1,2,3-Triazole-4(5)-amines – Convenient Synthetic Blocks for the Construction of Triazolo-Annulated Heterocycles





4(5)-amino-1,2,3-triazoles, triazolo[4,5-b]pyridines, triazolo[4,5-d]pyridines, triazoloannelated azepines, cyclocondensation


Aim. To analyze and summarize the synthetic potential of 1,2,3-triazole-4(5)-amines as efficient building blocks in the synthesis of triazolo-annulated pyridine, azine and azepine systems.
Results and discussion. Original literature sources revealing the synthetic potential of 4(5)-amino functionalized 1,2,3-triazoles as convenient and available building blocks for the preparation of triazolo-annulated pyridines, azines and azepines were analyzed and systematized. Condensation of 1,2,3-triazole-4(5)-amines with methylene active compounds was shown to be a powerful tool for the synthesis of versatile triazolo[4,5-b]pyridines. In turn, the cyclocondensation based on 5-amino-1,2,3-triazole-4-carboxylic acids and their structurally modified derivatives was proven to be a general way for obtaining a number of triazolo[4,5-d]pyrimidine systems. Few representatives of triazolo-annulated pyridazines, 1,3-oxazines and 1,3-thiazines were synthesized by the intramolecular cyclization of the corresponding 4-aryl(carboxy-, aminomethyl)-5-amino-1,2,3-triazoles. The cyclocondensation involving 4,5-diamino-, 4-carbofunctionalized 5-amino-1,2,3-triazoles and 4-amino-5-thiocarboxamido-1,2,3-triazoles was successful for the construction of di-, oxa- and thiazepino-annulated triazoles.
Conclusions. The analysis, systematization and summary of the literature regarding the synthetic potential of 1,2,3-triazole-4(5)-amines conclusively demonstrate that these structures are easily available and convenient molecular blocks for the construction of triazolo-annulated pyridine, azine and azepine systems that are important for synthetic and biomedical research.

Supporting Agency

  • The work is a part of the departmental research at the Institute of Organic Chemistry on the topic “Functional design, synthesis and directed modification of bioattractive condensed azole, azine and azepine compounds” (the State Registration No. 0120U104977; the research period: 2021 – 2025). The work was supported by the National Academy of Sciences of Ukraine (grant No. 19/02 – 2021(3)) to groups of young scientists of the National Academy of Sciences of Ukraine (2021-2022)


Download data is not yet available.


  1. Teng, R.; Oliver, S.; Hayes, M. A.; Butler, K. Absorption, Distribution, Metabolism, and Excretion of Ticagrelor in Healthy Subjects. Drug Metab. Dispos. 2010, 38 (9), 1514-1521. https://doi.org/10.1124/dmd.110.032250.
  2. El-Gazzar, M. G.; Nafie, N. H.; Nocentini, A.; Ghorab, M. M.; Heiba, H. I.; Supuran, C. T. Carbonic anhydrase inhibition with a series of novel benzenesulfonamide-triazole conjugates. J. Enzyme Inhib. Med. Chem. 2018, 33 (1), 1565-1574. https://doi.org/10.1080/14756366.2018.1513927.
  3. Pastor, J.; Oyarzabal, J.; Saluste, G.; Alvarez, R. M.; Rivero, V.; Ramos, F.; Cendón, E.; Blanco-Aparicio, C.; Ajenjo, N.; Cebriá, A.; Albarrán, M. I.; Cebrián, D.; Corrionero, A.; Fominaya, J.; Montoya, G.; Mazzorana, M. Hit to lead evaluation of 1,2,3-triazolo[4,5-b]pyridines as PIM kinase inhibitors. Bioorg. Med. Chem. Lett. 2012, 22 (4), 1591-1597. https://doi.org/10.1016/j.bmcl.2011.12.130.
  4. Xu, J.; Xie, X.; Ye, N.; Zou, J.; Chen, H.; White, M. A.; Shi, P.-Y.; Zhou, J. Design, Synthesis, and Biological Evaluation of Substituted 4,6-Dihydrospiro[[1,2,3]triazolo[4,5-b]pyridine-7,3′-indoline]-2′,5(3H)-dione Analogues as Potent NS4B Inhibitors for the Treatment of Dengue Virus Infection. J. Med. Chem. 2019, 62 (17), 7941-7960. https://doi.org/10.1021/acs.jmedchem.9b00698.
