria and viruses to the disinfectants and antiseptics. Environment & Health 2019, 4, 70 – 78. https://doi.org/10.32402/dovkil2019.04.070 (in Russian).
  15. Ling, M. L.; Ching, P.; Widitaputra, A.; Stewart, A.; Sirijindadirat, N.; Thu, L. T. A. APSIC guidelines for disinfection and sterilization of instruments in health care facilities. Antimicrobial Resistance & Infection Control 2018, 7 (1), 25. https://doi.org/10.1186/s13756-018-0308-2.
  16. Rutala, W. A.; Weber, D. J. Disinfection and Sterilization in Health Care Facilities: What Clinicians Need to Know. Clinical Infectious Diseases 2004, 39 (5), 702 – 709. https://doi.org/10.1086/423182.
  17. Rutala, W. A.; Weber, D. J. Disinfectants used for environmental disinfection and new room decontamination technology. American Journal of Infection Control 2013, 41 (5), S36 – S41. https://doi.org/10.1016/j.ajic.2012.11.006.
  18. Mendes, G. C. C.; Brandão, T. R. S.; Silva, C. L. M. Ethylene oxide sterilization of medical devices: A review. American Journal of Infection Control 2007, 35 (9), 574 – 581. https://doi.org/10.1016/j.ajic.2006.10.014.
  19. Liteplo, R. G.; Meek, M. E.; Lewis, M. World Health Organisation. Ethylene oxide. https://apps.who.int/iris/handle/10665/42639?locale-attribute=en& (accessed Jun 22, 2021), Concise International Chemical Assessment Document 54, 2003.
  20. Swenberg, J. A.; Moeller, B. C.; Lu, K.; Rager, J. E.; Fry, R. C.; Starr, T. B. Formaldehyde carcinogenicity research: 30 years and counting for mode of action, epidemiology, and cancer risk assessment. Toxicol Pathol 2013, 41 (2), 181 – 189. https://doi.org/10.1177/0192623312466459.
  21. Hagi, A.; Iwata, K.; Nii, T.; Nakata, H.; Tsubotani, Y.; Inoue, Y. Bactericidal Effects and Mechanism of Action of Olanexidine Gluconate, a New Antiseptic. Antimicrob. Agents Chemother. 2015, 59 (8), 4551 – 4559. https://doi.org/10.1128/AAC.05048–14.
  22. Mamouei, Z.; Alqarihi, A.; Singh, S.; Xu, S.; Mansour, M. K.; Ibrahim, A. S.; Uppuluri, P.; Mitchell, A. P. Alexidine Dihydrochloride Has Broad-Spectrum Activities against Diverse Fungal Pathogens. mSphere 2018, 3 (5), e00539-18. https://doi.org/10.1128/mSphere.00539-18.
  23. Surender, L. R.; Shikha, A.; Prabha, S. S. Alexidine: a Safer and an Effective Root Canal Irrigant than Chlorhexidine. J. Clin. Diagn. Res. 2017, 11 (7), ZC18 – ZC21. https://doi.org/10.7860/JCDR/2017/27429.10160.
  24. da Silva, T. M.; Alves, F. R. F.; Lutterbach, M. T. S.; Paiva, M. M.; Ferreira, D. d. C. Comparison of antibacterial activity of alexidine alone or as a final irrigant with sodium hypochlorite and chlorhexidine. BDJ Open 2018, 4 (1), 18003. https://doi.org/10.1038/bdjopen.2018.3.
  25. Zhu, X.; Gao, J.; Ng, P. Y.; Qin, A.; Steer, J. H.; Pavlos, N. J.; Zheng, M. H.; Dong, Y.; Cheng, T. S. Alexidine Dihydrochloride Attenuates Osteoclast Formation and Bone Resorption and Protects Against LPS-Induced Osteolysis. Journal of Bone and Mineral Research 2016, 31 (3), 560 – 572. https://doi.org/10.1002/jbmr.2710.
  26. Nishioka, H.; Nagahama, A.; Inoue, Y.; Hagi, A. Evaluation of fast-acting bactericidal activity and substantivity of an antiseptic agent, olanexidine gluconate, using an ex vivo skin model. Journal of Medical Microbiology 2018, 67 (12), 1796 – 1803. https://doi.org/10.1099/jmm.0.000870.
  27. Worsley, A.; Vassileva, K.; Tsui, J.; Song, W.; Good, L. Polyhexamethylene Biguanide:Polyurethane Blend Nanofibrous Membranes for Wound Infection Control. Polymers 2019, 11 (5), 915. https://doi.org/10.3390/polym11050915.
  28. Chindera, K.; Mahato, M.; Kumar Sharma, A.; Horsley, H.; Kloc-Muniak, K.; Kamaruzzaman, N. F.; Kumar, S.; McFarlane, A.; Stach, J.; Bentin, T.; Good, L. The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes. Scientific reports 2016, 6 (1), 23121. https://doi.org/10.1038/srep23121.
