New phosphorus-containing polycycles with a spiroamine group
DOI:
https://doi.org/10.24959/ophcj.22.252844Keywords:
transient acyclic carbenes, 1,2-phosphorus shift, 6-azaspiro[2.5]octane, diazaphosphepine, N-P bondAbstract
Aim. To synthesize hexahydrospiro[cyclopropane-1,10’-pyrido[1,2-c]quinazoline] and 2-λ5-benzo[f][1,4,2]diazaphosphepine derivatives – new N-P containing heterocyclic compounds with the 6-azaspiro[2.5]octane fragment.
Results and discussion. A new analog of the powerful electrophilic reagent – “Alder dimer” ‒ was obtained from the interaction of triflic anhydride and spiro(4-cyclopropane) piperidinyl formamide, and further used to synthesize new Nʹ-PV- and PIII-substituted Νʹ-phenyl, Νʹʹ-hexahydro(azaspiro)octylformamidinium salts – precursors of acyclic N-phosphorylated diamino carbenes with a spiroamine group. It has been shown that acyclic N-phosphorylated diaminocarbenes are transient species affording various products. The structure of the final product is primarily determined by nature of the phosphorus-bearing substituent, namely a phosphoryl or phosphino-group. N-PV-substituted carbene undergoes a 1,2-phosphorus shift with the formation of (selenophosphoryl)formamidine in a high yield. For N-PIII-substituted carbene a compatible 1,3-H shift also occurs with the formation of an intermediate azomethine ylide converted into a new heterocyclic system – hexahydrospirocyclopropane -1,10’-pyrido[1,2-c]quinazoline. Under the action of acid an unexpected further expansion of the 6-member ring occurs with the formation of a diazepine derivative.
Experimental part. The reaction of Alder reagent with N-PV-seleno phosphoryl arylamides afforded N-phosphorus substituted formamidinium salts, which are easily reduced to PIII analogues. In addition to the corresponding formamidines, the new N-phosphorylated spiroamine-containing polycyclic system was isolated from the reaction mixture formed by the deprotonation of such salts with a strong non-nucleophilic base.
Conclusions. The Alder reagent approach allows synthesizing precursors of acyclic formamidine carbenes with the spiroamine group. Such carbenes are unstable. By converting these compounds N-PIII-substituted tetrahydropyrimidine and diazaphosphepine derivatives with the 6-azaspiro[2.5]octane fragment have been obtained for the first time.
Supporting Agency
- The work is a part of the departmental research at the Institute of Organic Chemistry on the topic “Phosphine and carbene polydentate ligands: synthesis and application” (the state registration No. 0116U008796; the research period – 2017 – 2021).
Downloads
References
- Díez-González, S., Ed. N-Heterocyclic Carbenes: From Laboratories Curiosities to Efficient Synthetic Tools, 1st ed.; The Royal Society of Chemistry: Cambridge, 2011.
- Leow, M.; Ho, C.; Gardiner, M.; Bissember, A. Non-Classical Anionic Naked N-Heterocyclic Carbenes: Fundamental Properties and Emerging Applications in Synthesis and Catalysis. Catalysts 2018, 8 (12), 620. https://doi.org/10.3390/catal8120620.
- Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. An Overview of N-Heterocyclic Carbenes. Nature 2014, 510 (7506), 485–496. https://doi.org/10.1038/nature13384.
- Smith, C. A.; Narouz, M. R.; Lummis, P. A.; Singh, I.; Nazemi, A.; Li, C. H.; Crudden, C. M. N-Heterocyclic Carbenes in Materials Chemistry. Chem. Rev. 2019, 119 (8), 4986–5056. https://doi.org/10.1021/acs.chemrev.8b00514.
- Mercs, L.; Albrecht, M. Beyond Catalysis: N-Heterocyclic Carbene Complexes as Components for Medicinal, Luminescent, and Functional Materials Applications. Chem. Soc. Rev. 2010, 39 (6), 1903–1912. https://doi.org/10.1039/B902238B.
- Johnson, N. A.; Southerland, M. R.; Youngs, W. J. Recent Developments in the Medicinal Applications of Silver-NHC Complexes and Imidazolium Salts. Molecules 2017, 22 (8). https://doi.org/10.3390/MOLECULES22081263.