  5. Nettekoven, M.; Adam, J.-M.; Bendels, S.; Bissantz, C.; Fingerle, J.; Grether, U.; Grüner, S.; Guba, W.; Kimbara, A.; Ottaviani, G.; Püllmann, B.; Rogers-Evans, M.; Röver, S.; Rothenhäusler, B.; Schmitt, S.; Schuler, F.; Schulz-Gasch, T.; Ullmer, C. Novel Triazolopyrimidine-Derived Cannabinoid Receptor 2 Agonists as Potential Treatment for Inflammatory Kidney Diseases. ChemMedChem 2016, 11 (2), 179-189. https://doi.org/10.1002/cmdc.201500218.
  6. Gigante, A.; Canela, M.-D.; Delang, L.; Priego, E.-M.; Camarasa, M.-J.; Querat, G.; Neyts, J.; Leyssen, P.; Pérez-Pérez, M.-J. Identification of [1,2,3]Triazolo[4,5-d]pyrimidin-7(6H)-ones as Novel Inhibitors of Chikungunya Virus Replication. J. Med. Chem. 2014, 57 (10), 4000-4008. https://doi.org/10.1021/jm401844c.
  7. Li, Z.-H.; Liu, X.-Q.; Geng, P.-F.; Suo, F.-Z.; Ma, J.-L.; Yu, B.; Zhao, T.-Q.; Zhou, Z.-Q.; Huang, C.-X.; Zheng, Y.-C.; Liu, H.-M. Discovery of [1,2,3]Triazolo[4,5-d]pyrimidine Derivatives as Novel LSD1 Inhibitors. ACS Med. Chem. Lett. 2017, 8 (4), 384-389. https://doi.org/10.1021/acsmedchemlett.6b00423.
  8. Mohamed, A. M.; Al-Qalawi, H. R. M.; El-Sayed, W. A.; Arafa, W. A. A.; Alhumaimess, M. S.; Hassan, A. K. Anticancer activity of newly synthesized triazolopyrimidine derivatives and their nucleoside analogs. Acta Poloniae Pharmaceutica – Drug Research 2015, 72 (2), 307–318.
  9. Li, Z.-H.; Liu, X.-Q.; Zhao, T.-Q.; Geng, P.-F.; Guo, W.-G.; Yu, B.; Liu, H.-M. Design, synthesis and preliminary biological evaluation of new [1,2,3]triazolo[4,5-d]pyrimidine/thiourea hybrids as antiproliferative agents. Eur. J. Med. Chem. 2017, 139, 741-749. https://doi.org/10.1016/j.ejmech.2017.08.042.
  10. Chakrabarti, J. K.; Hotten, T. M.; Pullar, I. A.; Steggles, D. J. Heteroarenobenzodiazepines. 6. Synthesis and pharmacological evaluation of CNS activities of [1,2,3]triazolo[4,5-b][1,5]-, imidazolo[4,5-b][1,5]-, and pyrido[2,3-b][1,5]benzodiazepines. 10-Piperazinyl-4H-1,2,3-triazolo[4,5-b][1,5]benzodiazepines with neuroleptic activity. J. Med. Chem. 1989, 32 (10), 2375-2381. https://doi.org/10.1021/jm00130a025.
  11. Chan, W. L.; Ding, M.; Zou, B. (NOVARTIS AG). Spiropyrazolopyridine derivatives and uses thereof for the treatment of viral infections. WO2014167528 A1, Oct 16, 2014.
  12. Zhou, J.; Shi, P.-Y.; Xu, J.; Xie, X. Substituted 4,6-dihydrospiro[[1,2,3]triazolo[4,5-b]pyridine-7,3’-indoline]-2’,5(3H)-dione analogues. US2021047329 A1, Feb 18, 2021.