  29. Firdessa, R.; Good, L.; Amstalden, M. C.; Chindera, K.; Kamaruzzaman, N. F.; Schultheis, M.; Röger, B.; Hecht, N.; Oelschlaeger, T. A.; Meinel, L.; Lühmann, T.; Moll, H. Pathogen- and Host-Directed Antileishmanial Effects Mediated by Polyhexanide (PHMB). PLOS Neglected Tropical Diseases 2015, 9 (10), e0004041. https://doi.org/10.1371/journal.pntd.0004041.
  30. Brill, F. H. H.; Gabriel, H.; Brill, H.; Klock, J. H.; Steinmann, J.; Arndt, A. Decolonization potential of 0.02 % polyhexanide irrigation solution in urethral catheters under practice-like in vitro conditions. BMC urology 2018, 18 (1), 49. http://doi.org/10.1186/s12894-018-0362-3.
  31. Fjeld, H.; Lingaas, E. Polyhexanide – safety and efficacy as an antiseptic. Tidsskriftet den Norske Legeforening 2016, 136 (8), 707 – 711. https://doi.org/10.4045/tidsskr.14.1041.
  32. Renzoni, A.; Dach, E. V.; Landelle, C.; Diene, S. M.; Manzano, C.; Gonzales, R.; Abdelhady, W.; Randall, C. P.; Bonetti, E. J.; Baud, D.; O’Neill, A. J.; Bayer, A.; Cherkaoui, A.; Schrenzel, J.; Harbarth, S.; François, P. Impact of Exposure of Methicillin-Resistant Staphylococcus aureus to Polyhexanide In Vitro and In Vivo. Antimicrob. Agents Chemother. 2017, 61 (10), e00272-17. https://doi.org/10.1128/AAC.00272-17.
  33. Kaehn, K. Polihexanide: A Safe and Highly Effective Biocide. Skin Pharmacology and Physiology 2010, 23 (suppl 1), 7 – 16. https://doi.org/10.1159/000318237.
  34. Machuca, J.; Lopez-Rojas, R.; Fernandez-Cuenca, F.; Pascual, Á. Comparative activity of a polyhexanide betaine solution against biofilms produced by multidrug-resistant bacteria belonging to high-risk clones. Journal of Hospital Infection 2019, 103 (1), e92 – e96. https://doi.org/10.1016/j.jhin.2019.04.008.
  35. Drancourt, M.; Boulze Pankert, M.; Hoffart, L. Conjunctivitis, Keratitis and Infections of Periorbital Structures. In Infectious Diseases, 4th ed.; Cohen, J.; Powderly, W. G.; Opal, S. M., Eds.; Elsevier: 2017; Vol. 1, pp 150 – 157.e2. https://doi.org/10.1016/B978-0-7020-6285-8.00016-2.
  36. Sakaue, Y.; Takenaka, S.; Ohsumi, T.; Domon, H.; Terao, Y.; Noiri, Y. The effect of chlorhexidine on dental calculus formation: an in vitro study. BMC Oral Health 2018, 18 (1), 52. https://doi.org/10.1186/s12903-018-0517-3.
  37. Blot, S. Chlorhexidine and Oral Care. AJN The American Journal of Nursing 2019, 119 (6), 13 – 17. https://doi.org/10.1097/01.NAJ.0000559785.40501.01.
  38. Tuuli, M. G.; Liu, J.; Stout, M. J.; Martin, S.; Cahill, A. G.; Odibo, A. O.; Colditz, G. A.; Macones, G. A. A Randomized Trial Comparing Skin Antiseptic Agents at Cesarean Delivery. New England Journal of Medicine 2016, 374 (7), 647 – 55. https://doi.org/10.1056/NEJMoa1511048.
  39. Rafiee, M. H.; Kafiabad, S. A.; Maghsudlu, M.; Moradi, M.; Jalili, L. Chlorhexidine alcohol versus povidone-iodine: The comparative study of skin disinfectants at the blood transfusion centers of Iran. Transfusion Clinique et Biologique 2020, 27 (2), 78 – 82. https://doi.org/10.1016/j.tracli.2020.01.005.
  40. Smith, C.; Miller, D. C. Antiseptic Agents. Pain Medicine 2020, 21 (3), 643 – 644. https://doi.org/10.1093/pm/pnz342.
  41. Kramer, A.; Dissemond, J.; Kim, S.; Willy, C.; Mayer, D.; Papke, R.; Tuchmann, F.; Assadian, O. Consensus on Wound Antisepsis: Update 2018. Skin Pharmacology and Physiology 2018, 31 (1), 28 – 58. https://doi.org/10.1159/000481545.
