New phosphorus-containing polycycles with a spiroamine group

Authors

  • Grygorii M. Koidan Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, Ukraine
  • Anatolii P. Marchenko Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, Ukraine
  • Anastasiia M. Hurieva Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, Ukraine http://orcid.org/0000-0003-3509-9058
  • Aleksandr M. Kostyuk Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, Ukraine http://orcid.org/0000-0002-4326-4968

DOI:

https://doi.org/10.24959/ophcj.22.252844

Keywords:

transient acyclic carbenes, 1,2-phosphorus shift, 6-azaspiro[2.5]octane, diazaphosphepine, N-P bond

Abstract

Aim. To synthesize hexahydrospiro[cyclopropane-1,10’-pyrido[1,2-c]quinazoline] and 2-λ5-benzo[f][1,4,2]diazaphosphepine derivatives – new N-P containing heterocyclic compounds with the 6-azaspiro[2.5]octane fragment.
Results and discussion. A new analog of the powerful electrophilic reagent – “Alder dimer” ‒ was obtained from the interaction of triflic anhydride and spiro(4-cyclopropane) piperidinyl formamide, and further used to synthesize new Nʹ-PV- and PIII-substituted Νʹ-phenyl, Νʹʹ-hexahydro(azaspiro)octylformamidinium salts – precursors of acyclic N-phosphorylated diamino carbenes with a spiroamine group. It has been shown that acyclic N-phosphorylated diaminocarbenes are transient species affording various products. The structure of the final product is primarily determined by nature of the phosphorus-bearing substituent, namely a phosphoryl or phosphino-group. N-PV-substituted carbene undergoes a 1,2-phosphorus shift with the formation of (selenophosphoryl)formamidine in a high yield. For N-PIII-substituted carbene a compatible 1,3-H shift also occurs with the formation of an intermediate azomethine ylide converted into a new heterocyclic system – hexahydrospirocyclopropane -1,10’-pyrido[1,2-c]quinazoline. Under the action of acid an unexpected further expansion of the 6-member ring occurs with the formation of a diazepine derivative.
Experimental part. The reaction of Alder reagent with N-PV-seleno phosphoryl arylamides afforded N-phosphorus substituted formamidinium salts, which are easily reduced to PIII analogues. In addition to the corresponding formamidines, the new N-phosphorylated spiroamine-containing polycyclic system was isolated from the reaction mixture formed by the deprotonation of such salts with a strong non-nucleophilic base.
Conclusions. The Alder reagent approach allows synthesizing precursors of acyclic formamidine carbenes with the spiroamine group. Such carbenes are unstable. By converting these compounds N-PIII-substituted tetrahydropyrimidine and diazaphosphepine derivatives with the 6-azaspiro[2.5]octane fragment have been obtained for the first time.

Supporting Agency

  • The work is a part of the departmental research at the Institute of Organic Chemistry on the topic “Phosphine and carbene polydentate ligands: synthesis and application” (the state registration No. 0116U008796; the research period – 2017 – 2021).

Downloads

Download data is not yet available.