  13. L'Abbe, G.; Vandendriessche, A.; Weyns, N. ChemInform Abstract: A New General Synthetic Method of [1,2,3]Triazolo[4,5-b]pyridines. ChemInform 1988, 19 (14). https://doi.org/10.1002/chin.198814219.
  14. Gordeev, M. F.; Komkov, A. V.; Bogdanov, V. S.; Dorokhov, V. A. Synthesis of derivatives of 5-amino-4-acyl-1,2,3-triazole, 8-azapurine, and 1,2,3-triazolo[4,5-b]pyridin-7-one using N,N-acetals of acylketenes and tosylazide. Bulletin of the Academy of Sciences of the USSR, Division of chemical science 1990, 39 (6), 1256-1261. https://doi.org/10.1007/BF00962394.
  15. Al-Mousawi, S. M.; Moustafa, M. S. 2-Arylhydrazononitriles as building blocks in heterocyclic synthesis: A novel route to 2-substituted-1,2,3-triazoles and 1,2,3-triazolo[4,5-b]pyridines. Beilstein J. Org. Chem. 2007, 3 (12). https://doi.org/10.1186/1860-5397-3-12.
  16. Ibrahim, H. M.; Behbehani, H.; Makhseed, S.; Elnagdi, M. H. Acylation of Heteroaromatic Amines: Facile and Efficient Synthesis of a New Class of 1,2,3-Triazolo[4,5-b]pyridine and Pyrazolo[4,3-b]pyridine Derivatives. Molecules 2011, 16 (5), 3723-3739. https://doi.org/10.3390/molecules16053723.
  17. Frasson, I.; Spanò, V.;Di Martino, S.; Nadai, M.; Doria, F.; Parrino, B.; Carbone, A.; Cascioferro, S. M.; Diana, P.; Cirrincione, G.; Freccero, M.; Barraja, P.; Richter, S. N.; Montalbano, A. Synthesis and photocytotoxic activity of [1,2,3]triazolo[4,5-h][1,6]naphthyridines and [1,3]oxazolo[5,4-h][1,6]naphthyridines. Eur. J. Med. Chem. 2019, 162, 176-193. https://doi.org/10.1016/j.ejmech.2018.10.071.
  18. Vydzhak, R. N.; Panchishin, S. Y.; Brovarets, V. S. Application of Nickel Complexes with 1,3-Dicarbonyl Compounds for Synthesis of Fused 4-Aminopyridine-Based Systems. Russ. J. Gen. Chem. 2020, 90 (8), 1439-1446. https://doi.org/10.1134/S1070363220080101.
  19. Syrota, N. А.; Kemskiy, S. V.; Bol’but, A. V.; Chernobaev, I. I.; Vovk, M. V. An efficient method for accessing carboannulated and functionalized [1,2,3]triazolo[4,5-b]pyridines. Chem. Heterocycl. Comp. 2020, 56 (8), 1048-1053. https://doi.org/10.1007/s10593-020-02771-9.
  20. Syrota, N.; Kemskii, S.; Vovk, M. Convenient variant of the synthesis of 5-oxo-4,5-dihydro-1H-[1,2,3]triazolo[4,5-b]pyridine-6-carboxylic acid. Visnyk of the Lviv University. Series Chemistry 2021, 62, 191-196. https://doi.org/10.30970/vch.6201.191.
  21. Buckle, D. R.; Smith, H. Triazolo[4,5-b]quinolines and prophylaxis of allergic diseases with them. US4223032A, Sep 16, 1980.
  22. Ried, W.; Guryn, R.; Laoutidis, J. Synthese neuer 8-Azapurine. Liebigs Ann. Chem. 1990, 1990 (8), 819-820. https://doi.org/10.1002/jlac.1990199001152.
  23. He, X.; Yang, K.; Liu, H.; Ellis, D. A. Azolopyrimidines as inhibitors of cannabinoid 1 activity. WO2007120454 A1, Oct 25, 2007.
  24. Liu, H.; He, X.; Choi, H.-S.; Yang, K.; Woodmansee, D.; Wang, Z.; Ellis, D. A.; Wu, B.; He, Y.; Nguyen, T. N. Compounds and compositions as inhibitors of cannabinoid receptor 1 activity. WO2006047516 A2, May 4, 2006.