  42. Steinsapir, K. D.; Woodward, J. A. Chlorhexidine Keratitis: Safety of Chlorhexidine as a Facial Antiseptic. Dermatologic Surgery 2017, 43 (1), 1 – 6. https://doi.org/10.1097/DSS.0000000000000822.
  43. Kapoor, D.; Kaur, N.; Nanda, T. Efficacy of two different concentrations of chlorhexidine mouth-rinse on plaque re-growth. Indian Journal of Dentistry 2011, 2 (2), 11 – 15. https://doi.org/10.1016/S0975-962X(11)60004-X.
  44. Cieplik, F.; Jakubovics, N. S.; Buchalla, W.; Maisch, T.; Hellwig, E.; Al-Ahmad, A. Resistance Toward Chlorhexidine in Oral Bacteria – Is There Cause for Concern? Frontiers in Microbiology 2019, 10, Article 587. https://doi.org/10.3389/fmicb.2019.00587.
  45. Amoian, B.; Omidbakhsh, M.; Khafri, S. The clinical evaluation of Vi-one chlorhexidine mouthwash on plaque-induced gingivitis: A double-blind randomized clinical trial. Electron Physician 2017, 9 (9), 5223 – 5228. https://doi.org/10.19082/5223.
  46. Haydari, M.; Bardakci, A. G.; Koldsland, O. C.; Aass, A. M.; Sandvik, L.; Preus, H. R. Comparing the effect of 0.06 %, 0.12 % and 0.2 % Chlorhexidine on plaque, bleeding and side effects in an experimental gingivitis model: a parallel group, double masked randomized clinical trial. BMC Oral Health 2017, 17 (1), 118. https://doi.org/10.1186/s12903-017-0400-7.
  47. Bescos, R.; Ashworth, A.; Cutler, C.; Brookes, Z. L.; Belfield, L.; Rodiles, A.; Casas-Agustench, P.; Farnham, G.; Liddle, L.; Burleigh, M.; White, D.; Easton, C.; Hickson, M. Effects of Chlorhexidine mouthwash on the oral microbiome. Scientific reports 2020, 10 (1), 5254. https://doi.org/10.1038/s41598-020-61912-4.
  48. Sadakane, K.; Ichinose, T. Effect of the Hand Antiseptic Agents Benzalkonium Chloride, Povidone-Iodine, Ethanol, and Chlorhexidine Gluconate on Atopic Dermatitis in NC/Nga Mice. International Journal of Medical Sciences 2015, 12 (2), 116 – 125. https://doi.org/10.7150/ijms.10322.
  49. Mimoz, O. Chlorhexidine Is Better than Aqueous Povidone Iodine as Skin Antiseptic for Preventing Surgical Site Infections. Infection Control & Hospital Epidemiology 2015, 33 (9), 961 – 962. https://doi.org/10.1086/667388.
  50. Ho, Y. H.; Wang, Y. C.; Loh, E. W.; Tam, K. W. Antiseptic efficacies of waterless hand rub, chlorhexidine scrub, and povidone-iodine scrub in surgical settings: a meta-analysis of randomized controlled trials. Journal of Hospital Infection 2019, 101 (4), 370 – 379. https://doi.org/10.1016/j.jhin.2018.11.012.
  51. Pawar, A.; Garg, S.; Mehta, S.; Dang, R., Breaking the Chain of Infection: Dental Unit Water Quality Control. Journal of Clinical and Diagnostic Research. 2016 10 (7), ZC80 – ZC84. https://doi.org/10.7860/JCDR/2016/19070.8196.
  52. Gatasheh, M. K.; Kannan, S.; Hemalatha, K.; Imrana, N. Proflavine an acridine DNA intercalating agent and strong antimicrobial possessing potential properties of carcinogen. Karbala International Journal of Modern Science 2017, 3 (4), 272 – 278. https://doi.org/10.1016/j.kijoms.2017.07.003.
  53. Slaviero, L.; Avruscio, G.; Vindigni, V.; Tocco-Tussardi, I. Antiseptics for burns: a review of the evidence. Ann Burns Fire Disasters 2018, 31 (3), 198 – 203.
  54. Nedu, M.-E.; Tertis, M.; Cristea, C.; Georgescu, A. V. Comparative Study Regarding the Properties of Methylene Blue and Proflavine and Their Optimal Concentrations for In Vitro and In Vivo Applications. Diagnostics 2020, 10 (4), 223. https://doi.org/10.3390/diagnostics10040223.
  55. Gessner, T.; Mayer, U., Triarylmethane and Diarylmethane Dyes. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2000. https://doi.org/10.1002/14356007.a27_179.
  56. Prajapati, V.; Karen, H. D.; Prajapati, P. H.; Sen, D. J. Chemistry and histochemistry of Gram staining of dyes on bacterial peptidoglican. World J. Pharm. Res. 2018, 7 (16), 490 – 535.