References

  1. Díez-González, S., Ed. N-Heterocyclic Carbenes: From Laboratories Curiosities to Efficient Synthetic Tools, 1st ed.; The Royal Society of Chemistry: Cambridge, 2011.
  2. Leow, M.; Ho, C.; Gardiner, M.; Bissember, A. Non-Classical Anionic Naked N-Heterocyclic Carbenes: Fundamental Properties and Emerging Applications in Synthesis and Catalysis. Catalysts 2018, 8 (12), 620. https://doi.org/10.3390/catal8120620.
  3. Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. An Overview of N-Heterocyclic Carbenes. Nature 2014, 510 (7506), 485–496. https://doi.org/10.1038/nature13384.
  4. Smith, C. A.; Narouz, M. R.; Lummis, P. A.; Singh, I.; Nazemi, A.; Li, C. H.; Crudden, C. M. N-Heterocyclic Carbenes in Materials Chemistry. Chem. Rev. 2019, 119 (8), 4986–5056. https://doi.org/10.1021/acs.chemrev.8b00514.
  5. Mercs, L.; Albrecht, M. Beyond Catalysis: N-Heterocyclic Carbene Complexes as Components for Medicinal, Luminescent, and Functional Materials Applications. Chem. Soc. Rev. 2010, 39 (6), 1903–1912. https://doi.org/10.1039/B902238B.
  6. Johnson, N. A.; Southerland, M. R.; Youngs, W. J. Recent Developments in the Medicinal Applications of Silver-NHC Complexes and Imidazolium Salts. Molecules 2017, 22 (8). https://doi.org/10.3390/MOLECULES22081263.
  7. Patil, S. A.; Patil, S. A.; Patil, R.; Keri, R. S.; Budagumpi, S.; Balakrishna, G. R.; Tacke, M. N-Heterocyclic Carbene Metal Complexes as Bio-Organometallic Antimicrobial and Anticancer Drugs. Future Medicinal Chemistry 2015, 7 (10), 1305–1333. https://doi.org/10.4155/fmc.15.61.
  8. Enders, D.; Niemeier, O.; Henseler, A. Organocatalysis by N-Heterocyclic Carbenes. Chem. Rev. 2007, 107 (12), 5606–5655. https://doi.org/10.1021/cr068372z.
  9. Cheng, Y.; Meth-Cohn, O. Heterocycles Derived from Heteroatom-Substituted Carbenes. Chem. Rev. 2004, 104 (5), 2507–2530. https://doi.org/10.1021/cr030604w.
  10. Marchenko, A.; Koidan, G.; Hurieva, A.; Kurpiieva, O.; Vlasenko, Y.; Rozhenko, A. B.; Kostyuk, A. Stable N-Phosphanyl Acyclic Diaminocarbenes. Eur. J. Inorg. Chem. 2015, 2014 (20), 3259–3270. https://doi.org/10.1002/ejic.201402166.
  11. Marchenko, A.; Koidan, G.; Hurieva, A.; Vlasenko, Y.; Kostyuk, A.; Biffis, A. Palladium(II) Complexes with Chelating N-Phosphanyl Acyclic Diaminocarbenes: Synthesis, Characterization and Catalytic Performance in Suzuki Couplings. Dalton Trans. 2016, 45 (5), 1967–1975. https://doi.org/10.1039/c5dt02250a.
  12. Marchenko, A.; Koidan, G.; Hurieva, A.; Vlasenko, Y.; Rozhenko, A. B.; Sotiropoulos, J.; Kostyuk, A. Transformation Routes of PV- and PIII-N-Substituted Acyclic Diaminocarbenes. Eur. J. Inorg. Chem. 2019, 2019 (11–12), 1621–1632. https://doi.org/10.1002/ejic.201801141.
  13. Pazio, A.; Woźniak, K.; Grela, K.; Trzaskowski, B. Conformational Flexibility of Hoveyda-Type and Grubbs-Type Complexes Bearing Acyclic Carbenes and Its Impact on Their Catalytic Properties. Organometallics 2015, 34 (3), 563–570. https://doi.org/10.1021/om5006462.
  14. Slaughter, L. M. Acyclic Aminocarbenes in Catalysis. ACS Catal. 2012, 2 (8), 1802–1816. https://doi.org/10.1021/cs300300y.
  15. Schulz, T.; Leibold, M.; Färber, C.; Maurer, M.; Porsch, T.; Holthausen, M. C.; Siemeling, U. Unexpected Thermal Decomposition of the “Alder Carbene” (iPr2N)2C. Chem. Commun. 2012, 48 (73), 9123–9125. https://doi.org/10.1039/C2CC34208A.
  16. Solé, S.; Gornitzka, H.; Guerret, O.; Bertrand, G. Apparent 1,2-Silyl Migrations in Aromatic Carbenes Occur by Intermolecular Silyl Exchanges. J. Am. Chem. Soc. 1998, 120 (35), 9100-9101. https://doi.org/10.1021/ja980797i.