  25. Abbas Temerik, H. H.; Younes, M. I.; Metwally, S. A. Synthesis and reactions of triazine azide towards nucleophilic reagents. Collect. Czech. Chem. Commun. 1993, 58 (12), 3017–3023. https://doi.org/10.1135/cccc19933017.
  26. L'Abbe, G.; Godts, F.; Toppet, S.; Van Meervelt, L.; King, G. S. D. ChemInform Abstract: Synthesis and Crystal Structure of Bis[1,2,3]triazolo[1,5-a:4′,5′-d]pyrimidin-9-ones. ChemInform 1988, 19 (1). https://doi.org/10.1002/chin.198801243.
  27. Zhao, J.-F.; Xie, C.; Ding, M.-W.; He, H.-W. A Selective synthesis of 3,6-dihydro-7H-1,2,3-triazolo[4,5-d]pyrimidin-7-ones. Chem. Lett. 2005, 34 (7), 1022–1023. https://doi.org/10.1246/cl.2005.1022.
  28. Zhao, J.-F.; Xie, C.; Ding, M.-W.; He, H.-W. Base-Catalyzed, Efficient Synthesis of 5-Substituted 3,6-Dihydro-7H-1,2,3-triazolo[4,5-d]pyrimidin-7-ones. Synthesis 2005, 2005 (15), 2544-2548. https://doi.org/10.1055/s-2005-872077.
  29. Zhao, J.-F.; Xie, C.; Xu, S.-Z.; Ding, M.-W.; Xiao, W.-J. Iminophosphorane-mediated efficient synthesis of new tricyclic 3,5-dihydro-1,2,3-triazolo[4,5-d]-1,2,4-triazolo[1,5-a]pyrimidin-9-ones. Org. Biomol. Chem. 2006, 4 (1), 130-134. https://doi.org/10.1039/B513715B.
  30. Sun, S.; Chen, L.; Yang, X. A Solution-Phase Parallel Synthesis of 5-Substituted 3,6-Dihydro-7H-1,2,3-triazolo[4,5-d]pyrimidin-7-ones. Chin. J. Chem. 2011, 29 (5), 991-994. https://doi.org/10.1002/cjoc.201190201.
  31. Fang, Z. D.; Wei, X. H. Sequential three-component synthesis of 1,4-bis[triazolo[4,5-d]pyrimidin-7(6H)-one]piperazines. Heterocycles 2012, 85 (11), 2757-2763. https://doi.org/10.3987/COM-12-12564.
  32. Wang, T.; Xu, X.-M.; Ke, X.-X.; Liu, X.-Y.; Luo, J.; Yi, B.-X. Iminophosphorane-Mediated Efficient Synthesis of New Fluorine-Containing Triazolo[4,5-d]pyrimidin-7-ones. Phosphorus, Sulfur Silicon Relat. Elem. 2012, 187 (2), 155-164. https://doi.org/10.1080/10426507.2011.590169.
  33. Wang, T.; Ke, X. X.; Zhou, S. T.; Chen, H. Z. New Efficient Synthesis of 5,6-Disubstituted-3-phenyl-1,2,3-triazolo[4,5-d]pyrimidin-7-ones via a Tandem Aza-Wittig Reaction. Synth. Commun. 2012, 42 (10), 1393-1400. https://doi.org/10.1080/00397911.2010.535940.
  34. Mohamed, A. M.; Abdelwahab, M.; Elnaggar, D.; Abde Hafez, N. A.; Mahmoud, S. F.; El-Bayaa, M.; El-kady, D. S.; Omran, M. M.; El-Sayed, W. A. Synthesis, Cytotoxic Activity and Molecular Modelling of Novel [1,2,3]triazolo[4,5-d]pyrimidine Compounds, their Glycoside Derivatives and Acyclic Analogs. Egypt. J. Chem. 2022, 65 (1), 645-656. https://doi.org/10.21608/ejchem.2021.84371.4127.