  57. Cambiaso-Daniel, J.; Boukovalas, S.; Bitz, G. H.; Branski, L. K.; Herndon, D. N.; Culnan, D. M. Topical Antimicrobials in Burn Care: Part 1 – Topical Antiseptics. Annals of Plastic Surgery 2018. https://doi.org/10.1097/sap.0000000000001297.
  58. Yang, S. M.; Lee, D. W.; Park, H. J.; Kwak, M. H.; Park, J. M.; Choi, M.-G. Hydrogen Peroxide Enhances the Antibacterial Effect of Methylene Blue-based Photodynamic Therapy on Biofilm-forming Bacteria. Photochem. Photobiol. 2019, 95 (3), 833 – 838. https://doi.org/10.1111/php.13056.
  59. Nadtoka, O.; Virych, P.; Kutsevol, N. Hydrogels Loaded with Methylene Blue: Sorption-Desorption and Antimicrobial Photoactivation Study. International Journal of Polymer Science 2020, 2020, Article ID 9875290. https://doi.org/10.1155/2020/9875290.
  60. Li, R.; Chen, J.; Cesario, T. C.; Wang, X.; Yuan, J. S.; Rentzepis, P. M. Synergistic reaction of silver nitrate, silver nanoparticles, and methylene blue against bacteria. Proceedings of the National Academy of Sciences 2016, 113 (48), 13612 – 13617. https://doi.org/10.1073/pnas.1611193113.
  61. Axegard, P. The effect of the transition from elemental chlorine bleaching to chlorine dioxide bleaching in the pulp industry on the formation of PCDD/Fs. Chemosphere 2019, 236, 124386. https://doi.org/10.1016/j.chemosphere.2019.124386.
  62. Richardson, S. D.; Thruston, A. D.; Caughran, T. V.; Chen, P. H.; Collette, T. W.; Schenck, K. M.; Lykins, B. W.; Rav-Acha, C.; Glezer, V. Identification of New Drinking Water Disinfection by-Products from Ozone, Chlorine Dioxide, Chloramine, and Chlorine. Water, Air, Soil Pollut. 2000, 123 (1), 95 – 102. https://doi.org/10.1023/A:1005265509813.
  63. Waak, M. B.; Hozalski, R. M.; Hallé, C.; LaPara, T. M. Comparison of the microbiomes of two drinking water distribution systems – with and without residual chloramine disinfection. Microbiome 2019, 7 (1), 87. https://doi.org/10.1186/s40168-019-0707-5.
  64. Liu, Q.; Zhang, L. P.; Liu, W. J.; Nie, X. B.; Zhang, S. X.; Zhang, S. Genotoxicity of drinking water during chlorine and chloramine disinfection and the influence of disinfection conditions using the umu-test. Huan jing ke xue 2010, 31 (1), 93 – 98.
  65. Jiang, Y.; Goodwill, J. E.; Tobiason, J. E.; Reckhow, D. A. Comparison of ferrate and ozone pre-oxidation on disinfection byproduct formation from chlorination and chloramination. Water Res. 2019, 156, 110 – 124. https://doi.org/10.1016/j.watres.2019.02.051.
  66. Song, X.; Vossebein, L.; Zille, A. Efficacy of disinfectant-impregnated wipes used for surface disinfection in hospitals: a review. Antimicrobial Resistance & Infection Control 2019, 8 (1), 139. https://doi.org/10.1186/s13756-019-0595-2.
  67. Dal Bello, Y.; Mezzalira, G. I.; Jaguszewski, L. A.; Hoffmann, I. P.; Menchik, V. H. S.; Cecchin, D.; Souza, M. A. Effectiveness of calcium and sodium hypochlorite in association with reciprocating instrumentation on decontamination of root canals infected with Enterococcus faecalis. Australian Endodontic Journal 2019, 45 (1), 92 – 97. https://doi.org/10.1111/aej.12289.
  68. Coaguila-Llerena, H.; Rodrigues, E. M.; Tanomaru-Filho, M.; Guerreiro-Tanomaru, J. M.; Faria, G. Effects of Calcium Hypochlorite and Octenidine Hydrochloride on L929 And Human Periodontal Ligament Cells. Braz. Dent. J. 2019, 30 (3), 213 – 219. https://doi.org/10.1590/0103-6440201902280.
  69. Zand, V.; Lotfi, M.; Soroush, M. H.; Abdollahi, A. A.; Sadeghi, M.; Mojaddadi, A. Antibacterial Efficacy of Different Concentrations of Sodium Hypochlorite Gel and Solution on Enterococcus Faecalis Biofilm. Iran Endod J 2016, 11, 315 – 319. https://doi.org/10.22037/iej.2016.11.