- Patil, S. A.; Patil, S. A.; Patil, R.; Keri, R. S.; Budagumpi, S.; Balakrishna, G. R.; Tacke, M. N-Heterocyclic Carbene Metal Complexes as Bio-Organometallic Antimicrobial and Anticancer Drugs. Future Medicinal Chemistry 2015, 7 (10), 1305–1333. https://doi.org/10.4155/fmc.15.61.
- Enders, D.; Niemeier, O.; Henseler, A. Organocatalysis by N-Heterocyclic Carbenes. Chem. Rev. 2007, 107 (12), 5606–5655. https://doi.org/10.1021/cr068372z.
- Cheng, Y.; Meth-Cohn, O. Heterocycles Derived from Heteroatom-Substituted Carbenes. Chem. Rev. 2004, 104 (5), 2507–2530. https://doi.org/10.1021/cr030604w.
- Marchenko, A.; Koidan, G.; Hurieva, A.; Kurpiieva, O.; Vlasenko, Y.; Rozhenko, A. B.; Kostyuk, A. Stable N-Phosphanyl Acyclic Diaminocarbenes. Eur. J. Inorg. Chem. 2015, 2014 (20), 3259–3270. https://doi.org/10.1002/ejic.201402166.
- Marchenko, A.; Koidan, G.; Hurieva, A.; Vlasenko, Y.; Kostyuk, A.; Biffis, A. Palladium(II) Complexes with Chelating N-Phosphanyl Acyclic Diaminocarbenes: Synthesis, Characterization and Catalytic Performance in Suzuki Couplings. Dalton Trans. 2016, 45 (5), 1967–1975. https://doi.org/10.1039/c5dt02250a.
- Marchenko, A.; Koidan, G.; Hurieva, A.; Vlasenko, Y.; Rozhenko, A. B.; Sotiropoulos, J.; Kostyuk, A. Transformation Routes of PV- and PIII-N-Substituted Acyclic Diaminocarbenes. Eur. J. Inorg. Chem. 2019, 2019 (11–12), 1621–1632. https://doi.org/10.1002/ejic.201801141.
- Pazio, A.; Woźniak, K.; Grela, K.; Trzaskowski, B. Conformational Flexibility of Hoveyda-Type and Grubbs-Type Complexes Bearing Acyclic Carbenes and Its Impact on Their Catalytic Properties. Organometallics 2015, 34 (3), 563–570. https://doi.org/10.1021/om5006462.
- Slaughter, L. M. Acyclic Aminocarbenes in Catalysis. ACS Catal. 2012, 2 (8), 1802–1816. https://doi.org/10.1021/cs300300y.
- Schulz, T.; Leibold, M.; Färber, C.; Maurer, M.; Porsch, T.; Holthausen, M. C.; Siemeling, U. Unexpected Thermal Decomposition of the “Alder Carbene” (iPr2N)2C. Chem. Commun. 2012, 48 (73), 9123–9125. https://doi.org/10.1039/C2CC34208A.
- Solé, S.; Gornitzka, H.; Guerret, O.; Bertrand, G. Apparent 1,2-Silyl Migrations in Aromatic Carbenes Occur by Intermolecular Silyl Exchanges. J. Am. Chem. Soc. 1998, 120 (35), 9100-9101. https://doi.org/10.1021/ja980797i.
- Cattoën, X.; Gornitzka, H.; Tham, F. S.; Miqueu, K.; Bourissou, D.; Bertrand, G. Transient Amino-Hydrazino-Carbenes: A Radical Pathway for Intramolecular 1,2-Migration Reactions. Eur. J. Org. Chem. 2007, 2007 (6), 912–917. https://doi.org/10.1002/ejoc.200600901.
- Liu, W. C.; Liu, Y. H.; Lin, T. S.; Peng, S. M.; Chiu, C. W. 1,2-Migration of N-Diarylboryl Imidazol-2-Ylidene through Intermolecular Radical Process. Inorg. Chem. 2017, 56 (17), 10543–10548. https://doi.org/10.1021/acs.inorgchem.7b01511.