  35. Haning, H.; Niewöhner, U.; Schenke, T.; Lampe, T.; Hillisch, A.; Bischoff, E. Comparison of different heterocyclic scaffolds as substrate analog PDE5 inhibitors. Bioorg. Med. Chem. Lett. 2005, 15 (17), 3900-3907. https://doi.org/10.1016/j.bmcl.2005.05.090.
  36. Bissantz, C.; Grether, U.; Kimbara, A.; Nettekoven, M.; Roever, S.; Rogers-Evans, M. Novel [1,2,3]triazolo[4,5-d]pyrimidine derivatives. US2013137676 A1, May 30, 2013.
  37. Adam, J.-M.; Bissantz, C.; Grether, U.; Kimbara, A.; Nettekoven, M.; Roever, S.; Rogers-Evans, M. Novel [1,2,3]triazolo[4,5-d]pyrimidine derivatives. US2013116236 A1, May 9, 2013.
  38. Bissantz, C.; Grether, U.; Kimbara, A.; Nettekoven, M.; Roever, S.; Rogers-Evans, M. [1,2,3]triazolo[4,5-d]pyrimidine derivatives as agonists of the cannabinoid receptor 2 agonists. WO2013076182 A1, May 30, 2013.
  39. Grether, U.; Nettekoven, M.; Rogers-Evans, M.; Schmitt, S.; Stenton, B. J. Triazolo[4,5-d]pyrimidines as agonists of the cannabinoid receptor 2. WO2016071375 A1, May 12, 2016.
  40. Perez Perez, M. J.; Gigante Martinez, A.; Canela Gomez, M. D.; Leyssen, P.; Neyts, J. Novel antiviral compounds. WO2014170368 A1, Oct 23, 2014.
  41. Miyashita, A.; Fujimoto, K.; Okada, T.; Higashino, T. Synthesis of fused pyrimidinones by reaction of aminoarenecarboxamide with esters; preparation of pyrrolo[2,3-d]-, thieno[2,3-d]-, isoxazolo[5,4-d]-, and 1,2,3-triazolo[4,5-d]pyrimidinones, and quinazoles. Hetercycles 1996, 42 (2), 691–699. https://doi.org/10.3987/COM-95-S75.
  42. Saundane, A. R.; Halu, A.; Kirankumar, N. M. Synthesis and biological evaluation of some novel indole analogues containing triazolopyrimidine moiety. Monatshefte für Chemie – Chemical Monthly 2017, 148 (8), 1497-1511. https://doi.org/10.1007/s00706-017-1957-1.
  43. Higashino, T.; Sato, S.; Miyashita, A.; Katori, T. ChemInform Abstract: Studies on Pyrazolo[3,4-d]pyrimidine Derivatives. Part 16. Preparation of Reissert Compounds from Condensed Pyrimidine Systems Catalyzed by Lewis Acids. ChemInform 1988, 19 (23). https://doi.org/10.1002/chin.198823238.
  44. Biagi, G.; Giorgi, I.; Livi, O.; Scartoni, V.; Tonetti, I.; Lucacchini, A. ChemInform Abstract: Xanthine Oxidase Inhibition: Effect of a Linear Carboalkoxy Substituent on C-2 of the Nucleus of 8-Azahypoxanthine. ChemInform 1991, 22 (12). https://doi.org/10.1002/chin.199112243.
  45. Albert, A. v-Triazolo[4,5-d]pyrimidines (8-azapurines). Part 24. The 3-alkyl derivatives. J. Chem. Soc., Perkin Trans. 1 1981, 2344-2351. https://doi.org/10.1039/P19810002344.
  46. Albert, A.; Trotter, A. M. v-Triazolo[4,5-d]pyrimidines (8-azapurines). Part 21. Synthesis of 2-substituted 8-azapurin-6-ones from 4-amino-1,2,3-triazole-5-carboxamides and amidines. J. Chem. Soc., Perkin Trans. 1 1979, 922-925. https://doi.org/10.1039/P19790000922.
  47. Yang, W.; Ma, H.; Yang, Q.; Wang, J.; Liu, Y.; Yang, Q.; Wu, J.; Song, C.; Chang, J. The first example of palladium-catalyzed cascade amidine arylation–intramolecular ester amidation for the synthesis of hypoxanthines: application to the synthesis of 8-azanebularine analogues. Org. Biomol. Chem. 2017, 15 (2), 379-386. https://doi.org/10.1039/C6OB02121B.