  70. Lineback, C. B.; Nkemngong, C. A.; Wu, S. T.; Li, X.; Teska, P. J.; Oliver, H. F. Hydrogen peroxide and sodium hypochlorite disinfectants are more effective against Staphylococcus aureus and Pseudomonas aeruginosa biofilms than quaternary ammonium compounds. Antimicrobial Resistance & Infection Control 2018, 7 (1), 154. https://doi.org/10.1186/s13756-018-0447-5.
  71. Soto, A. F.; Mendes, E. M.; Arthur, R. A.; Negrini, T. d. C.; Lamers, M. L.; Mengatto, C. M. Antimicrobial effect and cytotoxic activity of vinegar-hydrogen peroxide mixture: A possible alternative for denture disinfection. Journal of Prosthetic Dentistry 2019, 121 (6), 966.e1-966.e6. https://doi.org/10.1016/j.prosdent.2019.02.019.
  72. World Health Organization. https://www.who.int/publications/i/item/cleaning-and-disinfection-of-environmental-surfaces-inthe-context-of-covid-19 (accessed Jun 24, 2021), WHO reference number – WHO/2019-nCoV/Disinfection/2020.1.
  73. Souza, V. G. C.; Lopes, D. F.; Machado, F. C.; Fabri, R. L.; Apolônio, A. C. M. The Novel Coronavirus: An Alert for Pacifiers’ Disinfection. Pesquisa Brasileira em Odontopediatria e Clínica Integrada 2020, 20, e0071. https://doi.org/10.1590/pboci.2020.070.
  74. Iqbal, Q.; Lubeck-Schricker, M.; Wells, E.; Wolfe, M. K.; Lantagne, D. Shelf-Life of Chlorine Solutions Recommended in Ebola Virus Disease Response. PLOS ONE 2016, 11 (5), e0156136. https://doi.org/10.1371/journal.pone.0156136.
  75. Junk, A. K.; Chen, P. P.; Lin, S. C.; Nouri-Mahdavi, K.; Radhakrishnan, S.; Singh, K.; Chen, T. C. Disinfection of Tonometers: A Report by the American Academy of Ophthalmology. Ophthalmology 2017, 124 (12), 1867 – 1875. https://doi.org/10.1016/j.ophtha.2017.05.033.
  76. Abreu, A. C.; Tavares, R. R.; Borges, A.; Mergulhão, F.; Simões, M. Current and emergent strategies for disinfection of hospital environments. J. Antimicrob. Chemother. 2013, 68 (12), 2718 – 2732. https://doi.org/10.1093/jac/dkt281.
  77. Pereira, S. S. P.; de Oliveira, H. M.; Turrini, R. N. T.; Lacerda R. A. Disinfection with sodium hypochlorite in hospital environmental surfaces : a systematic review. Rev. esc. enferm. USP 2015, 49 (4), 675 – 681. https://doi.org/10.1590/S0080-623420150000400020.
  78. Ungurs, M.; Wand, M.; Vassey, M.; O‘Brien, S.; Dixon, D.; Walker, J.; Sutton, J. M. The effectiveness of sodium dichloroisocyanurate treatments against Clostridium difficile spores contaminating stainless steel. American Journal of Infection Control 2011, 39 (3), 199 – 205. https://doi.org/10.1016/j.ajic.2010.07.015.
  79. Jain, S.; Sahanoon, O. K.; Blanton, E.; Schmitz, A.; Wannemuehler, K. A.; Hoekstra, R. M.; Quick, R. E. Sodium Dichloroisocyanurate Tablets for Routine Treatment of Household Drinking Water in Periurban Ghana: A Randomized Controlled Trial. The American Society of Tropical Medicine and Hygiene 2010, 82 (1), 16 – 22. https://doi.org/10.4269/ajtmh.2010.08-0584.
  80. Khazaei, A.; Sarmasti, N.; Yousefi Seyf, J.; Merati, Z. Anchoring N-Halo (sodium dichloroisocyanurate) on the nano-Fe3O4 surface as “chlorine reservoir”: Antibacterial properties and wastewater treatment. Arabian Journal of Chemistry 2020, 13 (1), 2219 – 2232. https://doi.org/10.1016/j.arabjc.2018.04.007.
  81. Massicotte, R.; Mbeh, D. A.; Mafu, A. A.; Toulouse M.; Jacobs, D.; Yahia, L’H.; Pichette, G. Disinfection effect of sodium dichloroisocyanurate (NaDCC) on various surfaces in medical facilities using different techniques. Interdisciplinary Journal of Chemistry 2018, 3, 1 – 5.
  82. Proto, A.; Zarrella, I.; Cucciniello, R.; Pironti, C.; De Caro, F.; Motta, O. Bactericidal and Fungicidal Activity in the Gas Phase of Sodium Dichloroisocyanurate (NaDCC). Current Microbiology 2016, 73 (2), 287 – 291. https://doi.org/10.1007/s00284-016-1040-x.