- Vignolle, J.; Cattoën, X.; Bourissou, D. Stable Noncyclic Singlet Carbenes. Chem. Rev. 2009, 109 (8), 3333–3384. https://doi.org/10.1021/cr800549j.
- Cattoën, X.; Solé, S.; Pradel, C.; Gornitzka, H.; Miqueu, K.; Bourissou, D.; Bertrand, G. Transient Azomethine-Ylides from a Stable Amino-Carbene and an Aldiminium Salt. J. Org. Chem. 2003, 68 (3), 911–914. https://doi.org/10.1021/jo026214b.
- Maury, C.; Gharbaoui, T.; Royer, J.; Husson, H.-P. Asymmetric Synthesis of α-Amino Phosphonic Acids by Diastereoselective Addition of Trimethyl Phosphite onto Chiral Oxazolidines. J. Org. Chem. 1996, 61 (11), 3687–3693. https://doi.org/10.1021/jo960020c.
- Páv, O.; Barvík, I.; Buděšínský, M.; Masojídková, M.; Rosenberg, I. Ring Enlargement of Cyclic Acetals and Ketals: A Way to Seven-Membered Nucleoside Phostones. Org. Lett. 2007, 9 (26), 5469–5472. https://doi.org/10.1021/ol7023899.
- Hossain, N.; Ivanova, S.; Timén, Å. S.; Bergare, J.; Mussie, T.; Bergström, L. Design, Synthesis and Structure–Activity Relationships of Zwitterionic Spirocyclic Compounds as Potent CCR1 Antagonists. Bioorg. Med. Chem. Lett. 2013, 23 (14), 4026–4030. https://doi.org/10.1016/j.bmcl.2013.05.087.
- Rottapharm SPA; Stasi, L. P.; Rovati, L. Spiro-amino compounds suitable for the treatment of sleep disorders and administrative addiction. WO/2011/006960, January 20, 2011.
- AstraZeneca AB. Spirocyclopropyl piperidine derivatives. WO/2008/147314A1, December 4, 2008.
- Satoh, K.; Imura, A.; Miyadera, A.; Kanai, K.; Yukimoto, Y. An Efficient Synthesis of a Key Intermediate of DU-6859a via Asymmetric Microbial Reduction. Chem. Pharm. Bull. 1998, 46 (4), 587–590. https://doi.org/10.1248/cpb.46.587.
- Alder, R. W.; Blake, M. E.; Bufali, S.; Butts, C. P.; Orpen, A. G.; Schütz, J.; Williams, S. J. Preparation of Tetraalkylformamidinium Salts and Related Species as Precursors to Stable Carbenes. J. Chem. Soc., Perkin Trans. 1 2001, 14, 1586–1593. https://doi.org/10.1039/b104110j.
- Marchenko, A.; Koidan, G.; Hurieva, A.; Savateev, A.; Rozhenko, A. B.; Sotiropoulos, J.; Shishkina, S. V.; Shishkin, O. V.; Kostyuk, A. A Convenient Approach to N‐(Di‐Tert‐butylphosphanyl)‐ and N‐(Di‐Tert‐butylphosphoroselenoyl)Formamidinium Salts: Carbene Precursors. Eur. J. Inorg. Chem. 2014, 2014 (7), 1192–1203. https://doi.org/10.1002/ejic.201301365.
- Corbridge, D. E. C. Phosphorus: Chemistry, Biochemistry and Technology, 6th ed.; CRC Press: Boca Raton, 2013. https://doi.org/10.1201/b12961.
- Marchenko, A.; Koidan, G.; Hurieva, A. N.; Shishkina, S.; Rusanov, E.; Kostyuk, A. Ring Enlargement of N-Phosphanyl-1,2,3,4-Tetrahydroquinazolines. J. Org. Chem. 2020, 85 (22), 14467–14472. https://doi.org/10.1021/ACS.JOC.0C00750.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 National University of Pharmacy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors publishing their works in the Journal of Organic and Pharmaceutical Chemistry agree with the following terms:
1. Authors retain copyright and grant the journal the right of the first publication of the work under Creative Commons Attribution License allowing everyone to distribute and re-use the published material if proper citation of the original publication is given.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book) providing proper citation of the original publication.
3. Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on authors’ personal websites) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access).