  48. Yang, W.; Peng, Y.; Wang, J.; Song, C.; Yu, W.; Zhou, Y.; Jiang, J.; Wang, Q.; Wu, J.; Chang, J. Design, synthesis, and biological evaluation of novel 2′-deoxy-2′-fluoro-2′-C-methyl 8-azanebularine derivatives as potent anti-HBV agents. Bioorg. Med. Chem. Lett. 2019, 29 (11), 1291-1297. https://doi.org/10.1016/j.bmcl.2019.04.005.
  49. Da Settimo, A.; Livi, O.; Ferrarini, P. L.; Biagi, G. ChemInform Abstract: Synthesis and pharmacological activity of three new 9-aryl-8-azaadenine derivatives. Chemischer Informationsdienst 1980, 11 (30). https://doi.org/10.1002/chin.198030259.
  50. Kislyi, V. P.; Danilova, E. B.; Semenov, V. V. Synthesis of 6-mono- and 5,6-disubstituted 1,2,3-triazolo[4,5-d]pyrimidin-7-ones. Russ. Chem. Bull. 2003, 52 (8), 1770-1776. https://doi.org/10.1023/A:1026004720790.
  51. Maková, B.; Mik, V.; Lišková, B.; Gonzalez, G.; Vítek, D.; Medvedíková, M.; Monfort, B.; Ručilová, V.; Kadlecová, A.; Khirsariya, P.; Gándara Barreiro, Z.; Havlíček, L.; Zatloukal, M.; Soural, M.; Paruch, K.; D'Autréaux, B.; Hajdúch, M.; Strnad, M.; Voller, J. Cytoprotective activities of kinetin purine isosteres. Bioorg. Med. Chem. 2021, 33, 115993. https://doi.org/10.1016/j.bmc.2021.115993.
  52. Bosch, J. A.; Connolly, S.; Eastwood, P. R.; Roberts, R. S.; Gomez, S. S.; Javaloyes, J. F. C. New TRPA1 antagonists. WO2017064068 A1, Apr 20, 2017.
  53. Bianucci, A. M.; Biagi, G.; Coi, A.; Giorgi, I.; Oreste, L.; Pacchini, F.; Scartoni, V.; Lucacchini, A.; Costa, B. Bioisosterism, enantioselectivity, and molecular modeling of new effective N6- and/or N(9)-substituted 2-phenyl adenines and 8-aza analogs: Different binding modes to A1 adenosine receptors. Drug Dev. Res. 2001, 54 (2), 52-65. https://doi.org/10.1002/ddr.1205.
  54. Scheiner, P.; Arwin, S.; Eliacin, M.; Tu, J. 1-Aminohypoxanthine and analogues. J. Heterocycl. Chem. 1985, 22 (5), 1435-1440. https://doi.org/10.1002/jhet.5570220563.
  55. Liang, C. PI3K (delta) selective inhibitors. WO2011041399 A2, Apr 7, 2011.
  56. Fuksova, K.; Havlicek, L.; Krystof, V.; Lenobel, R.; Strnad, M. Azapurine derivatives. WO2004018473 A2, Mar 4, 2004.
  57. Karalkar, N. B.; Khare, K.; Molt, R.; Benner, S. A. Tautomeric equilibria of isoguanine and related purine analogs. Nucleosides, Nucleotides Nucleic Acids 2017, 36 (4), 256-274. https://doi.org/10.1080/15257770.2016.1268694.
  58. Romero, D.; Robinson, S.; Greenwood, J. R.; Harriman, G. C.; Boyce, S. IRAK inhibitors and uses thereof. WO2017004133 A1, Jan 5, 2017.
  59. Reddy, S. S.; Vineel, B. G.; Venkataiah, S.; Naidu, A.; Dubey, P. K. Synthesis of novel (S)-Imidazolo[1,2-c][1,2,3]triazolo[4,5-e]pyrimidine derivatives. Asian J. Chem. 2014, 26 (23), 8110–8114. https://doi.org/10.14233/ajchem.2014.17565.