  83. Morgenthau, A.; Nicolae, A. M.; Laursen, A. E.; Foucher, D. A.; Wolfaardt, G. M.; Hausner, M. Assessment of the working range and effect of sodium dichloroisocyanurate on Pseudomonas aeruginosa biofilms and planktonic cells. Biofouling 2012, 28 (1), 111 – 120. https://doi.org/10.1080/08927014.2011.654335.
  84. Kim, H.-J.; Park, S.-H.; Cho, K.-M.; Kim, J.-W. Evaluation of time-dependent antimicrobial effect of sodium dichloroisocyanurate (NaDCC) on Enterococcus faecalis in the root canal. J Korean Acad Conserv Dent 2007, 32 (2), 121 – 129. https://doi.org/10.5395/JKACD.2007.32.2.121.
  85. Patel, Y.; Wong, D.; Ingerman, L.; McGinnis, P.; Osier, M. Toxicological review of chlorine dioxide and chlorite; EPA/635/R-00/007; U.S. Environmental Protection Agency: Washington, DC, 2000.
  86. Grunert, A.; Frohnert, A.; Selinka, H.-C.; Szewzyk, R. A new approach to testing the efficacy of drinking water disinfectants. International Journal of Hygiene and Environmental Health 2018, 221 (8), 1124 – 1132. https://doi.org/10.1016/j.ijheh.2018.07.010.
  87. Gagnon, G. A.; Rand, J. L.; O’Leary, K. C.; Rygel, A. C.; Chauret, C.; Andrews, R. C. Disinfectant efficacy of chlorite and chlorine dioxide in drinking water biofilms. Water Res. 2005, 39 (9), 1809 – 1817. https://doi.org/10.1016/j.watres.2005.02.004.
  88. Gibbs, S. G.; Lowe, J. J.; Smith, P. W.; Hewlett, A. L. Gaseous Chlorine Dioxide as an Alternative for Bedbug Control. Infection Control & Hospital Epidemiology 2015, 33 (5), 495 – 499. https://doi.org/10.1086/665320.
  89. Vogt, H.; Balej, J.; Bennett, J. E.; Wintzer, P.; Sheikh, S. A.; Gallone, P.; Vasudevan, S.; Pelin, K., Chlorine Oxides and Chlorine Oxygen Acids. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2010. https://doi.org/10.1002/14356007.a06_483.pub2.
  90. Ma, J.-W.; Huang, B.-S.; Hsu, C.-W.; Peng, C.-W.; Cheng, M.-L.; Kao, J.-Y.; Way, T.-D.; Yin, H.-C.; Wang, S.-S. Efficacy and Safety Evaluation of a Chlorine Dioxide Solution. International Journal of Environmental Research and Public Health 2017, 14 (3), 329. https://doi.org/10.3390/ijerph14030329.
  91. Noszticzius, Z.; Wittmann, M.; Kály-Kullai, K.; Beregvári, Z.; Kiss, I.; Rosivall, L.; Szegedi, J. Chlorine Dioxide Is a Size-Selective Antimicrobial Agent. PLOS ONE 2013, 8 (11), e79157. https://doi.org/10.1371/journal.pone.0079157.
  92. Young, R. O. Chlorine Dioxide As a Non-Toxic Antimicrobial Agent for Virus, Bacteria and Yeast (Candida Albicans). International Journal of Vaccines & Vaccination 2016, 2 (6), 00052. https://doi.org/10.15406/ijvv.2016.02.00052.
  93. Shirasaki, Y.; Matsuura, A.; Uekusa, M.; Ito, Y.; Hayashi, T. A study of the properties of chlorine dioxide gas as a fumigant. Experimental Animals 2016, 65 (3), 303-310. https://doi.org/10.1538/expanim.15-0092.
  94. Cai, C.; Floyd, E. L. Effects of Sterilization With Hydrogen Peroxide and Chlorine Dioxide Solution on the Filtration Efficiency of N95, KN95, and Surgical Face Masks. JAMA Network Open 2020, 3 (6), e2012099. https://doi.org/10.1001/jamanetworkopen.2020.12099.
  95. Lee, S.; Oh, S.; Chung, H.; Myung, D.; Song, K.; Choe, N. Bactericidal effects of chlorine dioxide gas against E. coli and S. Typhimurium in vitro. Journal of the Preventive Veterinary Medicine 2017, 41 (4), 162 – 166. https://doi.org/https://doi.org/10.13041/jpvm.2017.41.4.162.
  96. Thorn, R. M. S.; Robinson, G. M.; Reynolds, D. M. Comparative Antimicrobial Activities of Aerosolized Sodium Hypochlorite, Chlorine Dioxide, and Electrochemically Activated Solutions Evaluated Using a Novel Standardized Assay. Antimicrob. Agents Chemother. 2013, 57 (5), 2216 – 2225. https://doi.org/10.1128/AAC.02589-12.