  17. Cattoën, X.; Gornitzka, H.; Tham, F. S.; Miqueu, K.; Bourissou, D.; Bertrand, G. Transient Amino-Hydrazino-Carbenes: A Radical Pathway for Intramolecular 1,2-Migration Reactions. Eur. J. Org. Chem. 2007, 2007 (6), 912–917. https://doi.org/10.1002/ejoc.200600901.
  18. Liu, W. C.; Liu, Y. H.; Lin, T. S.; Peng, S. M.; Chiu, C. W. 1,2-Migration of N-Diarylboryl Imidazol-2-Ylidene through Intermolecular Radical Process. Inorg. Chem. 2017, 56 (17), 10543–10548. https://doi.org/10.1021/acs.inorgchem.7b01511.
  19. Vignolle, J.; Cattoën, X.; Bourissou, D. Stable Noncyclic Singlet Carbenes. Chem. Rev. 2009, 109 (8), 3333–3384. https://doi.org/10.1021/cr800549j.
  20. Cattoën, X.; Solé, S.; Pradel, C.; Gornitzka, H.; Miqueu, K.; Bourissou, D.; Bertrand, G. Transient Azomethine-Ylides from a Stable Amino-Carbene and an Aldiminium Salt. J. Org. Chem. 2003, 68 (3), 911–914. https://doi.org/10.1021/jo026214b.
  21. Maury, C.; Gharbaoui, T.; Royer, J.; Husson, H.-P. Asymmetric Synthesis of α-Amino Phosphonic Acids by Diastereoselective Addition of Trimethyl Phosphite onto Chiral Oxazolidines. J. Org. Chem. 1996, 61 (11), 3687–3693. https://doi.org/10.1021/jo960020c.
  22. Páv, O.; Barvík, I.; Buděšínský, M.; Masojídková, M.; Rosenberg, I. Ring Enlargement of Cyclic Acetals and Ketals: A Way to Seven-Membered Nucleoside Phostones. Org. Lett. 2007, 9 (26), 5469–5472. https://doi.org/10.1021/ol7023899.
  23. Hossain, N.; Ivanova, S.; Timén, Å. S.; Bergare, J.; Mussie, T.; Bergström, L. Design, Synthesis and Structure–Activity Relationships of Zwitterionic Spirocyclic Compounds as Potent CCR1 Antagonists. Bioorg. Med. Chem. Lett. 2013, 23 (14), 4026–4030. https://doi.org/10.1016/j.bmcl.2013.05.087.
  24. Rottapharm SPA; Stasi, L. P.; Rovati, L. Spiro-amino compounds suitable for the treatment of sleep disorders and administrative addiction. WO/2011/006960, January 20, 2011.
  25. AstraZeneca AB. Spirocyclopropyl piperidine derivatives. WO/2008/147314A1, December 4, 2008.
  26. Satoh, K.; Imura, A.; Miyadera, A.; Kanai, K.; Yukimoto, Y. An Efficient Synthesis of a Key Intermediate of DU-6859a via Asymmetric Microbial Reduction. Chem. Pharm. Bull. 1998, 46 (4), 587–590. https://doi.org/10.1248/cpb.46.587.
  27. Alder, R. W.; Blake, M. E.; Bufali, S.; Butts, C. P.; Orpen, A. G.; Schütz, J.; Williams, S. J. Preparation of Tetraalkylformamidinium Salts and Related Species as Precursors to Stable Carbenes. J. Chem. Soc., Perkin Trans. 1 2001, 14, 1586–1593. https://doi.org/10.1039/b104110j.
  28. Marchenko, A.; Koidan, G.; Hurieva, A.; Savateev, A.; Rozhenko, A. B.; Sotiropoulos, J.; Shishkina, S. V.; Shishkin, O. V.; Kostyuk, A. A Convenient Approach to N‐(Di‐Tert‐butylphosphanyl)‐ and N‐(Di‐Tert‐butylphosphoroselenoyl)Formamidinium Salts: Carbene Precursors. Eur. J. Inorg. Chem. 2014, 2014 (7), 1192–1203. https://doi.org/10.1002/ejic.201301365.
  29. Corbridge, D. E. C. Phosphorus: Chemistry, Biochemistry and Technology, 6th ed.; CRC Press: Boca Raton, 2013. https://doi.org/10.1201/b12961.
  30. Marchenko, A.; Koidan, G.; Hurieva, A. N.; Shishkina, S.; Rusanov, E.; Kostyuk, A. Ring Enlargement of N-Phosphanyl-1,2,3,4-Tetrahydroquinazolines. J. Org. Chem. 2020, 85 (22), 14467–14472. https://doi.org/10.1021/ACS.JOC.0C00750.

Downloads

Published

2022-05-30

How to Cite

(1)
Koidan, G. M.; Marchenko, A. P.; Hurieva, A. M.; Kostyuk, A. M. New Phosphorus-Containing Polycycles With a Spiroamine Group. J. Org. Pharm. Chem. 2022, 20, 3-11.

Issue

Section

Advanced Researches