  60. Havlicek, L.; Fuksova, K.; Krystof, V.; Orsag, M.; Vojtesek, B.; Strnad, M. 8-Azapurines as new inhibitors of cyclin-dependent kinases. Bioorg. Med. Chem. 2005, 13 (18), 5399-5407. https://doi.org/10.1016/j.bmc.2005.06.007.
  61. Reddy, S. S.; Vineel, B. G.; Venkataiah, S.; Naidu, A.; Dubey, P. K. Novel synthesis of (R)-imidazolo[1,2-c][1,2,3]triazolo[4,5-e]pyrimidines. Asian J. Chem. 2014, 26 (22), 7693–7696. https://doi.org/10.14233/ajchem.2014.17606.
  62. Gigante, A.; Gómez-SanJuan, A.; Delang, L.; Li, C.; Bueno, O.; Gamo, A.-M.; Priego, E.-M.; Camarasa, M.-J.; Jochmans, D.; Leyssen, P.; Decroly, E.; Coutard, B.; Querat, G.; Neyts, J.; Pérez-Pérez, M.-J. Antiviral activity of [1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones against chikungunya virus targeting the viral capping nsP1. Antiviral Res. 2017, 144, 216-222. https://doi.org/10.1016/j.antiviral.2017.06.003.
  63. Hassan, A.; Ali, M. M.; Diaa, M.; Germoush, M. O.; Mohamed, A. M.; El-Sayed, W. Oxidative Stress of Some Triazolopyrimidine Derivatives and their Nucleoside Analogues on Mcf-7 and A549 Cell Lines. Egypt. J. Chem. 2020, 63 (1), 247-253. https://doi.org/10.21608/ejchem.2019.18248.2136.
  64. Albert, A.; Taguchi, H. Synthesis from 1,2,3-triazole intermediates, of 2-amino-7-(also 8-)methyl-8-azapurin-6-ones (N-methylated ‘8-azaguanines’) and related 8-azapurines. J. Chem. Soc. D 1971, 6, 249-250. https://doi.org/10.1039/C29710000249.
  65. Chissick, S. S.; Dewar, M. J. S.; Maitlis, P. M. New Heteroaromatic Compounds. XIV.1 Boron-containing Analogs of Purine, Quinazoline and Perimidine. J. Am. Chem. Soc. 1961, 83 (12), 2708-2711. https://doi.org/10.1021/ja01473a025.
  66. Albert, A. v-Triazolo[4,5-d]pyrimidines (8-azapurines). Part XVI. Preparation of 6-amino-8-azapurines by heating 4-amino-1,2,3-triazole-5-carbonitrile (and its N-alkyl derivatives) with amidines. J. Chem. Soc., Perkin Trans. 1 1975, 4, 345-349. https://doi.org/10.1039/P19750000345.
  67. Baranowski, D.; Framski, G.; Wyszko, E.; Ostrowski, T. Studies on structure of kinetin riboside and its analogues by variable-temperature NMR. J. Mol. Struct. 2019, 1195, 110-118. https://doi.org/10.1016/j.molstruc.2019.05.112.
  68. Albert, A.; Lin, C. J. v-Triazolo[4,5-d]pyrimidines (8-azapurines). Part 18. Three new reactions for synthesizing 8-azapurinethiones from 4-amino-5-cyano-1,2,3-triazoles. J. Chem. Soc., Perkin Trans. 1 1977, (2), 210-213. https://doi.org/10.1039/P19770000210.
  69. Kamel, E. M.; Ahmad, R. A.; Moustafa, O. S. A Convenient and Efficient Conversion of 4-Aminobenzophenone into Some New 1,2,3-Triazole and Benzothiazole Derivatives. J. Chin. Chem. Soc. 2005, 52 (1), 149-153. https://doi.org/10.1002/jccs.200500023.
  70. Ried, W.; Laoutidis, J. Synthese neuer 6,7-heteroanellierter 3H-1,2,3-Triazolo[4,5-d]pyrimidin-derivate (8-Azapurin-derivate). Synthesis 1989, 1989 (10), 739-741. https://doi.org/10.1055/s-1989-27377.