  97. Mathew, E. N.; Muyyarikkandy, M. S.; Bedell, C.; Amalaradjou, M. A. Efficacy of Chlorine, Chlorine Dioxide, and Peroxyacetic Acid in Reducing Salmonella Contamination in Wash Water and on Mangoes Under Simulated Mango Packinghouse Washing Operations. Frontiers in Sustainable Food Systems 2018, 2 (18). https://doi.org/10.3389/fsufs.2018.00018.
  98. Yu, C.-H.; Huang, T.-C.; Chung, C.-C.; Huang, H.-H.; Chen, H.-H. Application of Highly Purified Electrolyzed Chlorine Dioxide for Tilapia Fillet Disinfection. The Scientific World Journal 2014, 2014, Article ID 619038. http://dx.doi.org/10.1155/2014/619038.
  99. Kreske, A. C.; Ryu, J.-H.; Beuchat, L. R. Evaluation of Chlorine, Chlorine Dioxide, and a Peroxyacetic Acid–Based Sanitizer for Effectiveness in Killing Bacillus cereus and Bacillus thuringiensis Spores in Suspensions, on the Surface of Stainless Steel, and on Apples. J. Food Prot. 2006, 69 (8), 1892 – 1903. https://doi.org/10.4315/0362-028X-69.8.1892.
  100. Estrela, C.; Estrela, C. R. de A.; Hollanda, A. C. B.; Decurcio, D. de A.; Pécora, J. D. Influence of iodoform on antimicrobial potential of calcium hydroxide. Journal of Applied Oral Science 2006, 14 (1), 33 – 37. https://doi.org/10.1590/S1678-77572006000100007.
  101. Liu, X.; Liu, H.; Ding, N. Chloramine Disinfection-Induced Nitrification Activities and Their Potential Public Health Risk Indications within Deposits of a Drinking Water Supply System. International Journal of Environmental Research and Public Health 2020, 17 (3), 772. https://doi.org/10.3390/ijerph17030772.
  102. Wang, A.-Q.; Lin, Y.-L.; Xu, B.; Hu, C.-Y.; Gao, Z.-C.; Liu, Z.; Cao, T.-C.; Gao, N.-Y. Factors affecting the water odor caused by chloramines during drinking water disinfection. Sci. Total Environ. 2018, 639, 687 – 694. https://doi.org/10.1016/j.scitotenv.2018.05.188.
  103. How, Z. T.; Kristiana, I.; Busetti, F.; Linge, K. L.; Joll, C. A. Organic chloramines in chlorine-based disinfected water systems: A critical review. Journal of Environmental Sciences 2017, 58, 2 – 18. https://doi.org/10.1016/j.jes.2017.05.025.
  104. Wastensson, G.; Eriksson, K. Inorganic chloramines: a critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting. Crit. Rev. Toxicol. 2020, 50 (3), 219 – 271. https://doi.org/10.1080/10408444.2020.1744514.
  105. Donohue, M. J.; Vesper, S.; Mistry, J.; Donohue, J. M.; Elkins, C. A. Impact of Chlorine and Chloramine on the Detection and Quantification of Legionella pneumophila and Mycobacterium Species. Applied and Environmental Microbiology 2019, 85 (24), e01942-19. https://doi.org/10.1128/AEM.01942-19.
  106. Monochloramine in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality; WHO/SDE/WSH/03.04/83; World Health Organization: 2004.
  107. Kanagalingam, J.; Feliciano, R.; Hah, J. H.; Labib, H.; Le, T. A.; Lin, J.-C. Practical use of povidone-iodine antiseptic in the maintenance of oral health and in the prevention and treatment of common oropharyngeal infections. International Journal of Clinical Practice 2015, 69 (11), 1247 – 1256. https://doi.org/10.1111/ijcp.12707.
  108. Schmitz, G.; Rosenblatt, L.; Salerno, N.; Odette, J.; Ren, R.; Emanuel, T.; Michalek, J.; Liu, Q.; Du, L.; Jahangir, K.; Olson, A. S. Treatment data using a topical povidone-iodine antiseptic in patients with superficial skin abscesses. Data in Brief 2019, 23, 103715. https://doi.org/10.1016/j.dib.2019.103715.
  109. Wass, S.; Albrektsen, G.; Ødegård, M. T.; Sand, M.; Austeng, D. Antiseptic effect of low-concentration povidone-iodine applied with a depot device in the conjunctiva before cataract surgery. Eye 2018, 32 (12), 1900 – 1907. https://doi.org/10.1038/s41433-018-0198-9.
  110. Bigliardi, P. L.; Alsagoff, S. A. L.; El-Kafrawi, H. Y.; Pyon, J.-K.; Wa, C. T. C.; Villa, M. A. Povidone iodine in wound healing: A review of current concepts and practices. International Journal of Surgery 2017, 44, 260 – 268. https://doi.org/10.1016/j.ijsu.2017.06.073.