  71. Pokhodylo, N. T.; Shyyka, O. Y. New cascade reaction of azides with malononitrile dimer to polyfunctional [1,2,3]triazolo[4,5-b]pyridine. Synth. Commun. 2017, 47 (11), 1096-1101. https://doi.org/10.1080/00397911.2017.1313427.
  72. Albert, A.; Dunand, A. 1,2,3-Triazolo[4,5-d][1,3]thiazin, ein neues heterocyclisches System. Angew. Chem. 1980, 92 (4), 319–320. https://doi.org/10.1002/ange.19800920424.
  73. Biagi, G.; Giorgi, I.; Livi, O.; Scartoni, V.; Velo, S.; Lucacchini, A.; Senatore, G.; Barili, P. L. 1,2,3-Triazolodiazepines. I. Preparation and benzodiazepine receptor binding of 1-benzyl- and 1-phenethyl-1,2,3-triazolo-[4,5-b][1,4]diazepines. J. Heterocycl. Chem. 1995, 32 (1), 169-176. https://doi.org/10.1002/jhet.5570320127.
  74. Chakrabarti, J. K.; Hotten, T. M.; Steggles, D. J. Benzodiazepine compounds and their use as pharmaceuticals. US4431589, Feb 14, 1984.
  75. Acevedo, O. L.; Krawczyk, S. H.; Townsend, L. B. Total synthesis of (4R)- and (4S)-5,6-dihydro-1-b-D-ribofuranosyl-4H-pyrazolo[3,4-d][1,3]diazepin-4-ol and (8R)- and (8S)-7,8-dihydro-3-b-D-ribofuranosyl-6H-v-triazolo[4,5-d][1,3]diazepin-8-ol: two heterocyclic analogs of the nucleoside antibiotic coformycin. J. Org. Chem. 1986, 51 (7), 1050-1058. https://doi.org/10.1021/jo00357a020.
  76. Kemskiy, S. V.; Syrota, N. A.; Bol’but, A. V.; Dorokhov, V. I.; Vovk, M. V. Synthesis of 5-hydroxy- and 5-sulfanyl-substituted [1,2,3]triazolo[4,5-е][1,4]diazepines. Chem. Heterocycl. Comp. 2018, 54 (8), 789-795. https://doi.org/10.1007/s10593-018-2350-7.
  77. Syrota, N. А.; Kemskiy, S. V.; Bol’but, A. V.; Vovk, M. V. 4-(Boc-amino)-1Н-1,2,3-triazole-5-carboxylic acids – convenient reagents for the synthesis of 1,4,6,7-tetrahydro[1,2,3]triazolo[4,5-е][1,4]diazepine-5,8-diones. Chem. Heterocycl. Comp. 2019, 55 (11), 1092-1097. https://doi.org/10.1007/s10593-019-02583-6.
  78. Weber, K.-H.; Langbein, A.; Daniel, H. Heteroaromaten mit anellierten Siebenringen, I. Oxazepinone und Thiazepinone. Justus Liebigs Ann. Chem. 1978, 1978 (8), 1241-1249. https://doi.org/10.1002/jlac.197819780804.
  79. Syrota, N. A.; Kemskiy, S. V.; Bol’but, A. V.; Chernobaev, I. I.; Liavinets, O. S.; Vovk, M. V. 4-(N-Boc-amino)-1Н-1,2,3-triazolecarbothioamides in the synthesis of a new heterocyclic [1,2,3]triazolo[4,5-e][1,4]thiazepine system. Chem. Heterocycl. Comp. 2021, 57 (7), 841-847. https://doi.org/10.1007/s10593-021-02989-1.




How to Cite

Syrota, N. O.; Kemskiy, S. V.; Saliyeva, L. M.; Vovk, M. V. 1,2,3-Triazole-4(5)-Amines – Convenient Synthetic Blocks for the Construction of Triazolo-Annulated Heterocycles. J. Org. Pharm. Chem. 2022, 20, 27-51.



Review Articles