  111. Lachapellе, J.-М.; Castel, O.; Casado, A. F.; Leroy, B.; Micali, G.; Tennstedt, D.; Lambert, G. Antiseptics in the era of bacterial resistance: a focus on povidone iodine. Clinical Practice, 2013, 10 (5), 579 – 592.
  112. Chua, M. J.; Chua, A.; Harrisberg, B.; Kumar, C. M. An alternative antiseptic solution to 5 % povidone-iodine for regional ophthalmic blocks in patients who are allergic to iodine. Anaesthesia and intensive care 2018, 46 (4), 431 – 432.
  113. Roeckner, J. T.; Sanchez-Ramos, L.; Mitta, M.; Kovacs, A.; Kaunitz, A. M. Povidone-iodine 1 % is the most effective vaginal antiseptic for preventing post-cesarean endometritis: a systematic review and network meta-analysis. American Journal of Obstetrics & Gynecology 2019, 221 (3), 261.e1 – 261.e20. https://doi.org/10.1016/j.ajog.2019.04.002.
  114. Wixtrom, R. N. Commentary on: Hypochlorous Acid Versus Povidone-Iodine Containing Irrigants: Which Antiseptic is More Effective for Breast Implant Pocket Irrigation? Aesthetic Surgery Journal 2018, 38 (7), 728 – 730. https://doi.org/10.1093/asj/sjy040.
  115. Gnanasekaran, S.; Rogers, S.; Wickremasinghe, S.; Sandhu, S. S. The effect of diluting povidone-iodine on bacterial growth associated with speech. BMC Ophthalmology 2019, 19 (1), 62. https://doi.org/10.1186/s12886-019-1066-5.
  116. Nazarchuk, O. Research of antimicrobial efficacy of modern antiseptic agents based on decamethoxine and povidone-iodine. Perioperative Medicine 2019, 2 (1), 4 – 10. https://doi.org/10.31636/prmd.v2i1.1 (in Ukrainian).
  117. Al-Abri, M.; Al-Ghafri, B.; Bora, T.; Dobretsov, S.; Dutta, J.; Castelletto, S.; Rosa, L.; Boretti, A. Chlorination disadvantages and alternative routes for biofouling control in reverse osmosis desalination. npj Clean Water 2019, 2 (1), Article number 2. https://doi.org/10.1038/s41545-018-0024-8.
  118. Cervero-Aragó, S.; Rodríguez-Martínez, S.; Puertas-Bennasar, A.; Araujo, R. M. Effect of Common Drinking Water Disinfectants, Chlorine and Heat, on Free Legionella and Amoebae-Associated Legionella. PLOS ONE 2015, 10 (8), e0134726. https://doi.org/10.1371/journal.pone.0134726.
  119. Meireles, A.; Giaouris, E.; Simões, M. Alternative disinfection methods to chlorine for use in the fresh-cut industry. Food Research International 2016, 82, 71 – 85. https://doi.org/10.1016/j.foodres.2016.01.021.
  120. Schecter, A.; Birnbaum, L.; Ryan, J. J.; Constable, J. D. Dioxins: An overview. Environ. Res. 2006, 101 (3), 419 – 428. https://doi.org/10.1016/j.envres.2005.12.003.
  121. Beliatskaya, A. V.; Kashlikova, I. M.; Elagina, А. O.; Krasnyuk, I. I. (jr.); Krasnyuk, I. I.; Stepanova, O. I. Nitrofurans for External Use (Review). Drug development & registration 2019, 8 (2), 38 – 47. https://doi.org/10.33380/2305-2066-2019-8-2-38-47 (in Russian).
  122. Zorzi, R. R.; Jorge, S. D.; Palace-Berl, F.; Pasqualoto, K. F. M.; Bortolozzo, L. d. S.; de Castro Siqueira, A. M.; Tavares, L. C. Exploring 5-nitrofuran derivatives against nosocomial pathogens: Synthesis, antimicrobial activity and chemometric analysis. Bioorg. Med. Chem. 2014, 22 (10), 2844 – 2854. https://doi.org/10.1016/j.bmc.2014.03.044.
  123. Kashlikova, I. M.; Belyatskaya, A. V.; Krasnyuk, I. I.; Krasnyuk, I. I.; Voropaeva, E. A.; Egorova, E. A.; Stepanova, O. I.; Vorob’yov, A. N. Antimicrobial Activity of Nitrofural in Various Dosage Forms. Pharm. Chem. J. 2020, 54 (1), 57 – 60. https://doi.org/10.1007/s11094-020-02155-5.

Published

2021-10-20

How to Cite

(1)
Britsun, V. M.; Simurova, N. V.; Popova, I. V.; Simurov, O. V. Modern Chemical Disinfectants and Antiseptics. Part I. J. Org. Pharm. Chem. 2021, 19, 3-14.

Issue

Section

Original Researches